首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To describe the exchange of water and sediment through the Venice Lagoon inlets a 3-D hydrodynamic and sediment transport model has been developed and applied to a domain comprising Venice Lagoon and a part of the Adriatic Sea. The model has been validated for both current velocities and suspended particle concentration against direct observations and from observations empirically derived fluxes from upward-looking acoustic Doppler current profiler probes installed inside each inlet. The model provides estimates of the suspended sediment transport in the lower 3 m of the water column that is not detected by acoustic Doppler current profiler sensors. The bedload model prediction has been validated against measured sand transport rates collected by sand traps deployed in the Lido and Chioggia inlets. Results indicate that, in the Lido inlet, 87% of the total load is in suspension, while the rest moves as bedload.  相似文献   

2.
This paper deals with the interaction and small-scale processes occurring around the inlets that connect the Venice Lagoon with the Northern Adriatic Sea. In a previous paper, barotropic processes have been investigated, whereas here, the focus is on the baroclinic processes. The hydrodynamics of the area are studied by means of a 3D shallow water hydrodynamic finite-element model, suitable to describe areas of complex morphology such as the coasts and the interaction channels. This is the first work that models the 3D interaction between the Venice Lagoon and the Adriatic Sea. Three different sets of simulations have been carried out to identify the physics behind the small-scale processes and the influence of the main forcings on the study area. The first imposes different idealized forcings, such as tides, wind, and river runoff. The vorticity maps of the first two layers show the predominance of wind forcing in the coastal area and tidal forcing in the three inlets of the Lagoon. Bora wind acts homogeneously, increasing the littoral currents, while Sirocco wind mainly impacts near Chioggia inlet, with a coastal current reversal, inducing its detachment offshore. Freshwater patterns are present along the coast, near the river mouths. Rivers do not directly influence the circulation close to the coast in front of the Venice Lagoon, except for the area near Chioggia inlet, where the Brenta river action can be seen. The second set of simulations deals with a sensitivity analysis to define the importance of the advection and of the baroclinic pressure gradient terms in the creation of persistent structures, such as small-scale coastal vortices seen along the littoral very close to the inlets. This analysis shows how advection is the main physical process responsible for the persistence of the positive vorticity structures close to the coast between the inlets, while the negative vorticity structures, also seen by the HF Radar, are due to the baroclinic-advective interaction. Finally, a real case, year 2004, has been simulated both to validate the model with observations and to identify the occurrence during the year of the characteristic hydrodynamic features attributable to the main forcings. The action of Bora wind characterizes the surface current patterns of February and November 2004, while Sirocco influences the month of May 2004. During periods of weak wind, the model reproduces the small-scale vortical structures close to the littoral.  相似文献   

3.
A comparison of 1927, 1970 and 2002 bathymetric surveys in the Lagoon of Venice was used to reconstruct historical changes in sedimentation. A detailed GIS-based analysis of the charts revealed the timing and pattern of geomorphic changes and allowed calculation of sediment deposition and erosion for the entire lagoon and each of its four sub-basins: Treporti, Lido, Malamocco and Chioggia.  相似文献   

4.
Extensive mud deposits superimposed on the predominantly sandy inner continental shelf adjacent to the Patos Lagoon estuary, indicates that the Lagoon is a potential source of fine sediments to the coastal sedimentary system. The lagoon is large and shallow, and the water movement is mainly controlled by wind-driven set-up and set-down. The mean river inflow is around 2000 m3 s−1, although peak flow rates exceeding 20,000 m3 s−1 have been observed during El Niño periods. Though the tidal elevations are small, tidal velocities in the lagoon's inlet can be significant due to the large extension of the backwaters. Moreover, significant exchange flows can be generated between the estuary and coastal area due to barotropic pressure gradients established as a function of wind and freshwater discharge. The predominant net flow is seawards, but opposite near-bed flows due to pronounced vertical salinity stratification can also be observed. The coastal area is characterized by small tidal effects, large scale ocean circulation, wind-induced residual flows and wave-driven currents, where the waves originate from swell or are locally generated.  相似文献   

