首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Currents in the northern Bay of La Paz were examined using an 8-month Acoustic Doppler Current Profiler (ADCP) record collected in the upper 185 m of the water column during 2007. Flow variability was dominated by tidal motions, which accounted for 43% (33% diurnal, 10% semidiurnal) of the total kinetic energy. The tidal motions had a pronounced vertical structure dominated within a shallow (∼30 m thick) surface layer by intense counterclockwise (CCW) rotary S1 diurnal radiational currents that were highly coherent with the counterclockwise seabreeze. Motions within the semidiurnal frequency band were primarily associated with significant counterclockwise S2 radiational tidal currents, which were also coherent with the seabreeze. Both S1 and S2 tidal ellipses in the upper layer were aligned perpendicular to the bay entrance with mean semi-major axes of 55 and 20 cm/s, respectively. Below the surface layer, tidal currents decayed rapidly to relatively weak, clockwise rotary barotropic motions. In contrast to those for radiational harmonics, tidal ellipses of the gravitational constituents (M2, K1 and O1) were oriented cross-bay. Energy within the diurnal frequency band in the surface layer was dominated by a coherent component (barotropic, phase-locked baroclinic and radiational), which accounted for roughly 65% (59% from S1 alone) of the total diurnal kinetic energy. Of the remaining diurnal band energy, 18% was associated with an incoherent baroclinic component and 17% with a background noise component. Below 30 m depth, the corresponding estimates are 40%, 32% and 28%, respectively. The persistent, surface-intensified CCW rotary currents observed at the mooring site are assumed to be forced by strong CCW seabreeze winds in the presence of a “slippery” low-density surface layer. This response may be further augmented by topographic narrowing at the bay entrance and by the close proximity of the diurnal and inertial frequency bands in the region.  相似文献   

2.
A three-dimensional shelf circulation model is used to examine the effect of seasonal changes in water-column stratification on the tidal circulation over the Scotian Shelf and Gulf of St. Lawrence. The model is driven by tidal forcing specified at the model’s lateral open boundaries in terms of tidal sea surface elevations and depth-averaged currents for five major tidal constituents (M2, N2, S2, K1, and O1). Three numerical experiments are conducted to determine the influence of baroclinic pressure gradients and changes in vertical mixing, both associated with stratification, on the seasonal variation of tidal circulation over the study region. The model is initialized with climatological hydrographic fields and integrated for 16 months in each experiment. Model results from the last 12 months are analyzed to determine the dominant semidiurnal and diurnal tidal components, M2 and K1. Model results suggest that the seasonal variation in the water-column stratification affects the M2 tidal circulation most strongly over the shelf break and over the deep waters off the Scotian Shelf (through the development of baroclinic pressure gradients) and along Northumberland Strait in the Gulf of St. Lawrence (through changes in vertical mixing and bottom stress). For the K1 constituent, the baroclinic pressure gradient and vertical mixing have opposing effects on the tidal circulation over several areas of the study region, while near the bottom, vertical mixing appears to play only a small role in the tidal circulation.  相似文献   

3.
A numerical shelf circulation model was developed for the Scotian Shelf, using a nested-grid setup consisting of a three-dimensional baroclinic inner model embedded inside a two-dimensional barotropic outer model. The shelf circulation model is based on the Princeton Ocean Model and driven by three-hourly atmospheric forcing provided by a numerical weather forecast model and by tidal forcing specified at the inner model's open boundaries based on pre-calculated tidal harmonic constants. The outer model simulates the depth-mean circulation forced by wind and atmospheric pressure fields over the northwest Atlantic Ocean with a horizontal resolution of 1/12°. The inner model simulates the three-dimensional circulation over the Gulf of St. Lawrence, the Scotian Shelf, and the adjacent slope with a horizontal resolution of 1/16°. The performance of the shelf circulation model is assessed by comparing model results with oceanographic observations made along the Atlantic coast of Nova Scotia and in the vicinity of Sable Island (on the Scotian Shelf) during two periods: October 2000–March 2001 and April–June 2002. Analysis of model results on Sable Island Bank indicates that tidal currents account for as much as ∼80% of the total variance of near-bottom currents, and currents driven by local winds account for ∼30% of the variance of the non-tidal near-bottom currents. Shelf waves generated remotely by winds and propagating into the region also play an important role in the near-bottom circulation on the bank.  相似文献   

