首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements of Pb isotopes in aerosols, precipitation, and size-fractionated particulate matter from the Gulf of Maine, Scotian Shelf and Labrador Sea are used to investigate the source of Pb. The 206Pb/207Pb ratio in aerosols and precipitation collected at New Castle, NH suggests that anthropogenic Pb is a mixture of US and Canadian sources. 206Pb/207Pb ratios in >53 μm particulate matter from the Gulf of Maine and Scotian Shelf slope waters are consistent with contaminant Pb inputs predominantly from US and Canadian sources, while in shelf waters 206Pb/207Pb ratios in >0.4 μm and >53 μm particles are consistent with a mixture of US and Canadian sources, as well as Pb associated with resuspended surface sediment. 206Pb/207Pb ratios in particulate matter (>0.4 μm, 10-53 μm, and >53 μm) from Labrador Sea surface waters range from 1.165 to 1.211 and are a mixture of Pb derived from ore compositions consistent with Broken Hill, Australia and southeast Missouri, US sources.  相似文献   

2.
The Euboikos Gulf is a restricted embayment on the eastern coast of Greece, having a significant, unusual tidal phenomenon, and receiving some industrial and domestic wates. The South Euboikos Gulf has only slightly greater concentrations of nutrients than background, while the North Euboikos Gulf tends to accumulate nutrients, in particular nitrate and silicate. Also a comparison is made with the nutrient concentrations in polluted coastal gulfs of the Aegean. The different nutrient levels are due to the different sources of nutrients, as well as the morphology of each area and the circulation of the waters.  相似文献   

3.
AVHRR satellite imagery of the southern Mid-Atlantic Bight during May 1993 revealed a large area of cold water over the shelf break and slope that appeared to spin up into a series of southward propagating anticyclonic eddies. The eddies had diameters of 35–45 km at the surface and moved southward at about 20 cm/sec. A radial TOYO CTD (to 50m) and ADCP velocity (to 400m) transect was conducted across the southern-most of these eddies. The upper 50 meters had minimum temperatures of less than 7°C and salinities of about 33 pss, characteristics similar to cold pool waters usually found over the continental shelf. ADCP velocity data from one of the eddies revealed anticyclonic flow extending to a depth of about 250m. The transport of cold pool water by the eddies was estimated to be 0.1 to 0.2 Sv which is of the same order as the annual mean alongshore transport of shelf water in this region. The origin of the deeper water within the eddy is unlikely to be the continental shelf because the shelf break is less than 100 m. The depth and velocity profiles along the TOYO transect were consistent with the constant potential vorticity eddy model of Flierl (1979) although the source of the eddy kinetic energy is uncertain. The cause for the exodus of cold pool water from the shelf, which extended northward to at least 38°N, is unclear but must involve the establishment of an alongshore baroclinic pressure gradient against the usual southwestward shelf flow. It is possible that the intrusion of Gulf Stream waters onto the shelf near Cape Hatteras was a precursor of this off shelf transport. The southern-most eddy was marked by high biological productivity and very high oxygen supersaturation. The phytoplankton bloom detected within the exported cold pool water, located over the continental slope, suggests a mechanism whereby production fueled by nutrients derived from the shelf can be locally exported into deep water.  相似文献   

4.
《Marine pollution bulletin》1987,18(10):558-561
The Gulf of Patras is a silled embayment opening into the Ionian Sea on the west, and through the straits of Rio into the Gulf of Corinth, on the east. The latter communicates through the Corinth canal with the Aegean Sea. Patraikos Gulf has only slightly greater concentrations of nutrients than background, in particular nitrate and silicate. A comparison is made with the nutrient concentrations in polluted coastal gulfs of the Aegean, where different nutrient levels are due to the different sources of nutrients as well as the morphology and the circulation of the waters.  相似文献   