5.
A hydrodynamic model of the Venice Lagoon and the Adriatic Sea has been developed in order to study the exchanges at the inlets of the Venice Lagoon, a complex morphological area connecting the sea and the lagoon. The model solves the shallow water equations on a spatial domain discretized by a staggered finite element grid. The grid represents the Adriatic Sea and the Venice Lagoon with different spatial resolutions varying from 30 m for the smallest channels of the lagoon to 30  km for the inner areas of the central Adriatic Sea. Data from more than ten tide gauges displaced in the Adriatic Sea have been used in the calibration of the simulated water levels. After the calibration, the tidal wave propagation in the North Adriatic and in the Venice Lagoon is well reproduced by the model. To validate the model results, empirical flux data measured by acoustic Doppler current profiler probes installed inside the inlets of Lido and Malamocco have been used and the exchanges through the three inlets of the Venice Lagoon have been analyzed. The comparison between modeled and measured fluxes at the inlets outlines the efficiency of the model to reproduce both tide- and wind-induced water exchanges between the sea and the lagoon. Even in complex areas, where highly varying resolution is needed, the model is suitable for the simulation of the dominating physical processes.  相似文献   

6.
Winter observations of shelf and slope hydrography and currents in the inner Gulf of Tehuantepec are analysed from two field studies in 1989 and 1996 to specify the variability of near-shore conditions under varying wind stress. During the winter period frequent outbursts of ‘Norte’ winds over the central Gulf result in persistent alongshore inflows along both its eastern and western coasts. Wind-induced variability on time scales of several days strongly influences the shelf currents, but has greater effect on its western coast because of the generation and separation of anticyclonic eddies there. The steadier inflow (∼0.2 m s−1) on the eastern shelf is evident in a strong down-bowing of shallow isosurfaces towards the coast within 100 km of shore, below a wedge of warmer, fresher and lighter water. This persistent entry of less saline (33.4–34.0), warmer water from the southeast clearly originates in buoyancy input by rivers along the Central American coast, but is augmented by a general shoreward tendency (0.2 m s−1) in the southeastern Gulf. The resultant shallow tongue of anomalous water is generally swept offshore in the head of the Gulf and mixed away by the strong outflow and vertical overturning of the frequent ‘Norte’ events but during wind relaxations the warm, low-salinity coastal flow may briefly extend further west. In the head of the Gulf, flow is predominantly offshore (<0.2 m s−1) as the alongshore component alternates eastward and westward in association with elevation or depression, respectively, of the pycnocline against the shore. More saline, open ocean water is introduced from the north-western side of the Gulf by the inflow along the west coast. During extended wind relaxations, the flow becomes predominantly eastward beyond the shelf while nearshore the coastally trapped buoyant inflow from the southeast penetrates across the entire head of the gulf at least as far as its western limit. On the basis of these and other recent observations, it seems that the accepted view of a broad, persistent Costa Rica Coastal Current (CRCC) is the result of averaging over many relatively sparse observations and that the instantaneous CRCC is a highly variable and convoluted flow around and between constantly changing eddies. The buoyancy-driven shelf current reported here forms a hitherto unrecognized, but major, component of this CRCC system.  相似文献   

7.
A shallow water hydrostatic 2D hydrodynamic numerical model, based on the boundary conforming coordinate system, was used to simulate aspects of both general and small scale oceanic features occurring in the composite system constituted by the Adriatic Sea and the Lagoon of Venice (Italy), under the influence of tide and realistic atmospheric forcing. Due to a specific technique for the treatment of movable lateral boundaries, the model is able to simulate efficiently dry up and flooding processes within the lagoon. Firstly, a model calibration was performed by comparing the results of the model, forced using tides and ECMWF atmospheric pressure and wind fields, with observations collected for a set of 33 mareographic stations uniformly distributed in the Adriatic Sea and in the Lagoon of Venice. A second numerical experiment was then carried out by considering only the tidal forcing. Through a comparison between the results obtained in the two experiments it was possible to assess the reliability of the estimated parameter through the composite forcing. Model results were then verified by comparing simulated amplitude and phase of each tidal constituent as well as tidal velocities simulated at the inlets of the lagoon and in the Northern Adriatic Sea with the corresponding observed values. The model accurately reproduces the observed harmonics: mean amplitude differences rarely exceed 1 cm, while phase errors are commonly confined below 15°. Semidiurnal and diurnal currents were correctly reproduced in the northern basin and a good agreement was obtained with measurements carried out at the lagoon inlets. On this basis, the outcomes of the hydrodynamic model were analyzed in order to investigate: (i) small-scale coastal circulation features observed at the interface between the adjoining basins, which consist often of vortical dipoles connected with the tidal flow of Adriatic water entering and leaving the Lagoon of Venice and with along-shore current fields connected with specific wind patterns; (ii) residual oscillations, which are often connected to meteorological forcing over the basin. In particular, it emerges that small-scale vortical features generated near the lagoon inlet can be efficiently transported toward the open sea, thus contributing to the water exchange between the two marine regions, and a realistic representation of observed residual oscillations in the area would require a very detailed knowledge of atmospheric as well as remote oceanic forcing.  相似文献   