4.
Guajará Bay, located at the right margin of the Pará River estuary (Amazon) is formed in the confluence of Guamá and Acará–Moju rivers. It has low-depth zones (∼5 m) and deep channels (∼25 m). The ebb channel is located in the west section, where there is intense erosion of the margin. The flood channels and intertidal mudflats, which stretch out from north to south along the shore of the city of Belém do Pará, are in the east section. There are sandy (northwest) and muddy sedimentary deposits (east–southeast). Some 70% of Guajará Bay's bottom is covered by mud. The depositation of such muddy sediments and the formation of a point bar in the south section (Guamá River mouth) happen due to a decrease in the intensity of tidal currents to the south and of fluvial currents to the north. However, the hydrodynamic regime is high, which is proved by the low clay amounts. The sand deposits in the northwest section indicate strong tidal currents. The vast area of the bottom that is covered by mud (∼90 km2) and the intertidal mudflats (∼150 m wide) in Guajará Bay hint the extent of the contribution and sediments flow from Guamá and Acará–Moju rivers (drainage basin total area of ∼87,400 km2) to the Pará River estuary. The regular rainfall regime, typical of the Amazon region, keeps the considerable discharges of such rivers and their high turbidity (Secchi depth ?0.5 m) in the investigation area. Generally speaking, the low topography, the great fluvial subsidy and the action of tidal currents are the main controlling elements of the depositation and dispersion of sediments in Guajará Bay.  相似文献   

5.
The energy flux in internal waves generated at the Celtic Sea shelf break was estimated by (i) applying perturbation theory to a week-long dataset from a mooring at 200 m depth, and (ii) using a 2D non-hydrostatic circulation model over the shelf break. The dataset consisted of high resolution time-series of currents and vertical stratification together with two 25-h sets of vertical profiles of the dissipation of turbulent kinetic energy. The observations indicated an average energy flux of 139 W m−1, travelling along the shelf break towards the northwest. The average energy flux across the shelf break at the mooring was only 8 W m−1. However, the waves propagating onshelf transported up to 200 W m−1, but they were only present 51% of the time. A comparison between the divergence of the baroclinic energy flux and observed dissipation within the seasonal thermocline at the mooring showed that the dissipation was at least one order of magnitude larger. Results from a 2D model along a transect perpendicular to the shelf break showed a time-averaged onshelf energy flux of 153–425 W m−1, depending on the magnitude of the barotropic forcing. A divergence zone of the energy flux was found a few kilometre offshore of the location of the observations in the model results, and fluxes on the order of several kW m−1 were present in the deep waters further offshelf from the divergence zone. The modelled fluxes exhibited qualitative agreements with the phase and hourly onshelf magnitudes of the observed energy fluxes. Both the observations and the model results show an intermittent onshelf energy flux of 100–200 W m−1, but these waves could only propagate ∼20–30 km onshore before dissipating. This conclusion was supported by a 25-h dataset sampled some 180 km onto the shelf, where a weak wave energy flux was found going towards the shelf break. We therefore conclude that shelf break generated internal waves are unlikely to be the main source of energy for mixing on the inner part of the shelf.  相似文献   