5.
Studies of nutrient enrichment in the Western Saronikos Gulf for the period 1973–1976 are presented here. Also, a comparison of nutrient enrichment is made between the Western and Inner Gulfs and Elefsis Bay. The Western Gulf and Inner Gulf appear to hold phosphate equally. However, the tendency for silicate to be depleted in the Inner Gulf is clear, while the Western Gulf tends to accumulate silicate more than phosphate. Nitrate tends to be accumulated even more than silicate in the Western Gulf. Elefsis Bay accumulated more nutrients than the other gulfs, especially inorganic nitrogen. This was mainly due to the different sources of nutrients as well as the morphology of each area and the circulation of the waters. The water masses of the Western Gulf were renewed in Spring 1974, as can be seen from the silicate values which fell by 13. Nutrient ratios in the Western Gulf were close to normal.  相似文献   

6.
The spatial and temporal distribution of physical, chemical and biological variables of the NE continental shelf of the Gulf of Cadiz were analyzed monthly during almost three annual cycles. This analysis was performed with the aim of deriving the main forcing factors controlling variability at inter-annual, seasonal and short-time scales. Meteorological forcing related to heavy episodes of rainfall that affected river discharges and the wind regime, controlled both the currents along the shelf together and the nutrient concentrations of the surface waters. Meteorological forcing in turn determined the subsequent development and maintenance of phytoplankton blooms. Superimposed on the seasonal cycle typical of temperate latitudes, the inputs of continental nutrients mainly from the Guadalquivir River, along with episodes of upwelling favored by the predominance of westerly winds triggered phytoplankton growth on the shelf, highlighting the markedly relevant role of this large estuary in the control of the biological activity on the shelf.  相似文献   

7.
Nutrient distributions observed at some depths along the continental shelf from 27°05′S (Brazil) to 39°31′S (Argentina) in winter, 2003 and summer, 2004 related to salinity and dissolved oxygen (mL L−1) and saturation (%) data showed remarkable influences of fresh water discharge over the coastal region and in front of the La Plata estuary. In the southern portion of the study area different processes were verified. Upwelling processes caused by ocean dynamics typical of shelf break areas, eddies related to surface dynamics and regeneration processes confirmed by the increase of nutrients and the decrease of dissolved and saturation oxygen data were verified. High silicate concentrations in the surface waters were identified related to low salinities (minimum of 21.22 in winter and 21.96 in summer), confirming the importance of freshwater inputs in this region, especially in winter. Silicate concentration range showed values between 0.00 and 83.52 μM during winter and from 0.00 to 41.16 μM during summer. Phosphate concentrations worked as a secondary trace of terrestrial input and their values varied from 0.00 to 3.30 μM in winter and from 0.03 to 2.26 μM in summer; however, in shallow waters, phosphate indicated more clearly the fresh water influence. The most important information given by nitrate concentrations was the presence of water from SACW upwelling that represents a new source of nutrients for marine primary production. Nitrate maximum values reached 41.96 μM in winter and 33.10 μM in summer. At a depth ∼800 m, high nitrate, phosphate and silicate concentrations were related to Malvinas Current Waters, Subantarctic Shallow Waters and Antarctic Atlantic Intermediate Waters (AAIW). Dissolved oxygen varied from 3.41 to 7.06 mL L−1 in winter and from 2.65 to 6.85 mL L−1 in summer. The percentage of dissolved oxygen saturation in the waters showed values between 48% and 113% in winter and from 46% to135% in summer. The most important primary production was verified in the summer, and situations of undersaturation were mainly observed below 50 m depth and at some points near the coast. The anti-correlation between nutrients and dissolved oxygen which showed evident undersaturation also revealed important potential sites of remineralization processes. The nutrient behaviours showed some aspects of the processes that occur over the Southwestern South Atlantic continental shelf and in their land–sea interfaces between Mar del Plata and Itajaí.  相似文献   

