首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observations of lake ice at the shore, complete ice cover, ice duration, ice thickness and other measures for 18 Polish lakes were collected for the 50 year period (1961–2010). Average ice dates in early winter became later: first appearance of ice along shore 2.3 days decade−1 and complete ice cover 1.2 days decade−1 while complete ice cover disappeared earlier (5.6 days decade−1) as did last ice at the shore (4.3 days decade−1). The duration of ice cover decreased by 5.6 days decade−1 and average ice thickness declined by 6.1 cm decade−1. The magnitude of these values for individual lakes decreased from eastern to western Poland. This geographic gradient is likely related to regional atmospheric circulation because in winter this part of Europe is strongly affected by continental air, an influence that is greater in the east. A multivariate redundancy analysis (RDA), used in order to examine the dependence of ice measures on lake physical properties and location, indicated longitude and altitude as key factors explaining lake ice dynamics such as the disappearance of ice and ice cover, ice cover duration and thickness. Lake volume and average depth influenced mostly the appearance of ice and ice cover.  相似文献   

2.
Spyros Beltaos 《水文研究》2008,22(17):3252-3263
Since the late 1960s, a paucity of ice‐jam flooding in the lower Peace River has resulted in prolonged dry periods and considerable reduction in the area covered by lakes and ponds that provide habitat for aquatic life in the Peace–Athabasca Delta (PAD) region. Though major ice jams occur at breakup, antecedent conditions play a significant role in their frequency and severity. These conditions are partly defined by the mode of freezeup and the maximum thickness that is attained during the winter, shortly before the onset of spring and development of positive net heat fluxes to the ice cover. Data from hydrometric gauge records and from field surveys are utilized herein to study these conditions. It is shown that freezeup flows are considerably larger at the present time than before regulation, and may be responsible for more frequent formation of porous accumulation covers. Despite a concomitant rise in winter temperatures, solid‐ice thickness has increased since the 1960s. Using a simple ice growth model, specifically developed for the study area, it is shown that porous accumulation covers enhance winter ice growth via accelerated freezing into the porous accumulation. Coupled with a reduction in winter snowfall, this effect can not only negate, but reverse, the effect of warmer winters on ice thickness, thus explaining present conditions. The present model is also shown to be a useful prediction tool, especially for extrapolating incomplete data to the end of the winter. Copyright © 2007 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

3.
Tidal ice drift is regarded as an element of the 3D tidal dynamics on the Siberian continental shelf. Two cases are considered: (1) when sea ice is immobile (in a horizontal plane), so that ice-induced changes of tidal characteristics may be treated as if they are limiting, and (2) when sea ice is moveable and internal stresses in the ice cover are described by a viscous-elastic rheology. It is shown that sea ice does not lead to radical changes of the tidal and energetic regimes, although their quantitative changes may be quite significant. In general, the ice-induced influence on the tidal dynamics is less than that on the tidal energetics. Therefore, the commonly accepted assumption that this influence may be viewed as being negligible is justified only partially. We present model results for tidal ice drift parameters—its magnitude, direction, the amplitude of tidal variations of ice concentration and the pressure of ice compression—as well as for ice-induced changes of tidal characteristics and the residual tidal ice drift. Partial attention is given to revealing the zones of ice compression–rarefaction, that is of importance in Arctic navigation.  相似文献   

4.
The formation of ice cover on lakes alters heat and energy transfer with the water column. The fraction of surface area covered by ice and the timing of ice-on and ice-off therefore affects hydrodynamics and the seasonal development of stratification and related ecosystem processes. Multi-year model simulations of temperate lake ecosystems that freeze partially or completely therefore require simulation of the formation and duration of ice cover. Here we present a multi-year hydrodynamic simulation of an alpine lake with complex morphology (Lower Lake Constance, LLC) using the three-dimensional (3D) model Aquatic Ecosystem Model (AEM3D) over a period of 9 years. LLC is subdivided into three basins (Gnadensee, Zeller See and Rheinsee) which differ in depth, morphological features, hydrodynamic conditions and ice cover phenology and thickness. Model results were validated with field observations and additional information on ice cover derived from a citizen science approach using information from social media. The model reproduced the occurrence of thin ice as well as its inter-annual variability and differentiated the frequency and extent of ice cover between the three sub-basins. It captured that full ice cover occurs almost each winter in Gnadensee, but only rarely in Zeller See and Rheinsee. The results indicate that the 3D model AEM3D is suitable for simulating long-term dynamics of thin ice cover in lakes with complex morphology and inter-annual changes in spatially heterogeneous ice cover.  相似文献   

