首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The impact of Hurricane Ivan on water quality in Pensacola Bay was investigated by MODIS 250 m remote sensing of chlorophyll-a concentrations at different time slots before and after the hurricane event. Before the hurricane, the mean chlorophyll-a in the Bay was 5.3 μg/L. Heavy rainfall occurred during the hurricane landfall. The 48 h rainfall reached 40 cm and the peak storm surge reached 3 m on 9/16. After the rainstorm and during the storm surge on 9/17/2004, the mean chlorophyll-a concentration substantially increased to 14.7 μg/L. 26.3% water area was in the poor-water-quality condition (chl-a > 20 μg/L). This indicates that heavy nutrient loads from urban stormwater runoff and storm-surge inundation simulated chlorophyll bloom. After the end of the storm surge on 9/18/2004, the mean chlorophyll dropped to 2.0 μg/L, suggesting the effective flushing of polluted water from the bay to the Gulf of Mexico by the storm-surge. The good water quality condition lasted for almost several weeks after the storm surge. The peak river flow, arriving on the 4th day after the peak storm surge, did not alter the good water quality situation in the bay. This indicates that urban stormwater runoff rather than the river inflow is the major pollutant source for water quality in Pensacola Bay during the hurricane.  相似文献   

2.
A set of numerical experiments has been performed in order to analyze the long-wave response of the coastal ocean to a translating mesoscale atmospheric cyclone approaching the coastline at a normal angle. An idealized two-slope shelf topography is chosen. The model is forced by a radially symmetric atmospheric pressure perturbation with a corresponding gradient wind field. The cyclone's translation speed, radius, and the continental shelf width are considered as parameters whose impact on the long wave period, modal structure, and amplitude is studied. Subinertial continental shelf waves (CSW) dominate the response under typical forcing conditions and on the narrower shelves. They propagate in the downstream (in the sense of Kelvin wave propagation) direction. Superinertial edge wave modes have higher free surface amplitudes and faster phase speeds than the CSW modes. While potentially more dangerous, edge waves are not as common as subinertial shelf waves because their generation requires a wide, gently sloping shelf and a storm system translating at a relatively high (∼10 m s−1 or faster) speed. A relatively smaller size of an atmospheric cyclone also favors edge wave generation. Edge waves with the highest amplitude (up to 60% of the forced storm surge) propagate upstream. They are produced by a storm system with an Eulerian time scale equal to the period of a zero-mode edge wave with the wavelength of the storm spatial scale. Large amplitude edge waves were generated during Hurricane Wilma's landfall (2005) on the West Florida shelf with particularly severe flooding occurring upstream of the landfall site.  相似文献   

3.
We determined 2D group velocity distribution of Rayleigh waves at periods of 20-150 s in the Antarctic region using a tomographic inversion technique. The data are recorded by both permanent networks and temporary arrays. In East Antarctica the velocities are high at periods of 90-150 s, suggesting that the root of East Antarctica is very deep. The velocities in West Antarctica are low at all periods, which may be related to the volcanic activity and the West Antarctic Rift System. Low velocity anomalies appear at periods of 40-140 s along the Southeastern Indian Ridge and the western part of the Pacific Antarctic Ridge. The velocities are only slightly low around the Atlantic Indian Ridge, Southwestern Indian Ridge, and the eastern part of the Pacific Antarctic Ridge, where the spreading rates are small. Around two hotspots, the Mount Erebus and Balleny Islands, the velocity is low at periods of 50-150 s.  相似文献   

4.
A recently extended and spatially rich English Channel sea level dataset has been used to evaluate changes in extreme still water levels throughout the 20th century. Sea level records from 18 tide gauges have been rigorously checked for errors and split into mean sea level, tidal and non-tidal components. These components and the interaction between surge and tide have been analysed separately for significant trends before determining changes in extreme sea level. Mean sea level is rising at 0.8–2.3 mm/year, depending on location. There is a small increase (0.1–0.3 mm/year) in the annual mean high water of astronomical tidal origin, relative to mean sea level, and an increase (0.2–0.6 mm/year) in annual mean tidal range. There is considerable intra- and inter-decadal variability in surge intensity with the strongest intensity in the late 1950s. Storm surges show a statistically significant weak negative correlation to the winter North Atlantic Oscillation index throughout the Channel and a stronger significant positive correlation at the boundary with the southern North Sea. Tide–surge interactions increase eastward along the English Channel, but no significant long-term changes in the distribution of tide–surge interaction are evident. In conclusion, extreme sea levels increased at all of the 18 sites, but at rates not statistically different from that observed in mean sea level.  相似文献   

