首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bottom-mounted ADV and ADCP instruments in combination with CTD profiling measurements taken along the Chinese coast of the East China Sea were used to study the vertical structure of temperature, salinity, and velocity in reversing tidal currents on a shallow inner shelf and in rotating tidal flows over a deeper sloping bottom of the outer shelf. These two regimes of barotropic tide affect small-scale dynamics in the lower part of the water column differently. The reversing flow was superimposed by seiches of ∼2.3 h period generated in semienclosed Jiaozhou Bay located nearby. As the tidal vector rotates over the sloping bottom, the height of the near-bottom logarithmic layer is subjected to tidal-induced variations. A maximum of horizontal velocity Umax appears at the upper boundary of the log layer during the first half of the current vector rotation from the minor to the major axis of tidal ellipse. In rotating tidal flow, vertical shear generated at the seafloor, propagated slowly to the water interior up to the height of Umax, with a phase speed of ∼5 m/h. The time-shifted shear inside the water column, relative to the shear at the bottom, was associated with periodically changing increases and decreases of the tidal velocity above the log layer toward the sea surface. In reversing flows, the shear generated near the bottom and the shear at the upper levels were almost in phase.  相似文献   

2.
Using a three-dimensional non-linear shelf model, the elliptical properties (ellipticity, inclination of the ellipse, major and minor semi-axis and phase) of the M2 tide in the German Bight were calculated and compared with CODAR measurements. A series of barotropic and baroclinic calculations were carried out to investigate the influence of geometry, stratification and particularly inputs of freshwater on these parameters. The elliptical properties undergo stronger changes in zones of influence of embayments and in the deepening of the old Elbe Valley. Friction effects in the shallow areas are responsible for robust vertical variations of the ellipticity. The island of Helgoland induces wakes on its western and eastern sides. The discharge of freshwater of the rivers Elbe, Weser and Ems induced in general negative ellipticity. Although primarily determined by geography, baroclinic effects significantly modified the inclination of the ellipses. The calculated ellipses pattern of anticlockwise and clockwise tidal current rotation agrees quite well with CODAR measurements. The elliptical properties give a general idea of the interaction of tidal waves with coastal geometries.Responsible Editor: Hans Burchard  相似文献   

3.
The role of water depth and bottom boundary layer turbulence upon lee-wave generation in sill regions is examined. Their effect upon vertical mixing is also considered. Calculations are performed using a non-hydrostatic model in cross-section form with a specified tidal forcing. Initial calculations in deeper water and a sill height such that the sill top is well removed from the surrounding bed region showed that downstream lee-wave generation and associated mixing increased as bottom friction coefficient k increased. This was associated with an increase in current shear across the sill. However, for a given k, increasing vertical eddy viscosity A v reduced vertical shear in the across sill velocity, leading to a reduction in lee-wave amplitude and associated mixing. Subsequent calculations using shallower water showed that for a given k and A v, lee-wave generation was reduced due to the shallower water depth and changes in the bottom boundary layer. However, in this case (unlike in the deepwater case), there is an appreciable bottom current. This gives rise to bottom mixing which in shallow water extends to mid-depth and enhances the mid-water mixing that is found on the lee side of the sill. Final calculations with deeper water but small sill height showed that lee waves could propagate over the sill, thereby reducing their contribution to mixing. In this case, bottom mixing was the major source of mixing which was mainly confined to the near bed region, with little mid-water mixing.  相似文献   