5.
Summary Detailed gravity measurements recently carried out on the Gorner glacier, Switzerland, are used to determine the variation of thickness across the glacier ice. The Gorner glacier was chosen as a test site because seismic control was available. The glacier ice at a profile near the Monte Rosa massif is associated with a relative gravity low of about –23 mgal. Model oalculations yield a corresponding ice thickness of about 400 m at the central part of the profile. A comparison of the derived residual gravity anomaly with the calculated effect of the 3-D ice model based on seismic information is made. It is shown that the regional field determined for the Gorner glacier is appropriate and gives the correct residual anomaly associated with the glacier ice. Therefore, the proposed gravity technique for determining variations of the thickness of glacier ice appears to be a valuable and rather inexpensive method for surveying glaciers.Institut für Geophysik, ETH-Zürich, Contribution No 145.  相似文献   

6.
As an important component of the cryosphere, sea ice is very sensitive to climate change. The study of sea ice physics needs accurate sea ice thickness. This paper presents an electromagnetic induction (EM) technique which can be used to measure the sea ice thickness distribution efficiently and its successful application in the Antarctic Neila Fjord. Based on the electrical properties of sea ice and seawater and the application of electromagnetic field theory, this technique can accurately detect the distance between the EM instrument and the ice/water interface to measure the sea ice thickness. Analyzing the apparent conductivity data obtained by the electromagnetic induction technique and drill-hole measurements at same location allows the construction of a transform equation for the apparent conductivity and sea ice thickness. The verification of the calculated sea ice thickness using this equation indicates that the electromagnetic induction technique is able to determine reliable sea ice thickness with an average relative error of only 5.5%. The ice thickness profiles show the sea ice distribution in Neila Fjord is basically level with a thickness of 0.8 - 1.4 m.  相似文献   

7.
Winter conditions play an important role for the largest lake in Europe—Lake Ladoga. The ice cover lasts for 171 ± 3 days on average from the early November until the mid‐May. We investigated the ice regime of Lake Ladoga using a constructed ice database of aircraft surveys and satellite images. More than 1250 surveys of the lake's ice cover from 1943 to 2010 were collected and analysed to determine mean and extreme ice conditions for winters of different types of severity. The time series of ice cover percentage over the lake was plotted. On average, 18 observational ice charts were made every winter. Individual ice phenology records show considerable year‐to‐year variation. For this reason, records typically have been combined and analysed as groups (categories). Extremely cold winters were determined as winters with complete ice cover that lasts more than three months which is approximately 90% quartiles from all winters with complete ice cover. The lake surface was completely covered with ice for more than three months during 5 seasons. Extremely warm winters when the maximum ice cover was less than 70% of the lake area occurred during 5 seasons as well. A basic relationship between the winter severity as winter maximum of accumulated freezing degree‐days (AFDD) and the earlier derived Relative Ice Cover Index (RICI) was established. We have used teleconnection indices such as North Atlantic Oscillations (NAO) and Arctic Oscillation (AO) for the period from October to May for estimation of different types of Lake Ladoga's ice conditions. The AO index in winter months and local winter maximum of AFDD explained much of the interannual variation in ice cover. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A large number of rivers are frozen annually, and the river ice cover has an influence on the geomorphological processes. These processes in cohesive sediment rivers are not fully understood. Therefore, this paper demonstrates the impact of river ice cover on sediment transport, i.e. turbidity, suspended sediment loads and erosion potential, compared with a river with ice‐free flow conditions. The present sediment transportation conditions during the annual cycle are analysed, and the implications of climate change on wintertime geomorphological processes are estimated. A one‐dimensional hydrodynamic model has been applied to the Kokemäenjoki River in Southwest Finland. The shear stress forces directed to the river bed are simulated with present and projected hydroclimatic conditions. The results of shear stress simulations indicate that a thermally formed smooth ice cover diminishes river bed erosion, compared with an ice‐free river with similar discharges. Based on long‐term field data, the river ice cover reduces turbidity statistically significantly. Furthermore, suspended sediment concentrations measured in ice‐free and ice‐covered river water reveal a diminishing effect of ice cover on riverine sediment load. The hydrodynamic simulations suggest that the influence of rippled ice cover on shear stress is varying. Climate change is projected to increase the winter discharges by 27–77% on average by 2070–2099. Thus, the increasing winter discharges and possible diminishing ice cover periods both increase the erosion potential of the river bed. Hence, the wintertime sediment load of the river is expected to become larger in the future. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
湖冰厚度是湖泊在封冻期的重要物理参数,明晰其时空变化特征对于认识气候变暖背景下的湖冰响应规律具有重要的理论价值和现实意义.基于ERA5 Climate Reanalysis气温数据集、MODIS MOD09GQ数据产品和2019年湖冰钻孔测厚数据及雷达测厚数据,重建20002019年青海湖冰厚时间序列并分析其时空变化特...  相似文献   