8.
To investigate the role of coastal canyons in the transfer of organic matter from the shelf to the slope and basin, we deployed sediment trap/current meter pairs at the head of five canyons in the Gulf of Lions (GoL) between November 2003 and May 2004. Analysis of organic carbon, biogenic silica, Corg isotopic composition, Corg/total nitrogen, chloropigments, and amino acids clearly shows the seasonal influence and effect of extreme meteorological events on the composition of collected particles. The sampling period was divided into three “scenarios”. The first corresponded to a large easterly storm and flood of the Rhone river during stratified water column conditions; the composition of material collected during this event was influenced by increased transfer of riverine and coastal particulate matter, with a lower Corg content. During the second “fall-winter” scenario, northern and northwestern winds blowing over the shelf caused cooling and homogenization of the shelf water column; particles collected at this time reflected the homogeneous source of particulate matter transported through canyons; particles sitting in the vicinity of canyon heads are most likely swept downslope by the general south-westward circulation. Organic tracers indicate a degraded origin for organic matter transported during this period. A third “spring” scenario corresponded to northern winds alternating with eastward windstorms that triggered and/or enhanced the cascading of dense waters accumulated on the bottom of the shelf due to previous cooling. These conditions occurred in conjunction with increased phytoplankton productivity in shelf surface waters. Organic matter advected mainly by dense shelf water cascading was fresher due to the transport of newly produced particles and a variable terrestrial fraction; this fraction depended on the proportion of resuspended material accumulated during previous high discharge periods that was involved in each transport pulse. The tight link shown between meteorological conditions and organic matter transport is important for continental margin geochemical studies as future changes in climatic conditions may lead to dramatic changes in carbon sequestration capability and in the ecosystems of deep margin environments.  相似文献   

9.
Measurements have been made of226Ra and both dissolved and particulate forms of210Pb and210Po in a vertical profile at 85°50′N, 108°50′W in the Arctic Ocean.In the upper water column226Ra shows a concentration maximum that is coincident with one in the nutrients, silicate, phosphate, and nitrate, while at the same depth, dissolved and particulate210Pb and210Po all show minimum concentrations. It is suggested that the concentration maxima are partly due to sources of the respective elements in the continental shelf sediments, the shelf waters being subsequently advected into the Arctic Ocean basins. The210Pb and210Po minima have similarly been explained by interaction between the shelf sediments and overlying waters. An estimate is made of the possible contributions of shelf sediments to the layer of silica-rich water which covers the Canada Basin at a depth of 100–150 m.Residence times have been calculated for dissolved210Pb and210Po at various depths in the water column. Surface water residence times of dissolved and particulate forms of these radionuclides are longer than in surface Atlantic waters, probably due to lower biological activity in the surface waters of the Canada Basin. An estimatee has been made of the average sinking velocity of particulate material.  相似文献   

10.
Multiple canyons incise the continental slope at the seaward edge of the continental shelf in the Gulf of Lions and are actively involved in the transfer of sediment from shelf to deep sea. Two canyons in the southwest region of the Gulf of Lions, Lacaze-Duthiers Canyon and Cap de Creus Canyon, were instrumented with bottom-boundary-layer tripods in their heads to evaluate the processes involved in sediment delivery, resuspension and transport. In both canyons, intense cold, dense-water flows carry sediment across the slope. In the Lacaze-Duthiers canyon head (located ∼35 km from the shoreline), dense-water cascading into the canyon was episodic. Currents were highly variable in the canyon head, and responded to interactions between the along-slope Northern Current and the sharp walls of the canyon. Inertial and other high-frequency fluctuations were associated with suspended-sediment concentrations of ∼5 mg/l. In Cap de Creus canyon head (located ∼14 km from the shoreline), downslope currents were higher in magnitude and more persistent than in Lacaze-Duthiers canyon head. Greater suspended-sediment concentrations (peaks up to 20 mg/l) were observed in Cap de Creus Canyon due to resuspension of the canyon seabed during dense-water cascading events. The similarities and contrasts between processes in these two canyon heads emphasize the importance of the interaction of currents with sharp canyon bathymetry. The data also suggest that cold, dense-water flows have more potential to carry sediment to the slope on narrow shelves, and may more efficiently transfer that sediment to the deep sea where a smooth transition between shelf and slope exists.  相似文献   