5.
6.
Testing dispersant effectiveness under conditions similar to that of the open environment is required for improvements in operational procedures and the formulation of regulatory guidelines. To this end, a novel wave tank facility was fabricated to study the dispersion of crude oil under regular non-breaking and irregular breaking wave conditions. This wave tank facility was designed for operation in a flow-through mode to simulate both wave- and current-driven hydrodynamic conditions. We report here an evaluation of the effectiveness of chemical dispersants (Corexit® EC9500A and SPC 1000) on two crude oils (Medium South American [MESA] and Alaska North Slope [ANS]) under two different wave conditions (regular non-breaking and plunging breaking waves) in this wave tank. The dispersant effectiveness was assessed by measuring the water column oil concentration and dispersed oil droplet size distribution. In the absence of dispersants, nearly 8-19% of the test crude oils were dispersed and diluted under regular wave and breaking wave conditions. In the presence of dispersants, about 21-36% of the crude oils were dispersed and diluted under regular waves, and 42-62% under breaking waves. Consistently, physical dispersion under regular waves produced large oil droplets (volumetric mean diameter or VMD ? 300 μm), whereas chemical dispersion under breaking waves created small droplets (VMD ? 50 μm). The data can provide useful information for developing better operational guidelines for dispersant use and improved predictive models on dispersant effectiveness in the field.  相似文献   

7.
As marine debris levels continue to grow worldwide, defining sources, composition, and distribution of debris, as well as potential effects, becomes increasingly important. We investigated composition and abundance of man-made, benthic marine debris at 1347 randomly selected stations along the US West Coast during Groundfish Bottom Trawl Surveys in 2007 and 2008. Anthropogenic debris was observed in 469 tows at depths of 55-1280 m. Plastic and metallic debris occurred in the greatest number of hauls followed by fabric and glass. Mean density was 67.1 items km−2 throughout the study area but was significantly higher south of 36°00′N latitude. Mean density significantly increased with depth, ranging from 30 items km−2 in shallow (55-183 m) water to 128 items km−2 in the deepest depth stratum (550-1280 m). Debris densities observed along the US West Coast were comparable to those seen elsewhere and provide a valuable backdrop for future comparisons.  相似文献   

8.
Nearshore regions act as an interface between the terrestrial environment and deeper waters. As such, they play important roles in the dispersal of fluvial sediment and the transport of sand to and from the shoreline. This study focused on the nearshore of Poverty Bay, New Zealand, and the processes controlling the dispersal of sediment from the main source, the Waipaoa River. Hydrodynamics and sediment-transport in water shallower than 15 m were observed from April through mid-September 2006. This deployment afforded observations during 3-4 periods of elevated river discharge and 5 dry storms.Similar wind, river discharge, wave, current, and turbidity patterns were characterized during three of the wet storms. At the beginning of each event, winds blew shoreward, increasing wave heights to 2-3 m within Poverty Bay. As the cyclonic storms moved through the system the winds reversed direction and became seaward, reducing the local wave height and orbital velocity while river discharge remained elevated. At these times, high river discharge and relatively small waves enabled fluvially derived suspended sediment to deposit in shallow water. Altimetry measurements indicated that at least 7 cm was deposited at a 15 m deep site during a single discharge event. Turbidity and seabed observations showed this deposition to be removed, however, as large swell waves from the Southern Ocean triggered resuspension of the material within three weeks of deposition. Consequently, two periods of dispersal were associated with each discharge pulse, one coinciding with fluvial delivery, and a second driven by wave resuspension a few weeks later. These observations of nearfield sediment deposition contradict current hypotheses of very limited sediment deposition in shallow water offshore of small mountainous rivers when floods and high-energy, large wave and fast current, oceanic conditions coincide.Consistently shoreward near-bed currents, observed along the 10 m isobath of Poverty Bay, were attributed to a combination of estuarine circulation, Stokes drift, and wind driven upwelling. Velocities measured at the 15 m isobath, however, were directed more alongshore and diverged from those at the 10 m isobath. The divergence in the currents observed at the 10 and 15 m locations seemed to facilitate segregation of coarse and fine sediment, with sand transported near-bed toward the beach, while suspended silts and clays were exported to deeper water.  相似文献   