10.
The results of examining the concentrations of 16 major polycyclic aromatic hydrocarbons are given. The examined samples were taken in the territory of Leningrad province and in the eastern Gulf of Finland in different seasons. Two seasonal natural profiles of polycyclic aromatic hydrocarbons were constructed, conventionally, for the spring and the autumn. The dominating effect on the formation of the profile of polycyclic aromatic hydrocarbons is exerted by pyrogenous pollution sources in winter and petrogenic pollution sources in summer.  相似文献   

11.
Observed reduction in recent sea ice areal extent and thickness has focused attention on the fact that the Arctic marine system appears to be responding to global‐scale climate variability and change. Passive microwave remote‐sensing data are the primary source underpinning these reports, yet problems remain in geophysical inversion of information on ice type and concentration. Uncertainty in sea‐ice concentration (SIC) retrievals is highest in the summer and fall, when water occurs in liquid phase within the snow–sea‐ice system. Of particular scientific interest is the timing and rate of new ice formation due to the control that this form of sea ice has on mass, energy and gas fluxes across the ocean–sea‐ice–atmosphere interface. In this paper we examine the critical fall freeze‐up period using in situ data from a ship‐based and aerial survey programme known as the Canadian Arctic Shelf Exchange study combined with microwave and optical Earth observations data. Results show that: (1) the overall physical conditions observed from aerial survey photography were well matched with coincident moderate‐resolution imaging spectroradiometer data and Radarsat ScanSAR imagery; (2) the shortwave albedo was linearly related to old ice concentration derived from survey photography; (3) the three SSM/I SIC algorithms (NASA Team (NT), NASA Team 2 (NT2), and Bootstrap (BT)) showed considerable discrepancies in pixel‐scale comparison with the Radarsat ScanSAR SICs well calibrated by the aerial survey data. The major causes of the discrepancies are attributed to (1) the inherent inability to detect the new thin ice in the NT and BT algorithms, (2) mismatches of the thin‐ice tie point of the NT2 algorithm, and (3) sub‐pixel ambiguity between the thin ice and the mixture of open water and sea ice. These results suggest the need for finer resolution of passive microwave sensors, such as AMSR‐E, to improve the precision of the SSM/I SIC algorithms in the marginal ice zone during early fall freeze‐up. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Ice processes taking place in steep channels are sensitive to the thermal and hydrological regimes of upstream reaches and tributaries as well as to the local channel morphology. This work presents freezeup, mid‐winter, and breakup data from four channels of increasing order located in a cold temperate watershed during the winter 2010–2011. From headwater channels to the main drainage system, water temperature, ice coverage, and ice processes are reported and related to weather conditions and to channel characteristics. Headwater channels only formed ephemeral ice features, and their water temperature reached as much as 4 °C in mid‐winter. On the other hand, larger channels formed impressively large ice dams, some of them reaching 2 m in height. The development of a suspended ice cover partially insulated the channels; as a result, water temperatures remained above 0 °C even for air temperatures well below freezing. This work presents steep channels ice processes that have not been described in previous publications. The concept of a watershed cryologic continuum (WCC) is developed from the data collected at each channel order. This concept emphasizes the feedback loops that exist between morphology, hydrology, heat, and ice processes in a given watershed and can lead to a better understanding of ice processes taking place at any channel location within that watershed. The WCC can also contribute in improving our understanding of the impacts of climate change on the cryologic and thermal regimes of steep channels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A one‐dimensional thermodynamic model for simulating lake‐ice phenology is presented and evaluated. The model can be driven with observed daily or hourly atmospheric forcing of air temperature, relative humidity, wind speed, cloud amount and snowfall. In addition to computing the energy balance components, key model output includes the temperature profile at an arbitrary number of levels within the ice/snow (or the water temperature if there is no ice) and ice thickness (clear ice and snow‐ice) on a daily basis, as well as freeze‐up and break‐up dates. The lake‐ice model is used to simulate ice‐growth processes on shallow lakes in arctic, sub‐arctic, and high‐boreal forest environments. Model output is compared with field and remote sensing observations gathered over several ice seasons. Simulated ice thickness, including snow‐ice formation, compares favourably with field measurements. Ice‐on and ice‐off dates are also well simulated when compared with field and satellite observations, with a mean absolute difference of 2 days. Model simulations and observations illustrate the key role that snow cover plays on the seasonal evolution of ice thickness and the timing of spring break‐up. It is also shown that lake morphometry, depth in particular, is a determinant of ice‐off dates for shallow lakes at high latitudes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
There is a high degree of uncertainty about the state and fate of Pakistan's Karakoram glaciers due to data scarcity in high altitude regions. They are thought to be less vulnerable to climatic change because they behave differently as compared with eastern Himalayas. This study measures the decadal temporal changes in the glacial ice area of Karakoram's Hunza River Basin, one of the eight subbasins of Upper Indus Basin. An attempt has been made to investigate the relationship between glacial ice area changes and calculated values of precipitation, temperature and run‐off. A combination of satellite and field‐based approach is applied. Output includes maps of glacial ice hypsometries of eight glacial ice subregions of Hunza River Basin for 3 years (i.e., 1989, 2002, and 2010). The results show a decreasing trend in the glacial ice‐covered area signifying a reduction of 20.47% with the largest reduction being in the lower elevation bands. There is presently no conclusive answer as to why glacial ice in the Karakoram is acting differently from the near‐global indication of glacial ice changes. Climate data from high altitudes are needed to find answer for this anomalous behaviour.  相似文献   