8.
The authors studied surface sediments from 102 stations in four areas of the three port entrances to the Lagoon of Venice, examining the relationships between textural character, mineralogical composition, and Hg, Pb, Cd, Cu, Ni, Cr, Zn, Co and Fe content. Heavy metal distribution allowed boundaries to be fixed between polluted and nonpolluted zones. While the Cavallino area is not polluted, very high concentrations of Zn, Pb and Hg in the two central areas, facing the Lido and Malamocco port entrances, respectively, suggest that wastes mainly from industrial production of zinc are present. High concentrations of Cr in the southern part of the Chioggia area are probably due to tannery wastes reaching the sea from the Brenta river.  相似文献   

9.
《Continental Shelf Research》2007,27(3-4):431-451
The sediment-transport mechanisms that contribute to and redistribute the modern sediment deposits on the western Adriatic continental shelf were evaluated utilizing data collected from two instrumented benthic tripods deployed at 12-m water depth, one in the northern Adriatic basin on the Po River subaqueous delta, and the other in the central Adriatic basin on the Pescara River shelf. Sediment-resuspension events driven by cold, northeasterly Bora winds dominate the along-shelf transport climatology at both tripod locations, but at the Po delta site, the southwesterly Scirocco wind events also play a significant role. At the Pescara shelf site, interaction between Bora wind-driven currents and the Western Adriatic Coastal Current strongly contributes to the resuspension and advection of suspended sediment. Interannual variability of the forcing mechanisms (including strength, frequency, and relative mix of Bora and Scirocco wind events) is evident in the three winters of data collected on the Po River subaqueous delta. In both types of wind events, and throughout all years of data collection, the net along-shelf sediment transport is significantly larger than the net across-shelf transport at the 12-m sites. This may be characteristic of low-energy environments, where sediment resuspension and transport occurs in such shallow water that it is not subjected to strong downwelling features characteristic of higher-energy environments.  相似文献   

10.
The origin of the sands in the Venice lagoon has been the subject of an extensive field survey in parallel with numerical modelling. Four transects along Treporti and Burano canals were conducted from which 33 bottom sediment samples were collected. These samples were analysed for grain size and sorting to examine any trends in the granulometry of these sediments that might shed light on transport paths. The modelling study consists of three parts: the sediment transport model sedtrans96 was used with a finite-element hydrodynamic model (Shyfem) and an empirical wave model (US Army Corps of Engineering) to simulate sand transport in the Treporti canal. A type of link box model was created where finite elements of the hydrodynamic model have been combined to macro-boxes on which the water and sediment flux over the sections, and a mass balance has been computed. Several grain size classes were simulated; the distributions before and after the simulation were examined. Idealised wind and tidal values were initially used to force 12 h simulations to test the sediment transport sensitivity. Finally, a full-year simulation (1987) has been carried out using measured tidal and wind data. Only a part of Venice lagoon was covered by the simulation: a major channel (Treporti) running from Lido inlet towards the northern lagoon. The total sand transport through all of the sections was computed for 1 year. Sediment mass balance was determined, and the resulting trends of erosion and deposition were computed. There were no trends in the median grain diameter and sorting of bottom samples from the Treporti canal; all sands were fine (120 μm, one outlier of 300 μm was removed). The absence of a trend in grain size suggests that there is no significant import of sand to the lagoon through the Lido inlet. The results from the simulations seem therefore to confirm the hypothesis of reworking of sand within the lagoon. The computed erosion is some centimeters per year diagnostic of channel scouring and enlargement with time. The Treporti canal is subject to strong current velocities of around 1 m/s, which hold fine sand in suspension and thus prevent sedimentation.  相似文献   