6.
Non-linear tidal constituents, such as the overtide M4 or the compound tide MS4, are generated by interaction in shallow seas of the much larger astronomically forced “primary” tidal constituents (e.g., M2, S2). As such, errors in modeling these “secondary” shallow-water tides might be expected to be caused first of all by errors in modeling the primary constituents. Thus, in the context of data assimilation, observations of primary-constituent harmonic constants can indirectly constrain shallow-water constituents. Here we consider variational data assimilation for primary and secondary tidal constituents as a coupled problem, using a simple linearized perturbation theory for weak interactions of the dominant primary constituents. Variation of the resulting penalty functional leads to weakly non-linear Euler–Lagrange equations, which we show can be solved approximately with a simple two-stage scheme. In the first stage, data for the primary constituents are assimilated into the linear shallow water equations (SWE), and the resulting inverse solutions are used to compute the quadratic interactions in the non-linear SWE that constitute the forcing for the secondary constituents. In the second stage, data for the compound or overtide constituent are assimilated into the linear SWE, using a prior forced by the results of the first stage. We apply this scheme to assimilation of TOPEX/Poseidon and Jason altimetry data on the Northwest European Shelf, comparing results to a large set of shelf and coastal tide gauges. Prior solutions for M4, MS4 and MN4 computed using inverse solutions for M2, S2, and N2 dramatically improve fits to validation tide gauges relative to unconstrained forward solutions. Further assimilation of along-track harmonic constants for these shallow-water constituents reduces RMS differences to below 1 cm on the shelf, approaching the accuracy of the validation tide gauge harmonic constants.  相似文献   

7.
Bottom-mounted ADV and ADCP instruments in combination with CTD profiling measurements taken along the Chinese coast of the East China Sea were used to study the vertical structure of temperature, salinity, and velocity in reversing tidal currents on a shallow inner shelf and in rotating tidal flows over a deeper sloping bottom of the outer shelf. These two regimes of barotropic tide affect small-scale dynamics in the lower part of the water column differently. The reversing flow was superimposed by seiches of ∼2.3 h period generated in semienclosed Jiaozhou Bay located nearby. As the tidal vector rotates over the sloping bottom, the height of the near-bottom logarithmic layer is subjected to tidal-induced variations. A maximum of horizontal velocity Umax appears at the upper boundary of the log layer during the first half of the current vector rotation from the minor to the major axis of tidal ellipse. In rotating tidal flow, vertical shear generated at the seafloor, propagated slowly to the water interior up to the height of Umax, with a phase speed of ∼5 m/h. The time-shifted shear inside the water column, relative to the shear at the bottom, was associated with periodically changing increases and decreases of the tidal velocity above the log layer toward the sea surface. In reversing flows, the shear generated near the bottom and the shear at the upper levels were almost in phase.  相似文献   

8.
Sea surface height (SSH) as measured by satellites has become a powerful tool for oceanographic and climate related studies. Whereas in the open ocean good accuracy has been achieved, more energetic dynamics and a number of calibration problems have limited applications over continental shelves and near the coast. Tidal ranges in the Southwestern Atlantic (SWA) continental shelf are among the highest in the world ocean, reaching up to 12 m at specific locations. This fact highlights the relevance of the accuracy of the tidal correction that must be applied to the satellite data to be useful in the region. In this work, amplitudes and phases of tidal constituents are extracted from five global tide models and three regional models and compared to the corresponding harmonics estimated from coastal tide gauges (TGs) and satellite altimetry data. The Root Sum Square (RSS) of the misfit of the common set of the five tidal constituents solved by the models (M2, N2, S2, K1 and O1) is higher than 18 cm close to the coast for two of the regional models and higher than 24.5 cm for the rest of the models considered. Both values are too high to provide an accurate estimation of geostrophic non-tidal currents from satellite altimetry in the coastal region. On the other hand, the global model with the highest spatial resolution has a RSS lower than 4.5 cm over the continental shelf even when the non-linear M4 overtide is considered. Comparison with in-situ current measurements suggests that this model can be used to de-tide altimetry data to compute large-scale patterns of SSH and associated geostrophic velocities. It is suggested that a local tide model with very high resolution that assimilates in-situ and satellite data should meet the precision needed to estimate geostrophic velocities at a higher resolution both close to the coast and over the Patagonian shelf.  相似文献   