15.
Saronikos Gulf (Greece) practically constitutes the sea border of the metropolitan city of Athens and the alongshore outskirts, and it receives the treated wastes of ∼4 million people from a point source that discharges on the sea bottom at ∼65 m water depth. Total organic carbon (TOC) was measured in 477 seawater samples collected in the Saronikos Gulf, during 10 cruises, from August 2001 to May 2004 and analyzed with the High Temperature Catalytic Oxidation method (HTCO). TOC concentrations ranged from 49 to 198 μmol C L−1 in agreement with other Mediterranean coastal waters. The highest TOC concentrations were found in the upper waters (0–75 m), whereas in the deeper parts of the Gulf (between 100 and 400 m) TOC concentrations were kept constantly low (49–70 μmol C L−1). A general pattern towards higher TOC concentrations during summer was also observed. Calculations of non-refractory (labile+semi-labile) organic material based on a one-dimensional (1D) conceptual model showed that it corresponds to 33% of the bulk TOC during summer and to 27% during winter. Bacterial production (BP) was measured at selected stations of ∼70–80 m depth using the [3H] leucine method. Depth integrated BP values varied from 2.8 to 10.9 mmol m−2 d−1, whereas extraordinary high integrated BP values (126 and 140 mmol m−2 d−1) were observed at the station over the treated sewage outflow. From the turnover time, τ, of the non-refractory TOC by bacteria it was implied that organic matter in the effluents is extremely labile (2–58 days). Moreover, τ values at the other sites showed that during summer non-refractory organic material resisted bacterial degradation (1–8 months), whereas during early spring it was easily degradable (20–50 days). The balance of TOC fluxes for the Inner Gulf for June and September 2003 showed that the Inner Gulf acts as a net producer of TOC during summer. Our results suggest that the presence of the Athens treated sewage outfall does not contribute to the observed summer accumulation of TOC in the Inner Gulf and other causes such as increased bacteria predation and/or nutrient limitation must be responsible.  相似文献   

16.
A one‐dimensional hydrodynamic lake model (DYRESM‐WQ‐I) is employed to simulate ice cover and water temperatures over the period 1911–2014. The effects of climate changes (air temperature and wind speed) on ice cover (ice‐on, ice‐off, ice cover duration, and maximum ice thickness) are modeled and compared for the three different morphometry lakes: Fish Lake, Lake Wingra, and Lake Mendota, located in Madison, Wisconsin, USA. It is found that the ice cover period has decreased due to later ice‐on dates and earlier ice‐off dates, and the annual maximum ice cover thickness has decreased for the three lakes during the last century. Based upon simulated perturbations of daily mean air temperatures across the range of ?10°C to +10°C of historical values, Fish Lake has the most occurrences of no ice cover and Lake Wingra still remains ice covered under extreme conditions (+10°C). Overall, shallower lakes with larger surface areas appear more resilient to ice cover changes caused by climate changes.  相似文献   