4.
For a proper understanding of flow patterns in curved tidal channels, quantification of contributions from individual physical mechanisms is essential. We study quantitatively how such contributions are affected by cross-channel bathymetry and three alternative eddy viscosity parameterisations. Two models are presented for this purpose, both describing flow in curved but otherwise prismatic channels with an (almost) arbitrary transverse bathymetry. One is a numerical model based on the full three-dimensional shallow water equations. Special feature of this diagnostic model is that assumptions regarding the relative importance of particular physical mechanisms can be incorporated in the computations by switching corresponding terms in the model equations on or off. We also present an idealized model that provides semi-analytical approximate solutions of the shallow water equations for all three considered alternative eddy viscosity parameterisations. It forms an aid in explaining and theorising about results obtained with the numerical model. Observations regarding Chesapeake Bay serve as a reference case for the present study. We find that the relative importance of both along-channel advective forcing and transverse diffusive forcing depends on local characteristics of the cross-sectional bottom profile rather than global ones. In our reference case, tide-residual along-channel flow induced by these forcings is not small compared to the total tidal residual. Building on this observation, we present an indicative test to judge whether advective processes should be included in leading order in modelling tide-dominated estuarine flow. Furthermore, depending on the applied eddy viscosity parameterisation (uniformly or parabolically distributed over the vertical), we find qualitatively different spatial patterns for the along-channel advective forcing.  相似文献   

5.
Abstract

A depth-dependent model for the topographic rectification of tidal currents in a homogeneous rotating fluid is used to examine the dependence of the rectified mean flow on various tidal, topographic and frictional parameters. Friction is parameterized through a vertically-uniform, time-independent vertical eddy viscosity and a bottom stress law applied near the top of the constant stress layer. The model neglects the interaction of mean and tidal currents, assumes uniformity along isobaths, and is closed with the assumption of zero depth-averaged mean flow across isobaths.

In the limit of depth-independence, the model reduces to that considered by Huthnance (1973) and Loder (1980) which, for weak friction, favours anticyclonic mean circulation around shallow regions and Lagrangian flow which is significantly reduced from the Eulerian. With the inclusion of vertical structure, the magnitude of the anticyclonic flow is amplified suggesting that depth-independent models may underestimate the along-isobath flow. For strong friction the direction of the mean flow depends on the orientation of the tidal ellipse relative to the isobaths. The depthindependent model again underestimates the magnitude of the along-isobath flow, but this can be offset with an appropriate reduction of the bottom friction coefficient.

The cross-isobath mean flows are one to two orders of magnitude weaker than the along-isobath flows and generally have more vertical structure. There is also a significant Stokes drift in the cross-isobath direction. Although there is some tendency for the cross-isobath mean bottom current to be down the cross-isobath mean pressure gradient, it appears that it is not generally possible to infer this current from depth-independent models.  相似文献   

6.
A cross-sectional nonhydrostatic model using idealized sill topography is used to examine the influence of bottom friction upon unsteady lee wave generation and flow in the region of a sill. The implications of changes in shear and lee wave intensity in terms of local mixing are also considered. Motion is induced by a barotropic tidal flow which produces a hydraulic transition, associated with which are convective overturning cells, wave breaking, and unsteady lee waves that give rise to mixing on the lee side of the sill. Calculations show that, as bottom friction is increased, current profiles on the shallow sill crest develop a highly sheared bottom boundary layer. This enhanced current shear changes the downwelling of isotherms downstream of the sill with an associated increase in the hydraulic transition, wave breaking, and convective mixing in the upper part of the water column. Both short and longer time calculations with wide and narrow sills for a number of sill depths and buoyancy frequencies confirm that increasing bottom friction modifies the flow and unsteady lee wave distribution on the downstream side of a sill. Associated with this increase in bottom friction coefficient, there is increased mixing in the upper part of the water column with an associated decrease in the vertical temperature gradient. However, this increase in mixing and decrease in temperature gradient in the upper part of the water column is very different from the conventional change in near-bed temperature gradient produced by increased bottom mixing that occurs in shallow sea regions as the bottom drag coefficient is increased.  相似文献   