11.
Results of microstructure measurements conducted in October–November of 2015 as a part of the Coupled Air Sea Processes and Electromagnetic Ducting Research (CASPER) project are discussed. The measurements were taken on the North Carolina shelf and across the Gulf Stream front. On the shelf, the oceanic stratification was influenced by highly variable surface salinity and along-bottom advection. Vertical mixing was mostly governed by variable winds. The vertical eddy diffusivity was estimated using the VMP-based dissipation measurements, and the diffusivity values obtained during calm periods and stormy winds were compared. Parameterization of the diffusivity for various mesoscale dynamical conditions is discussed in terms of shear instabilities and internal wave-generated turbulence based on data obtained in deep waters of the Gulf Stream and on the continental slope.  相似文献   

12.
This paper investigates the waters of the Gulf of Papua during three cruises of the TROPICS (Tropical River Ocean Processes In Coastal Settings) programme. Plume characteristics were investigated during Leg 1 (May 1997), and estuarine properties during Leg 5a (September 1997) and Leg 7 (January 1999). During Leg 1 the plume was apparent as a well mixed layer up to 30 m deep extending offshore to a distance of 150 km off the Fly River. Lowest salinities were found off the Taruma Delta. Highest chlorophyll concentrations were found at the inner plume close to the river mouth. Dissolved phosphate and nitrate are removed in this zone, whereas silicate behaves conservatively. Primary productivity within the plume appears to rely upon recycled nutrients, with organic fractions representing the majority of the nutrient pool. In the estuaries nutrients were found to behave differently during the monsoon than during the low flow of the extremely dry conditions associated with the 1997 El Niño event. Normally the Fly is characterised by remineralisation of organic nitrogen in the upper estuary, but during drought conditions DON production and NH4+ uptake suggest that bacterial activity is more prevalent. Ocean Colour and Temperature Scanner imagery shows a number of features of the plume, but generally overestimates chlorophyll concentrations due to the effects of high suspended sediment concentrations and, to a lesser extent, coloured dissolved organic matter.  相似文献   

13.
The distribution and abundance of bacteria and phytoplankton on the continental shelf of the southeastern United States were observed in relation to physical processes. Phytoplankton production was influenced by inputs of water of reduced salinity from the estuaries and by inputs of high salinity, low-temperature water from the west front of the Gulf Stream. The distribution of chlorophyll suggests that in each case production is influenced both by inputs of nutrients and by the enhanced vertical stability associated with the stratification of waters of different densities. The standing stock of bacteria on the inner shelf, 106 ml?1, is little changed by the influx of water of reduced salinity. On the outer shelf, where the usual standing stock of bacteria is 105 ml?1, the numbers increase to 106 ml?1 in and above intrusions of Gulf Stream water in which phytoplankton blooms have developed, suggesting that the bacteria respond to products of both phytoplankton and zooplankton production. Adenylate energy charge values in the waters of the southeastern shelf are variable and volatile. At times values of 0.7 to 0.8 are widespread over most of the shelf, while at other times values <0.6 are common, with localized patches of high values. Both autotroph-dominated and heterotroph-dominated microbial communities show these variations.  相似文献   

14.
The Río de la Plata waters form a low salinity tongue that affects the circulation, stratification and the distributions of nutrients and biological species over a wide extent of the adjacent continental shelf. The plume of coastal waters presents a seasonal meridional displacement reaching lower latitudes (28°S) during austral winter and 32°S during summer. Historical data suggests that the wind causes the alongshore shift, with southwesterly (SW) winds forcing the plume to lower latitudes in winter while summer dominant northeasterly (NE) winds force its southward retreat. To establish the connection between wind and outflow variations on the distribution of the coastal waters, we conducted two quasi-synoptic surveys in the region of Plata influence on the continental shelf and slope of southeastern South America, between Mar del Plata, Argentina and the northern coast of Santa Catarina, Brazil. We observed that: (A) SW winds dominating in winter force the northward spreading of the plume to low latitudes even during low river discharge periods; (B) NE winds displace the plume southward and spread the low salinity waters offshore over the entire width of the continental shelf east of the Plata estuary. The southward retreat of the plume in summer leads to a volume decrease of low salinity waters over the shelf. This volume is compensated by an increase of Tropical waters, which dominate the northern shelf. The subsurface transition between Subantarctic and Subtropical Shelf Waters, the Subtropical Shelf Front, and the subsurface water mass distribution, however, present minor seasonal variations. Along shore winds also influence the dynamics and water mass variations along the continental shelf area. In areas under the influence of river discharge, Subtropical Shelf Waters are kept away from the coastal region. When low salinity waters retreat southward, NE winds induce a coastal upwelling system near Santa Marta Cape. In summer, solar radiation promotes the establishment of a strong thermocline that increases buoyancy and further enhances the offshore displacement of low salinity waters under the action of NE winds.  相似文献   