9.
The energy flux in internal waves generated at the Celtic Sea shelf break was estimated by (i) applying perturbation theory to a week-long dataset from a mooring at 200 m depth, and (ii) using a 2D non-hydrostatic circulation model over the shelf break. The dataset consisted of high resolution time-series of currents and vertical stratification together with two 25-h sets of vertical profiles of the dissipation of turbulent kinetic energy. The observations indicated an average energy flux of 139 W m−1, travelling along the shelf break towards the northwest. The average energy flux across the shelf break at the mooring was only 8 W m−1. However, the waves propagating onshelf transported up to 200 W m−1, but they were only present 51% of the time. A comparison between the divergence of the baroclinic energy flux and observed dissipation within the seasonal thermocline at the mooring showed that the dissipation was at least one order of magnitude larger. Results from a 2D model along a transect perpendicular to the shelf break showed a time-averaged onshelf energy flux of 153–425 W m−1, depending on the magnitude of the barotropic forcing. A divergence zone of the energy flux was found a few kilometre offshore of the location of the observations in the model results, and fluxes on the order of several kW m−1 were present in the deep waters further offshelf from the divergence zone. The modelled fluxes exhibited qualitative agreements with the phase and hourly onshelf magnitudes of the observed energy fluxes. Both the observations and the model results show an intermittent onshelf energy flux of 100–200 W m−1, but these waves could only propagate ∼20–30 km onshore before dissipating. This conclusion was supported by a 25-h dataset sampled some 180 km onto the shelf, where a weak wave energy flux was found going towards the shelf break. We therefore conclude that shelf break generated internal waves are unlikely to be the main source of energy for mixing on the inner part of the shelf.  相似文献   

10.
程式  姚国干 《内陆地震》1997,11(4):309-315
帕米尔邻近地区(简秒西区)的强震活动频率明显高于川滇菱形块体邻近地区(简称东区)西区发生的地震主要为中,深源地震,而东区发生的地震则全部为浅源地震,西区主要的地震能量在本世纪初释放,而东区在滞后了40余年后在本世纪中叶地震能量开始强释放,东,西两区的强震活动频次呈现准同步盛衰起伏,在50~60年代相继达到高潮,80年代以后两区均趋于相对平静,在时间序列上呈现东,西交替发生的特点,往往是西区先发生强  相似文献   

11.
Phytoplankton biomass, community and size structure, primary production and bacterial production were measured at shelf and continental slope sites near North West Cape, Western Australia (20.5°S–22.5°S) over two summers (October–February 1997–1998 and 1998–1999), and in April 2002. The North West Cape region is characterized by upwelling-favorable, southwesterly winds throughout the summer. Surface outcropping of upwelled water is suppressed by the geostrophic pressure gradients and warm low-density surface waters of the southward flowing Leeuwin Current. Strong El Niño (ENSO) conditions (SOI <0) prevailed through the summer of 1997–1998 which resulted in lower sea levels along the northwestern Australian coast and a weaker Leeuwin Current. La Niña conditions prevailed during the 1998–1999 summer and in April 2002. During the summer of 1997–1998, the North West Cape region was characterized by a shallower thermocline (nutricline), resulting in larger euphotic zone stocks of inorganic nitrogen and silicate over the continental slope. There was evidence for episodic intrusions of upper thermocline waters and the sub-surface chlorophyll maximum onto the outer continental shelf in 1997–1998, but not in 1998–1999. Pronounced differences in phytoplankton biomass, community size structure and productivity were observed between the summers of 1997–1998 and 1998–1999 despite general similarities in irradiance, temperature and wind stress. Phytoplankton primary production and bacterial production were 2- to 4-fold higher during the summer of 1997–1998 than in 1998–1999, while total phytoplankton standing crop increased by<2-fold. Larger phytoplankton (chiefly diatoms in the >10 μm size fraction) made significant contributions to phytoplankton standing crop and primary production during the summer of 1997–1998, but not 1998–1999. Although there were no surface signs of upwelling, primary production rates near North West Cape episodically reached levels (3–8 g C m−2 day−1) characteristic of eastern boundary Ekman upwelling zones elsewhere in the world. Bacterial production (0.006–1.2 g C m−2 day−1) ranged between 0.6 and 145 percent (median=19 percent) of concurrent primary production. The observed differences between years and within individual summers suggest that variations in the Leeuwin Current driven by seasonal or ENSO-related changes in the Indonesian throughflow region may have episodic, but significant influences on pelagic productivity along the western margin of Australia.  相似文献   