7.
Kodaira  Tsubasa  Waseda  Takuji 《Ocean Dynamics》2019,69(11):1373-1385

The Kuroshio current is well known for generating cold wakes behind islands over Izu Ridge in Northwestern Pacific. Observational data from the geostationary Himawari-8 satellite for 2015–2017 revealed the occurrence of cold waters during the period when the Kuroshio current flows away from the islands. With a focus on tidal currents, this study presents an investigation of dynamical processes responsible for the formation of areas with low sea surface temperature (SST) through the adoption of a high-resolution numerical ocean model for an event that happened in July 2017. Areas with cold water emerged only when tidal currents are included in the numerical model. The model results indicate the cold surface waters are formed in the vicinity of the islands because of upwelling and vertical mixing. Qualitative features of the cold water formation for each island are found to depend on its size, topography, and ambient currents. Near Kozu Island, the tidal excursion is large enough to cause eddy shedding. These shed eddies are stirred by tidal currents to extend the surface cooling effect to wider areas. Near Hachijo Island, a persistent wake is formed by the ambient northward current. Inclusion of tidal currents destabilizes the wake, and consequently leads to the formation of a low SST area, although no clear eddy shedding is detected. The flow patterns around the islands are classified using an additional non-dimensional parameter, defined as the ratio between tidal excursion and island diameter.

  相似文献   

8.
On the vertical structure of the Rhine region of freshwater influence   总被引:1,自引:0,他引:1  
An idealised three-dimensional numerical model of the Rhine region of fresh water influence (ROFI) was set up to explore the effect of stratification on the vertical structure of the tidal currents. Prandle’s dynamic Ekman layer model, in the case of zero-depth-averaged, cross-shore velocities, was first used to validate the response of the numerical model in the case of barotropic tidal flow. Prandle’s model predicted rectilinear tidal currents with an ellipse veering of up to 2%. The behaviour of the Rhine ROFI in response to both a neap and a spring tide was then investigated. For the given numerical specifications, the Rhine plume region was well mixed over the vertical on spring tide and stratified on neap tide. During spring conditions, rectilinear tidal surface currents were found along the Dutch coast. In contrast, during neap conditions, significant cross-shore currents and tidal straining were observed. Prandle’s model predicted ellipse veering of 50%, and was found to be a good indicator of ellipticity magnitude as a function of bulk vertical eddy viscosity. The modelled tidal ellipses showed that surface currents rotated anti-cyclonically whereas bottom currents rotated cyclonically. This caused a semi-diurnal cross-shore velocity shearing which was 90° out of phase with the alongshore currents. This cross-shore shear subsequently acted on the horizontal density gradient in the plume, thereby causing a semi-diurnal stratification pattern, with maximum stratification around high water. The same behaviour was exhibited in simulations of a complete spring–neap tidal cycle. This showed a pattern of recurring stratification on neaps and de-stratification on springs, in accordance with observations collected from field campaigns in the 1990’s. To understand the increase in ellipticities to 30% during neaps and the precise shape of the vertical ellipse structure, stratification has to be taken into account. Here, a full three-dimensional numerical model was employed, and was found to represent the effect of de-coupling of the upper and lower layers due to a reduction of mixing at the pycnocline.  相似文献   

9.
With the existence of eight substantial islands in the Southern California Bight, the oceanic circulation is significantly affected by island wakes. In this paper a high-resolution numerical model (on a 1 km grid), forced by a high-resolution wind (2 km), is used to study the wakes. Island wakes arise due both to currents moving past islands and to wind wakes that force lee currents in response. A comparison between simulations with and without islands shows the surface enstrophy (i.e., area-integrated square of the vertical component of vorticity at the surface) decreases substantially when the islands in the oceanic model are removed, and the enstrophy decrease mainly takes place in the areas around the islands. Three cases of wake formation and evolution are analyzed for the Channel Islands, San Nicolas Island, and Santa Catalina Island. When flows squeeze through gaps between the Channel Islands, current shears arise, and the bottom drag makes a significant contribution to the vorticity generation. Downstream the vorticity rolls up into submesoscale eddies. When the California Current passes San Nicolas Island from the northwest, a relatively strong flow forms over the shelf break on the northeastern coast and gives rise to a locally large bottom stress that generates anticyclonic vorticity, while on the southwestern side, with an adverse flow pushing the main wake current away from the island, positive vorticity has been generated and a cyclonic eddy detaches into the wake. When the northward Southern California Countercurrent passes the irregular shape of Santa Catalina Island, cyclonic eddies form on the southeastern coast of the island, due primarily to lateral stress rather than bottom stress; they remain coherent as they detach and propagate downstream, and thus they are plausible candidates for the submesoscale “spirals on the sea” seen in many satellite images. Finally, the oceanic response to wind wakes is analyzed in a spin-up experiment with a time-invariant wind that exhibits strips of both positive and negative curl in the island lee. Corresponding vorticity strips in the ocean develop through the mechanism of Ekman pumping.  相似文献   