15.
The continental shelf off Sydney is narrow and characterized by extensive areas of rocky reef and sandy sediment. The overlying coastal waters are dynamic with a complex current structure. Important oceanographic processes include East Australian Current (EAC) activity, northward propagating coastal trapped waves, local wind driven currents and relatively high frequency internal tides and waves. These produce influences on a wide range of temporal and spatial scales. The activity of the EAC and its eddies has been associated with episodic incursions of waters which can quickly replace large parts of the shelf waters off Sydney. Thermal stratification and the episodic presence of cold, nutrient rich waters intruded from the continental slope are important features of the water column. Thermal stratification of up to 6°C generally exists for all but a few months of the year. Nutrient concentrations are generally low in surface waters but are higher and more variable at depth because of irregular intrusions of slope waters from depths greater than 150–200 m. The trace element levels in surface seawater entering the Sydney area are expected to be extremely low.  相似文献   

16.
Vertical profiles of Cd, Zn, Ni, and Cu have been determined at three stations in the North Pacific and in the surface waters on a transect from Hawaii to Monterey, California. The distributions found are oceanographically consistent and provide a needed confirmation and extension of several recent studies on the marine geochemistries of these metals. Cadmium concentrations average 1.4 pmol/kg in surface waters of the central North Pacific and show a strong correlation with the labile nutrients, phosphate and nitrate, increasing to values of 1.1 nmol/kg at depths corresponding to the phosphate maximum. Zinc is depleted in surface waters of the central gyre to an average value of 0.07 nmol/kg and increases to a deep maximum of 9 nmol/kg exhibiting a strong correlation with the nutrient silicate. Nickel concentrations average 2.1 nmol/kg in surface central gyre waters and increase to a deep maximum of 11 nmol/kg. Nickel is best correlated with a combination of phosphate and silicate. Copper averages less than 0.5 nmol/kg in surface waters of the central North Pacific and increases gradually to values of 5 nmol/kg in bottom waters. The Cu profiles show evidence of intermediate and deep water scavenging. The involvement of these metals in the internal biogeochemical cycles of the sea is responsible for their distributions which are predictable on the basis of oceanographic parameters.  相似文献   

17.
Several studies have provided evidence for the enrichment of trace elements in coastal waters, particularly for copper. These enrichments have been attributed to diffusion from continental shelf sediments and to an influx of river water. We attempted to resolve between these sources by undertaking an extensive suite of measurements of trace metals (Cu, Ni, Cd), 226Ra and 228Ra in the surface waters of the Gulf of Mexico, along with trace metal profiles at 6 stations (April 1981 and December 1982). These data establish that enrichments of copper, nickel and cadmium occur in the shallow waters of the Gulf of Mexico. On the Mississippi continental shelf, high trace element concentrations (Cu, Ni: ~ 9 nmol/kg; Cd: ~ 200 pmol/kg) in lower-salinity waters (26‰) are similar to those observed in the Mississippi plume at the same salinity. This evidence suggests a river water source. On the other hand, trace element enrichments are also observed in the northern Gulf (Cu: +0.4 nmol/kg; Ni: +0.5 nmol/kg; Cd: +20 pmol/kg) which coincide with an increase in 228Ra but are not accompanied by decreased salinity. The excess of evaporation over precipitation in this region makes it possible that this water could be evaporated estuarine water; therefore, hydrographic observations cannot distinguish readily between river and shelf sources. A regional flux balance shows that most of the excess copper in the surface waters of the Florida Current can be supplied by the river-borne dissolved copper flux. Within the uncertainties of such calculations, the continental shelf copper flux must be less than or equal to the river flux.  相似文献   