12.
The effectiveness of chemical dispersants (Corexit 9500 and SPC 1000) on heavy fuel oil (IFO180 as test oil) has been evaluated under different wave conditions in a flow-through wave tank. The dispersant effectiveness was determined by measuring oil concentrations and droplet size distributions. An analysis of covariance (ANCOVA) model indicated that wave type and temperature significantly (p < 0.05) affected the dynamic dispersant effectiveness (DDE). At higher temperatures (16 °C), the test IFO180 was effectively dispersed under breaking waves with a DDE of 90% and 50% for Corexit 9500 and SPC 1000, respectively. The dispersion was ineffective under breaking waves at lower temperature (10 °C), and under regular wave conditions at all temperatures (10-17 °C), with DDE < 15%. Effective chemical dispersion was associated with formation of smaller droplets (with volumetric mean diameters or VMD ? 200 μm), whereas ineffective dispersion produced large oil droplets (with VMD ? 400 μm).  相似文献   

13.
Cadmium (Cd) concentrations in the coastal United States were assessed using the National Status and Trends (NS&T) Mussel Watch dataset, which is based on the analysis of sediments and bivalves collected from 280 sites since 1986. Using the 1997 sediment data, Pearson correlation (r = 0.44, p < 0.0001) suggested that Cd distributions in sediment can, be to some extent, explained by the proximity of sites to population centers. The 2003 tissue data indicated that “high” Cd concentrations (greater than 5.6 μg/g dry weights [dw] for mussel and 5.4 μg/g dw for oysters) were related to salinity along the East and Gulf coasts. Along the West coast, however, these “high” sites appeared to be related to upwelling phenomenon. Additionally, sedimentary diagenesis was found to be the most likely explanation of why sediment and mollusk Cd content were not well correlated.  相似文献   

14.
The meanders of a baroclinic coastal current in the Northwestern Mediterranean Sea have already been reported in the literature. These meanders can be surrounded by vortices. Such vortices have been observed in the western part of the Gulf of Lions but the location and the mechanism of their formation are poorly documented. In this paper, we use the current measurements of a one-year experiment, which was conducted in the eastern part of the Gulf of Lions to detect and characterize the vortex activity. A vortex detection algorithm based on few velocity data was developed. Current measurements were available at the sea surface (HF radars) and in the water column from 50 to 140 m depth (four current meter moorings). SST images and hydrologic data were also used. Results focus on observations that are coherent 50 m and at the surface. Vortices are anticyclonic, of submesoscale size and present maximal velocities of 30–50 cm/s. The drift speed of the vortices is comparable to but less than the velocity of the Northern Current. These observations enable to estimate the minimum vortex occurrence in this area. The presence of vortex structures is strongly correlated with a specific sequence of wind patterns.  相似文献   

15.
The 1953 North Sea floods, the Big Flood, was one of the worst natural disasters in Europe in modern times and is probably one of the most studied severe coastal floods. Several factors led to the devastating storm surge along the southern North Sea coast in combination of strong and sustained northerly winds, invert barometric effect, high spring tide, and an accumulation of the large surge in the Strait of Dover. However, the storm waves and their roles during the 1953 North Sea storm surge are not well investigated. Therefore, the effect of wave setup due to breaking waves in the storm surge processes is investigated through numerical experiments. A coupled process-based tide-wave-surge model was used to investigate and simulate the storm surge in the North Sea during January 31–February 1, 1953 and validated by comparing with historical water level records at tide gauges and wave observations at light vessels in the North Sea. Meteorological forcing inputs for the period, January 27–February 3, 1953 are reproduced from ERA-20C reanalysis data with a constant correction factor for winds. From the simulation results, it is found that, in addition to the high water due to wind setup, wave setup due to breaking waves nearshore play a role of approximately 10% of the storm surge peaks with approximately 0.2 m. The resulting modeling system can be used extensively for the preparedness of the storm surge and wave of extreme condition, and usual barotropic forecast.  相似文献   