11.
Tides and wind-driven mixing play a major role in promoting post-bloom productivity in subarctic shelf seas. Whether this is also true in the high Arctic remains unknown. This question is particularly relevant in a context of increasing Arctic Ocean stratification in response to global climatic change. We have used a three-dimensional ocean-sea ice-plankton ecosystem model to assess the contribution of tides and strong wind events to summer (June-August 2001) primary production in the Barents Sea. Tides are responsible for 20% (60% locally) of the post-bloom primary production above Svalbard Bank and east of the Kola Peninsula. By contrast, more than 9% of the primary production is due to winds faster than 8 m s−1 in the central Barents Sea. Locally, this contribution reaches 25%. In the marginal ice zone, both tides and wind events have only a limited effect on primary production (<2%). Removing tides or winds faster than 8 m s−1 promotes a regime more sustained by regenerated production with a f-ratio (i.e. the proportion of nitrate-based “new” primary production in the total primary production) that decreases by up to 26% (east of the Kola Peninsula) or 35% (central Barents Sea), respectively. When integrated over all Barents Sea sub-regions, tides and strong wind events account, respectively, for 6.8% (1.55 Tg C; 1 Tg C=1012 g C) and 4.1% (0.93 Tg C) of the post-bloom primary production (22.6 Tg C). To put this in context, this contribution to summer primary production is equivalent to the spring bloom integrated over the Svalbard area. Tides and winds are significant drivers of summer plankton productivity in the Barents Sea.  相似文献   

12.
Acoustic Doppler current profiles and current meter data are combined with wind observations to describe the transport of water leaving Florida Bay and moving onto the inner shelf on the Atlantic side of the Florida Keys. A 275-day study in the Long Key Channel reveals strong tidal exchanges, but the average ebb tide volume leaving Florida Bay is 19% greater than the average flood tide volume entering the bay. The long-term net outflow averages 472 m3 s−1. Two studies in shelf waters describe the response to wind forcing during spring and summer months in 2004 and during fall and winter months in 2004–2005. During the spring–summer study, southeasterly winds have a distinct shoreward component, and a two-layer pattern appears. Surface layers move shoreward while near-bottom layers move seaward. During the winter study, the resultant wind direction is parallel to the Keys and to the local isobaths. The entire water column moves in a nearly downwind direction, and across-shelf transport is relatively small. During the summer wet season, Florida Bay water should be warmer, fresher, and thus less dense than Atlantic shelf waters. Ebbing bay water should move onto the shelf as a buoyant plume and be held close to the Keys by southeasterly winds. During the winter dry season, colder and saltier Florida Bay water should leave the tidal channels with relatively high density and be concentrated in the near-bottom layers. But little across-shelf flow occurs with northeasterly winds. The study suggests that seasonally changing wind forcing and hydrographic conditions serve to insulate the reef tract from the impact of low-quality bay water.  相似文献   

13.
The radionuclides 210Po and 210Pb were examined to trace the cycling of particulate organic carbon (POC) and particulate organic nitrogen (PON) in the Zhubi coral reef lagoon. The net export flux of POC to the open sea is 14 mgC m−2 d−1. However, the net exchange of PON has not yet been observed. On average, the vertical export fluxes in the lagoon of POC and PON, as derived from 210Po/210Pb disequilibria, are 43 mgC m−2 d−1 and 13.8 mgN m−2 d−1, respectively. The deficit of 210Po relative to 210Pb in particulate matter provides evidence for the degradation of particulate organic matter. According to the mass balance budgets, 310 mgC m−2 d−1 and 121 mgN m−2 d−1 were recycled into dissolved fractions. Based on a first-order kinetics model, the degradation rate constants of POC and PON are 0.28 and 0.30 m−1, respectively. Thus, 210Po and 210Pb can quantify the cycling of carbon and nitrogen in this coral lagoon.  相似文献   