10.
This study focuses on the factors that may affect the feasibility of performing elliptical anisotropy analysis on azimuthal PP- and PS-wave data in HTI media, with the aim of using the modeling results as guidance in real seismic data application. Our results reveal that there is an offset limitation for both PP- and PS-waves in elliptical anisotropy fitting, and that PS-waves show a wider applicable offset range and larger observable azimuthal anisotropy than PP-waves. The major axis of the elliptical fit to the amplitudes of the R-component is perpendicular to the fracture strike, which is opposite to that in PP-wave analysis. The azimuthal interval travel time of PS-waves shows a nearly elliptical distribution and the major axis of the fit ellipse is perpendicular to the fracture strike, which is same as that in PP-wave analysis. For data within the applicable offset range, the anisotropic magnitude obtained from amplitude and travel time attributes of PP- and PS-waves exhibits a dependence on fracture density, and the major to minor axis ratio of the fit ellipse may be used to infer the relative distribution of fracture densities.  相似文献   

11.
The outer vents in the Auckland Volcanic Field lie within 19 to 559 m (mean 224.75 m) of a ‘best-fit' ellipse with a 28.9-km-long major axis trending almost north–south, and a minor axis 16.5 km long. The ellipse has formed the outer boundary of the field since the inception of volcanism 140,000 years ago. We present the following testable hypotheses as an explanation of this pattern: The boundary is the expression of a corresponding elliptical source area at depth in the lithospheric mantle (possibly asthenosphere material trapped at this level). The ellipse may represent a depth contour on a very small upper mantle dome or of a lens intruding into a neck of an extensional structure. Alternatively it could be the boundary of a flat elliptical area where tensional stresses allow decompressional melting. The elliptical tensional region may either have developed in a releasing bend during strike-slip faulting along a fundamental lithosphere structure inherited from Mesozoic tectonics, associated with the NNW-trending Dun Mountain ophiolite belt, or may represent the tip of a fracture along which the Auckland Volcanic Province is propagating northward.  相似文献   

12.
In tidal environments, the response of suspended sediment concentration (SSC) to the current velocity is not instantaneous, the SSC lagging behind the velocity (phase lag), and the amplitude of SSC variation decreasing with height above the bed (amplitude attenuation). In order to quantitatively describe this phenomenon, a one-dimensional vertical advection–diffusion equation of SSC is derived analytically for uniform unsteady tidal flow by defining a concentration boundary condition using a constant vertical eddy diffusivity and sediment settling velocity. The solution, in simple and straightforward terms, shows that the vertical phase lag increases linearly with the height above the bed, while the amplitude of the SSC variation decreases exponentially with the height. The relationship between the SSC and the normalized current velocity can be represented by an ellipse or a line, depending on the phase lag. The lag of sediment movement or “diffusion/settling lag” is the mechanism generating the phase lag effect. Field observations used for validation show that the theoretically predicted and the observed curves of the vertical SSC phase lag and amplitude attenuation show reasonable agreement. The procedure proposed in this paper substantially simplifies the modeling of suspended matter transport in tidal flows.  相似文献   