18.
This paper describes an integrated study of a typical Mediterranean flood event in the Gulf of Lions. A flood with a 5-year return interval occurred in the Têt River basin and adjacent inner-shelf in the Gulf of Lions, northwest Mediterranean, during April 2004. Data were collected during this flood as part of event-response investigations of the EU-funded Eurostrataform (European Margin Strata Formation) project. Southeasterly storm winds led to a flood which directly modified the inner-shelf hydrodynamics. Sediment delivery to the coastal zone during this flood represented more than half of the mean annual discharge of the Têt River to the Gulf of Lions. This river transported a large amount of sand in suspension, representing 25% of the total suspended load, and as bedload representing 8% of the total load, during this event. Sand introduced in the nearshore was transported northwards during the peak storm and nourished a small delta. Fine sediments were separated from coarse sediments at the river mouth, and were advected southwards and seawards by the counter-clockwise general circulation. Fine-grained sediments were transported via a hypopycnal plume along the coast towards the southern tip of the Gulf of Lions and the Cap Creus canyon. The along-shore currents, which intensified from north to south of the Gulf of Lions, particularly between the Cap Creus promontory and the Cap Creus canyon, favoured the transfer of fine-grained sediments from the continental shelf of the Gulf of Lions towards the continental slope. Our results show that floods with a few-year return interval in small coastal rivers can play a significant role in the transport of sediments on microtidal continental margins and their export from the shelf through canyons.  相似文献   

19.
Dense water formed over the continental shelf and cascading down the slope is responsible for shelf-slope exchanges in many parts of the world ocean, and transports large amounts of sediment and organic matter into the deep ocean. Here we perform numerical modeling experiments to investigate the impact of atmospheric interannual variability and climate change on dense water formation over the Gulf of Lions shelf, in the Northwestern Mediterranean Sea. Results obtained for a 140 years eddy-permitting simulation (1960–2100) performed over the whole Mediterranean Sea under IPCC A2 scenario forcings are used to force a regional eddy-resolving model of the Northwestern Mediterranean Sea.  相似文献   

20.
Using distributions of benthic Foraminifera and bottom-water variables (depth, salinity, temperature, oxygen, suspended matter, organic matter, phosphate, silicate, nitrite, and nitrate), we investigated movements of water masses on the South Brazilian Shelf (27–30°S) and assessed the seasonality of continental runoff on the distribution of shelf water masses. The data were obtained from water and sediment samples collected in the austral winter of 2003 and austral summer of 2004 in three transects. The terrestrial nutrient input was significantly reduced at stations away from the coast, but high values of nutrients were maintained in subsurface waters due the presence of South Atlantic Central Water (SACW) at greater depths. At shallow sampling stations the influence of freshwater runoff was related to (1) the dominance of calcareous benthic Foraminifera, such as lagoon-related Pseudononion atlanticum, Hanzawaia boueana, Bulimina marginata, Bolivina striatula, Elphidium poeyanum, together with several agglutinated species, including Arenoparrella mexicana, Gaudryina exilis, and Trochammina spp., common in coastal environments subject to wide salinity fluctuations. In contrast, smaller forms and higher species diversity characterized the assemblage at offshore stations. In winter, the presence of Buccella peruviana and Uvigerina peregrina at Santa Marta Cape suggest the possible transport of those species of Subantarctic Shelf Waters (SASW) origin. Foraminifera associated to Subtropical Shelf Water (STSW) were dominated by Globocassidulina subglobosa in both seasons. In summer, the occurrence of U. peregrina in the shallower stations suggested the influence of SACW nutrients brought up by upwelling of deeper waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号