14.
Sea level change is an important consequence of climate change due to its impact on society and ecosystems. Analyses of tide-gauge data have indicated that the global sea level has risen during the 20th century and several studies predict that the mean sea level will continue to rise during the 21st century, intensifying coastal hazards worldwide. In Portugal, the Ria de Aveiro is expected to be one of the regions most affected by sea level change.The main aim of this study is to evaluate the potential impacts of the mean sea level change on the hydrodynamics and morphodynamics of the Ria de Aveiro. With this purpose, local mean sea level change was projected for the period 2091-2100 relative to 1980-1999, for different Special Report on Emission Scenarios (SRES) scenarios developed by the Intergovernmental Panel on Climate Change (IPCC). These projections revealed an increase in the mean sea level between 0.28 m under scenario B1 and 0.42 m under scenario A2.The results obtained for sea level rise scenario A2 projection were used to force the morphodynamic model MORSYS2D, previously implemented for the Ria de Aveiro. The modelling results were compared with model forecasts for the present sea level. The residual sediment transport and its balance at the lagoon inlet were computed and analysed for both situations. While the residual sediment transport is generally seaward, sediments tend to deposit inside the inlet due to the weak sediment transport at its mouth. The direction of the residual flux will not change with the sea level rise, but sediment fluxes will intensify, and accretion inside the inlet will increase.The rise in mean sea level will also affect the lagoon hydrodynamics. The tidal prism at the lagoon mouth will increase by about 28% in spring tide. In the lower lagoon only a slight increase of the tidal asymmetry is predicted.  相似文献   

15.
This numerical study focuses on the response of the Western Adriatic Current to wind forcing. The turbulent buoyant surface current is induced by the Po river outflow in the Adriatic Sea. Idealized and realistic wind conditions are considered by retaining the complex geomorphology of the middle Adriatic basin. In the absence of wind, the Adriatic Promontories force the current to separate from the coast and induce instabilities. Persistent 7-m s − 1 downwelling favorable northwesterly winds thicken and narrow the current. Instabilities whose size is ~10 km develop but ultimately vanish, since there is not enough across-shore space to grow. On the contrary, 7-m s − 1 upwelling favorable southeasterly winds thin and widen the current, and instabilities can grow to form mesoscale (~35 km) features. When realistic winds are considered, the same trends are observed, but the state of the sea set up by previous wind events also plays a crucial role. The turbulent regimes set up by different winds affect mixing and the WAC meridional transport. With downwelling winds, the transport is generally southward and mixing happens mostly between the fresher (S ≤ 38) salinity classes. With upwelling winds, the transport decreases and changes sign, and mixing mainly involves saltier (S > 38) waters. In all cases, mixing is enhanced when a finer 0.5-km horizontal resolution is employed.  相似文献   

16.
The tidal circulation patterns in the Terminos Lagoon were studied based on the analysis of 1 year of measurements and numerical simulations using a baroclinic 3D hydrodynamic model, the MARS3D. A gauging network was installed consisting of six self-recording pressure–temperature sensors, a tide gauge station and two current profilers, with pressure and temperature sensors moored in the main lagoon inlets. Model simulations were validated against current and sea level observations and were used to analyse the circulation patterns caused by the tidal forcing. The numerical model was forced with eight harmonic components, four diurnal (K 1, O 1, P 1, Q 1) and four semi-diurnal (M 2, S 2, N 2, K 2), extracted from the TPX0.7 database. The tidal patterns in the study area vary from mixed, mainly diurnal in the two main inlets of the lagoon, to diurnal in its interior. The tidal residual circulation inside the lagoon is dominated by a cyclonic gyre. The results indicate a net flux from the southwest Ciudad del Carmen inlet (CdC) towards the northeast Puerto Real inlet (PtR) along the southern side of the lagoon and the opposite in the northern side. The results indicate two areas of strong currents in the vicinity of the inlets and weak currents inside the lagoon. The area of strong currents in the vicinity of the CdC inlet is larger than that observed in the PtR inlet. Nevertheless, the current analysis indicates that the highest current speeds, which can reach a magnitude of 1.9 m s?1, occurred in PtR. A further analysis of the tide distortion in the inlets revealed that both passages are ebb dominated.  相似文献   

17.
Salut-Mengabong Lagoon is located at the west coast of Sabah facing the South China Sea. At the bay side of the main inlet the lagoon splits into Salut and Mengabong Channels. Sediment dynamics at the inlets of the lagoon have recently received considerable attention. But any direct measurement of hydrodynamics and sediment flux are yet to be well documented. This study covers the field measurements of current velocity, water flux, suspended sediment concentration and sediment flux across the three transects (main inlet, Salut entrance and Mengkabong entrance) during typical spring and neap tidal cycles in southwest monsoon and northeast monsoon. Temporal variations and time-averaged values of measured parameters are discussed. The inlets of Salut-Mengkabong Lagoon are found to be ebb-dominated. The time-averaged velocities during spring tidal measurements are found to be higher in the main inlet followed by Mengkabong entrance and Salut entrance. Suspended sediment concentration and sediment fluxes are substantially higher in spring tidal cycles compared to the same in neap tidal cycles. During spring tidal cycles, ebb tidal sediment fluxes are higher than the flood tidal fluxes. The ebb dominated flux across the main inlet led to the large ebb shoal.  相似文献   