17.
A 109.91 m ice core was recovered from Dome A (or Dome Argus), the highest ice feature in Antarctica, during the 2004/05 austral summer by the 21st Chinese National Antarctic Research Expedition (CHINARE-21). Both methane profile along the core and firn densification model calculation suggest that the close-off depth is at about 102.0 m with an ice age about 4200 a. Stable isotopes (δ18O and δD) of the chips samples produced during each run of ice core drilling at Dome A, together with those of the other co...  相似文献   

18.
Thaw slumps in ice-rich permafrost can retreat tens of metres per summer, driven by the melt of subaerially exposed ground ice. However, some slumps retain an ice-veneering debris cover as they retreat. A quantitative understanding of the thermal regime and geomorphic evolution of debris-covered slumps in a warming climate is largely lacking. To characterize the thermal regime, we instrumented four debris-covered slumps in the Canadian Low Arctic and developed a numerical conduction-based model. The observed surface temperatures >20° C and steep thermal gradients indicate that debris insulates the ice by shifting the energy balance towards radiative and turbulent losses. After the model was calibrated and validated with field observations, it predicted sub-debris ice melt to decrease four-fold from 1.9 to 0.5 mas the thickness of the fine-grained debris quadruples from 0.1 to 0.4 m. With warming temperatures, melt is predicted to increase most rapidly, in relative terms, for thick (∼0.5–1.0 m) debris covers. The morphology and evolution of the debris-covered slumps were characterized using field and remote sensing observations, which revealed differences in association with morphology and debris composition. Two low-angle slumps retreated continually despite their persistent fine-grained debris covers. The observed elevation losses decreased from ∼1.0 m/yr where debris thickness ∼0.2 mto 0.1 m/yr where thickness ∼1.0 m. Conversely, a steep slump with a coarse-grained debris veneer underwent short-lived bursts of retreat, hinting at a complex interplay of positive and negative feedback processes. The insulative protection and behaviour of debris vary significantly with factors such as thickness, grain size and climate: debris thus exerts a fundamental, spatially variable influence on slump trajectories in a warming climate. © 2020 John Wiley & Sons, Ltd.  相似文献   

19.
Winter observations of shelf and slope hydrography and currents in the inner Gulf of Tehuantepec are analysed from two field studies in 1989 and 1996 to specify the variability of near-shore conditions under varying wind stress. During the winter period frequent outbursts of ‘Norte’ winds over the central Gulf result in persistent alongshore inflows along both its eastern and western coasts. Wind-induced variability on time scales of several days strongly influences the shelf currents, but has greater effect on its western coast because of the generation and separation of anticyclonic eddies there. The steadier inflow (∼0.2 m s−1) on the eastern shelf is evident in a strong down-bowing of shallow isosurfaces towards the coast within 100 km of shore, below a wedge of warmer, fresher and lighter water. This persistent entry of less saline (33.4–34.0), warmer water from the southeast clearly originates in buoyancy input by rivers along the Central American coast, but is augmented by a general shoreward tendency (0.2 m s−1) in the southeastern Gulf. The resultant shallow tongue of anomalous water is generally swept offshore in the head of the Gulf and mixed away by the strong outflow and vertical overturning of the frequent ‘Norte’ events but during wind relaxations the warm, low-salinity coastal flow may briefly extend further west. In the head of the Gulf, flow is predominantly offshore (<0.2 m s−1) as the alongshore component alternates eastward and westward in association with elevation or depression, respectively, of the pycnocline against the shore. More saline, open ocean water is introduced from the north-western side of the Gulf by the inflow along the west coast. During extended wind relaxations, the flow becomes predominantly eastward beyond the shelf while nearshore the coastally trapped buoyant inflow from the southeast penetrates across the entire head of the gulf at least as far as its western limit. On the basis of these and other recent observations, it seems that the accepted view of a broad, persistent Costa Rica Coastal Current (CRCC) is the result of averaging over many relatively sparse observations and that the instantaneous CRCC is a highly variable and convoluted flow around and between constantly changing eddies. The buoyancy-driven shelf current reported here forms a hitherto unrecognized, but major, component of this CRCC system.  相似文献   

20.
基于2019-2020期间在盘锦市含章湖利用浮式观测平台开展湖冰原型观测试验,分析不同因素对湖冰变化造成的影响.结果 表明:99 d冰期内湖冰的生消过程可概述为:湖泊封冻(3 a)-稳定生长(62 d)-冰厚稳定(7 d)-加速消融(24 d)—破碎分解(3 d).生长期冰厚的平均增长速率为0.4 cm/d,最大冰厚为...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号