16.
Topographic data are increasingly available at high resolutions (<10 m) over large spatial extents to support detailed flood inundation modeling and loss estimation analyses required for flood risk management. This paper describes ParBreZo, the parallel implementation of a two-dimensional, Godunov-type, shallow-water code, to address the computational demand of high-resolution flood modeling at the regional scale (102–104 km2). A systematic approach to unstructured grid partitioning (domain decomposition) is presented, and the Single Process Multiple Data (SPMD) paradigm of distributed-memory parallelism is implemented so the code can be executed on computer clusters with distributed memory, shared memory, or some combination of the two (now common with multi-core architectures). In a fully-wetted, load-balanced test problem, the code scales very well with a parallel efficiency of close to 100% on up to 512 processes (maximum tested). A weighted grid partitioning is used to partially address the load balancing challenge posed by partially wetted domains germane to flooding applications, where the flood extent varies over time, while the partitioning remains static. An urban dam-break flood test problem shows that weighted partitions achieve a parallel efficiency exceeding 70% using up to 48 processes. This corresponds to a 97% reduction in execution time so results are obtained in a matter of minutes, which is attractive for routine engineering analyses. A hurricane storm surge test problem shows that a 10 m resolution, 12 h inundation forecast for a 40 km length of coastline can be completed in under 2 h using 512 processors. Hence, if coupled to a hurricane forecast system capable of resolving storm surge, inundation forecasts could be made at 10 m resolution with at least a 10 h lead time.  相似文献   

17.
Semi-diurnal and fortnightly surveys were carried out to quantify the effects of wind- and navigation-induced high-energy events on bed sediments above intertidal mudflats. The mudflats are located in the upper fluvial part (Oissel mudflat) and at the mouth (Vasière Nord mudflat) of the macrotidal Seine estuary. Instantaneous flow velocities and mudflat bed elevation were measured at a high frequency and high resolution with an acoustic doppler velocimeter (ADV) and an ALTUS altimeter, respectively. Suspended particulate matter concentrations were estimated by calibrating the ADV acoustic backscattered intensity with bed sediments collected at the study sites. Turbulent bed shear stress values were estimated by the turbulent kinetic energy method, using velocity variances filtered from the wave contribution. Wave shear stress and maximum wave–current shear stress values were calculated with the wave–current interaction (WCI) model, which is based on the bed roughness length, wave orbital velocities and the wave period (TS). In the fluvial part of the estuary, boat passages occurred unevenly during the surveys and were characterized by long waves (TS>50 s) induced by the drawdown effect and by short boat-waves (TS<10 s). Boat waves generated large bottom shear stress values of 0.5 N m−2 for 2–5 min periods and, in burst of several seconds, larger bottom shear stress values up to 1 N m−2. At the mouth of the estuary, west south-west wind events generated short waves (TS<10 s) of HS values ranging from 0.1 to 0.3 m. In shallow-water environment (water depth <1.5 m), these waves produced bottom shear stress values between 1 and 2 N m−2. Wave–current shear stress values are one order of magnitude larger than the current-induced shear stress and indicate that navigation and wind are the dominant hydrodynamic forcing parameters above the two mudflats. Bed elevation and SPM concentration time series showed that these high energy events induced erosion processes of up to several centimetres. Critical erosion shear stress (τce) values were determined from the SPM concentration and bed elevation measurements. Rough τce values were found above 0.2 N m−2 for the Oissel mudflat and about 1 N m−2 for the Vasière Nord mudflat.  相似文献   