18.
Tidal inlets are extremely dynamic, as a result of an often delicate balance between the effects of tides, waves and other forcings. Since the morphology of these inlets can affect navigation, water quality and ecosystem dynamics, there is a clear need to anticipate their evolution in order to promote adequate management decisions. Over decadal time scales, the position and size of tidal inlets are expected to evolve with the conditions that affect them, for instance as a result of climate change. A process-based morphodynamic modeling system is validated and used to analyze the effects of sea level rise, an expected shift in the wave direction and the reduction of the upper lagoon surface area by sedimentation on a small tidal inlet (Óbidos lagoon, Portugal). A new approach to define yearly wave regimes is first developed, which includes a seasonal behavior, random inter-annual variability and the possibility to extrapolate trends. Once validated, this approach is used to produce yearly time series of wave spectra for the present and for the end of the 21st century, considering the local rotation trends computed using hindcast results for the past 57 years. Predictions of the mean sea level for 2100 are based on previous studies, while the bathymetry of the upper lagoon for the same year is obtained by extrapolation of past trends. Results show, and data confirm, that the Óbidos lagoon inlet has three stable configurations, largely determined by the inter-annual variations in the wave characteristics. Both sea level rise and the reduction of the lagoon surface area will promote the accretion of the inlet. In contrast, the predicted rotation of the wave regime, within foreseeable limits, will have a negligible impact on the inlet morphology.  相似文献   

19.
The effects of local and remote wind forcing of water level heights in the Virginia Coast Reserve (VCR) are examined in order to determine the significant forces governing estuarine motions over subtidal time scales. Recent (1996–2008) data from tide and wind stations in the lagoon, a tide station to the north at Sandy Hook, NJ, and one offshore wind station at the Chesapeake Light Tower are examined. Sea surface height spectrum calculations reveal significant diurnal and semidiurnal tidal effects along with subtidal variations, but a suppressed inertial signal. Sea-surface heights (SSH) with 2–5 day periods at Wachapreague, VA are coherent with those at Sandy Hook and lag them in time, suggesting that southward-propagating continental shelf waves provide subtidal variability within the lagoon. The coherence between lagoon winds and sea surface height, as well as between winds and cross-lagoon sea height gradient, were significant at a relatively small number of frequency and wind direction combinations. The frequencies at which this wind forcing occurs are the tidal and subtidal bands present to the north, so that lagoon winds selectively augment existing SSH signals, but do not generate them. The impact of the wind direction is closely related to the geometry of the lagoon and bounding landmasses. The effect of wind stress is also constrained by geometry in affecting the cross-lagoon water height gradient. Water levels at subtidal frequencies are likely forced by a combination of local wind forcing, remote wind forcing and oceanic forcing modified by the complex topography of the lagoon, shelf, and barrier islands.  相似文献   

20.
《Continental Shelf Research》1998,18(10):1157-1177
The spatial and temporal variability of water entering and leaving the Chesapeake Bay estuary was determined with a spatial resolution of 75 m. The four cruises during which the observations were made took place under different conditions of freshwater discharge, tidal phase, and wind forcing. The tidal variability of the flows was dominated by the semidiurnal constituents that displayed greatest amplitudes and phase lags near the surface and in the channels that lie at the north and south sides of the entrance. The subtidal variability of the flows was classified into two general scenarios. The first scenario occurred during variable or persistently non-southwesterly winds. Under these conditions there was surface outflow and bottom inflow in the two channels, inflow over the shoal between the two channels, and possible anticyclonic gyre formation over the shoal. The flow pattern in the channels was produced by gravitational circulation and wind forcing. Over the shoal it was caused by tidal rectification and wind forcing. The second scenario occurred during persistently southwesterly winds. The anticyclonic gyre over the shoal vanished suggesting that wind forcing dominated the tidal rectification mechanism over the shoal, while gravitational circulation and wind forcing continued to cause the flows in the channels. In both scenarios, most of the volume exchange took place in the channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号