13.
This paper presents a passive vertical quasi‐zero‐stiffness vibration isolator intended for relatively small objects. The present isolator has features of compactness, long stroke, and adjustability to various load capabilities. To realize these features, we use constant‐force springs, which sustain constant load regardless of their elongation, and propose a variable ellipse curve mechanism that is inspired by the principle of ellipsographs. The variable ellipse curve mechanism can convert the restoring force of the horizontally placed constant‐force springs to the vertical restoring force of the vibration isolator. At the same time as converting the direction, the vertical restoring force can be adjusted by changing the ratio of the semi‐minor axis to the semi‐major one of the ellipse. In this study, a prototype of a class of quasi‐zero‐stiffness vibration isolator with the proposed variable ellipse curve mechanism is created. Shaking table tests are performed to demonstrate the efficacy of the present mechanism, where the prototype is subjected to various sinusoidal and earthquake ground motions. It is demonstrated through the shaking table tests that the prototype can reduce the response acceleration within the same specified tolerance even when the mass of the vibration isolated object is changed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

The accuracy to which the vertical structure of tidal currents can be predicted is examined. Theoretical models for current structure are developed employing (a) a constant eddy viscosity E = ε and (b) an eddy viscosity varying linearly with height above the sea bed z; E(z)=βz. By requiring these models to satisfy the commonly accepted quadratic friction law, the condition ε>½k is deduced where k is the bed friction coefficient, W a representative velocity and D the depth.

The sense of rotation of a current ellipse is shown to be related to the configuration of co-tidal charts. The vertical structure of the current ellipse is illustrated from the theoretical models and the sensitivity of this structure is examined for the following variables: (a) eddy viscosity ε or βz, (b) the bed friction parameter kW, (c) rotation of the prescribed pressure gradients and (d) tidal period. While reasonable agreement between observed and calculated current profiles may often be reported, precise agreement is shown to depend upon accurate specification of both eddy viscosity and the bed stress condition.  相似文献   

15.
There are four extensive sandbanks in the vicinity of the Isle of Portland, a headland in the English Channel. The formation and maintenance of the two most prominent of these sandbanks (one on either side of the headland) can largely be explained by net bedload convergence, driven by instantaneous headland eddies generated by tidal flow past the headland. However, there are also two less prominent sandbanks (again, one on either side of the headland), which are not located in zones of bedload convergence. It is suggested here that these latter two sandbanks were formed when the Isle of Portland was isolated from the mainland by a tidal strait. Relative sea-level data and radiocarbon dates indicate that this would have occurred ca. 9–7 ka BP, prior to the closure of the strait by sedimentation. Tidal flow through this strait generated eddy systems in addition to the headland eddies, leading to the formation of associated headland/island sandbanks. At 7 ka BP, sedimentation resulted in closure of the strait, leading to the present-day headland configuration, and subsequent reworking of these now moribund sandbanks formed by the strait. A series of idealised morphological model experiments, parameterised using bedrock depths and glacial isostatic adjustment model output of relative sea level, are here used to simulate this hypothesised sequence of sandbank evolution over the Holocene. The results of the model experiments are corroborated by in situ observations of bedforms and sediment characteristics, and by acoustic Doppler current profiler (ADCP) data applied to predictions of bedload transport over the sandbanks. In addition to demonstrating the mechanism which leads to the formation of sandbanks by tidal flow through a strait, the model results show that upon subsequent closure of such a strait, these sandbanks will no longer be actively maintained, in contrast to sandbanks which are continuously maintained by headland eddies.  相似文献   

16.
Lagrangian drifters, moored acoustic Doppler current meters and hydrographic observations are combined with wind observations to describe the mean and variable nature of flow around Kapiti Island, New Zealand. Thirteen day-long deployments of up to six Lagrangian drifters show the mean flow is to the southwest, with evidence of stronger flows in the channel separating the island from the mainland, and an island wake in the lee of the island. Vortices in this island wake may be tidally driven. Scaling considerations suggest the flow is strong enough that tidal-generated vortices are shed on each tidal cycle. Both the drifters and mooring data suggest that the d’Urville Current around Kapiti Island has a significant wind-driven component. During north-westerlies, the drifters tend to hug the coast, and south-eastwards flows in the Rauoterangi Channel are accelerated. We suggest the observed correlation is the local expression of a South Taranaki basin scale response to the winds.  相似文献   