18.
The initial phase of the eruption forming Ukinrek Maars during March and April 1977 were explosions from the site of West Maar. These were mainly phreatomagmatic and initially transitional to strombolian. Activity at West Maar ceased after three days upon the initiation of the East Maar. The crater quickly grew by strong phreatomagmatic explosions. During the first phases of phreatomagmatic activity at East Maar, large exotic blocks derived from a subsurface till were ejected. Ballistic studies indicate muzzle velocities for these blocks of 80–90 m s−1.Phreatomagmatic explosions ejected both juvenile and non-juvenile material which formed a low rim of ejecta (< 26 mhigh) around the crater and a localized, coarse, wellsorted (σφ = 1−1.5) juvenile and lithic fall deposit. Other fine ash beds, interstratified with the coarse beds, are more poorly sorted (σφ = 2−3) and are interpreted as fallout of wet, cohesive ash from probably milder phases of activity in the crater. Minor base surge activity damaged trees and deposited fine ash, including layers plastered on vertical surfaces. Viscous basalt lava appeared in the center of the East Maar crater almost immediately and a lava dome gradually grew in the crater despite phreatomagmatic eruptions adjacent to it.The development of these maars appears to be mainly controlled by gradual collapse of crater and conduit walls, and blasting-out of the slumped debris by phreatomagmatic explosions when rising magma contacted groundwater beneath the regional water table and a local perched aquifer.Ballistic analysis on the ejected blocks indicates a maximum muzzle velocity of 100–150 m s-1, values similar to those obtained from other ballistic studies on maar ejecta.  相似文献   

19.
Pyroclastic flow deposits of the 1991 eruption of Volcán de Colima,Mexico   总被引:1,自引:1,他引:0  
The April 16, 1991, eruption of Volcán de Colima represents a classical example of partial dome collapse with the generation of progressively longer-runout, Merapi-type pyroclastic flows that traveled up to 4 km along the El Cordoban gullies (East, Central and West). The flows filled the gullies with block-and-ash flow deposits up to 10 m thick, of which, after 7 years of erosion, only remnants remained in the El Cordoban West and East gullies. The El Cordoban Central gully, however, provided a well-preserved and incised longitudinal section of the 1991 deposits. The deposits were emplaced as proximal and distal facies, separated by a change in slope angle from >30° to <20°. The proximal facies consists of massive, clast-supported flow units (up to 1 m thick) with andesite blocks locally supported by a matrix of coarse ash and devoid of segregation structures or grading. The distal facies consists of a massive, matrix-supported deposit up to 8 m thick, which contains dispersed andesite blocks in a fine ash matrix. In the distal facies, a train of blocks marks flow-unit upper boundaries and, although sorting is poor, some grading is present. Thin, finely stratified, or dune-bedded layers of fine ash material are locally present above or below units of both facies. Sedimentologic parameters show that the size or fraction of large pyroclasts (larger than –1 ) decreases from proximal to distal facies, as the percentage of matrix (0 to 4 ) increases, especially immediately beyond the break in slope. We propose that the propagation of the Colima pyroclastic flows is critically dependent on local slope angle, the presence of erodible slope debris, and the decrease in grain size with distance from the vent. The progressive fining is probably caused by some combination of erosion, clast breakup and deposition of larger pyroclasts, and is itself influenced by the slope angle. In the proximal region, the flows moved as granular avalanches, in which interacting grains ground each other and erosion occurred to produce an overriding dilute ash cloud. The maximum runout distance of the avalanches was controlled by the angle of repose of the material, and the volume and grain size of source and eroded material. Because the slope angle is close to the repose angle for this debris, granular avalanches were not able to propagate far beyond the change in slope. If, however, an avalanche had enough mass in finer grain size fractions, at least part of the flow continued beyond the break in slope and across the volcano apron, propagating in a turbulent state and depositing surge layers, or in an otherwise settling-modified state and depositing block-and-ash flow layers.Editorial responsibility: T Druitt  相似文献   

20.
PRESTo (PRobabilistic and Evolutionary early warning SysTem) is a software platform for regional earthquake early warning that integrates recently developed algorithms for real-time earthquake location and magnitude estimation into a highly configurable and easily portable package. The system is under active experimentation in Southern Italy on the Irpinia Seismic Network (ISNet), which is deployed in a seismogenic area that is expected to produce a large earthquake within the next 20 years. In this paper we describe the architecture of the system and test its performances using both small earthquakes (M<3.5) recorded at the ISNet and a large event recorded in Japan, through a simulation mode. The results show that, when a dense seismic network is deployed in the fault area, PRESTo can produce reliable estimates of earthquake location and size within 5–6 s from the event origin. Each estimate is provided as a probability density function, with an uncertainty that typically decreases with time: a stable solution is generally reached within 10 s from the origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号