17.
18.
To clarify the generation and dissipation mechanisms of diurnal coastal-trapped waves (CTWs) over the Sakhalin shelf, a series of numerical experiments were conducted using a three-dimensional tidal model of the Okhotsk Sea with density stratification. The tidal model used has good reproduction owing to the careful fitting to the recent observations. The numerical experiments suggested that diurnal CTWs are primarily (~60%) generated by the conversion of tidal energy at the northern corner of the Sakhalin shelf, and further amplified by vorticity generation due to the water column oscillation from Sakhalin Bay and the influence of Kashevarov Bank. From the observations, it was found that diurnal CTWs are effectively dissipated by the strong spin-down due to bottom friction. The conventional turbulent closure model cannot reproduce the observed damping of diurnal CTWs, which raises a caution in modeling the tidal fields in high-latitude regions where diurnal CTWs exist. To resolve this underestimation of the damping, the vertical eddy viscosity was parameterized using its dependence on the observed major axis length of the diurnal tidal current ellipses, which improves the model reproduction on the damping of diurnal CTWs. The model also suggests that the spin-down effects due to friction associated with the sea-ice cover play an important role in the tidal current reduction in the region where diurnal CTWs exist, as the observations suggested.  相似文献   

19.
椭圆形柱体地震动水压力的简化分析方法   总被引:1,自引:1,他引:0  
首先,文章基于辐射波浪理论,在椭圆坐标系下采用分离变量法推导了水中椭圆形柱体地震动水压力的解析解。之后,采用有限元方法建立了地震作用下水与结构相互作用的动力方程,方程中水体对结构的作用为一满阵的附加质量矩阵。满阵的附加质量矩阵难以在商业有限元中实现,因此提出了集中的附加质量矩阵方法,其中结构柔性引起的附加质量为集中附加质量矩阵和修正系数的乘积,该修正系数与无量纲参数宽深比和长短轴比相关。最后,通过曲线拟合,提出了刚性椭圆柱体动水力的均布附加量简化公式,该简化公式是无量纲参数宽深比和长短轴比的函数。  相似文献   

20.
Development of thoughts on tracer transport mechanisms in the stratosphere which lead to new approaches to two-dimensional modeling of the tracer problem is reviewed.Three-dimensional motions of individual air parcels affected by a planetary wave are investigated theoretically, treating a steady, upward propagating wave in a uniform flow. It is shown that trajectories of air parcels are of elliptical form when projected onto the meridional plane and that they have no mean meridional or vertical motion, even though the usual zonal Eulerian-mean vertical motion exists. The origin of the difference between the mean air parcel motion and the Eulerian-mean motion is discussed.On the basis of the knowledge of air parcel motion, two approaches to two-dimensional modeling are considered. The generalized Lagrangian mean motion (quasi-zonal weighted mean taken over a meandering material tube), recently introduced by Andrews and McIntyre, is identical with the mean motion of an air parcel in a steady state. Such a mean meridional circulation may be used for advecting a tracer in the meridional plane in a two-dimensional model. The transport effect is represented solely by the advection and an eddy transport does not appear in this scheme, to a first approximation.The finding that trajectories of air parcels are elliptical necessitates a reexamination of the Reed-German eddy diffusivity currently used in two-dimensional chemical-dynamical models. By applying a mixing length type hypothesis, we derive an eddy diffusivity formula for use in Eulerian-mean calculations, which, in the case of a conservative tracer is dominated by an anti-symmetric tensor. The eddy transport due to this anti-symmetric tensor diffusivity is of advective type (not diffusive) and has the effect of taking the Stoke drift effect into account, when used in the usual Eulerian-mean formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号