9.
10.
Satellite ocean color and surface salinity data are used to characterize the space–time variability of the Río de la Plata plume. River outflow and satellite wind data are also used to assess their combined effect on the plume spreading over the Southwestern South Atlantic continental shelf. Over the continental shelf satellite-derived surface chlorophyll-a (CSAT) estimated by the OC4v4 SeaWiFS retrieval algorithm is a good indicator of surface salinity. The log (CSAT) distribution over the shelf presents three distinct modes, each associated to: Subantarctic Shelf Water, Subtropical Shelf Water and Plata Plume water. The log (CSAT) 0.4–0.8 range is associated with a sharp surface salinity transition across the offshore edge of the Plata plume from 28.5 to 32.5. Waters of surface salinity <31, derived from mixtures of Plata waters with continental shelf waters, are associated to log (CSAT)>0.5. In austral winter CSAT maxima extend northeastward from the Plata estuary beyond 30°S. In summer the high CSAT waters along the southern Brazil shelf retreat to 32°S and extend south of the estuary to about 37.5°S, only exceeding this latitude during extraordinary events. The seasonal CSAT variations northeast of the estuary are primarily controlled by reversals of the along-shore wind stress and surface currents. Along-shore wind stress and CSAT variations in the inner and mid-shelves are in phase north of the estuary and 180° out of phase south of the estuary. At interannual time scales northernmost Plata plume penetrations in winter (∼1200 km from the estuary) are associated with more intense and persistent northeastward wind stress, which in the period 2000–2003, prevailed over the shelf south of 26°S. In contrast, in winter 1999, 2004 and 2005, characterized by weaker northeastward wind stress, the plume only reached between 650 and 900 km. Intense southwestward plume extensions beyond 38°S are dominated by interannual time scales and appear to be related to the magnitude of the river outflow. The plume response to large river outflow fluctuations observed at interannual time scales is moderate, except offshore from the estuary mouth, where outflow variations lead CSAT variations by about 2 months.  相似文献   

11.
Vertical mixing by the tides plays a key role in controlling water column structure over the seasonal cycle in shelf seas. The influence of tidal stirring is generally well represented as a competition between surface buoyancy input and the production of turbulent kinetic energy (TKE) by frictional stresses, a competition which is encapsulated in the Qh/u3 criterion. An alternative control mechanism arises from the limitation of the thickness of the bottom boundary layer due to the effects of rotation and the oscillation of the flow. Model studies indicate that, for conditions typical of the European shelf seas, the energy constraint exerts the dominant control but that for tidal streams with large positive polarisation (i.e. anti-clockwise rotation of velocity vector), some influence of rotation in limiting mixing should be detectable. We report here measurements of flow structure (with ADCPs) and turbulent dissipation (FLY Profiler) made at two similar locations in the Celtic Sea which differ principally in that the tidal currents rotate in opposite senses with approximately equal magnitude (polarity P=±0.6). A clear contrast was observed between the two sites in the vertical structure of the currents, the density profile and the rate of dissipation of TKE. At the positive polarity (PP) site (P≈+0.6), the bottom boundary layer in the tidal flow was limited to ∼20 mab (metre above the bed) and significant dissipation from bottom boundary friction was constrained within this layer. At the negative polarity (NP) site (P≈−0.6), the dominant clockwise rotary current component exhibited a velocity defect (i.e. reduction relative to the free stream) extending into the upper half of the water column while significant dissipation was observed to penetrate much further up the water column with dissipation levels ∼10−4.5 W m−3 reaching to the base of the pycnocline at 70–80 mab. These contrasting features of the vertical distribution of dissipation are well reproduced by a 1-D model when run with windstress and tidal forcing and using the observed density profile. Model runs with reversed polarity at the two sites, support the conclusion that the observed contrast in the structure of tidal velocity, dissipation and stratification is due to the influence of tidal stream polarity. Increased positive polarity reduces the upward penetration of mixing which allows the development of stronger seasonal stratification, which, in turn, further inhibits vertical mixing.  相似文献   

12.
Initially the development of shallow sea three-dimensional barotropic tidal models is briefly reviewed with a view to determining what were the key measurements that allowed progress in this field and rigorous model validation. Subsequently this is extended to a brief review of baroclinic tidal models to try to determine a “way forward” for baroclinic model development. The difficulty of high spatial variability, and wind influence are identified as possibly important issues that must be considered in validating baroclinic tidal models. These are examined using a three-dimensional unstructured grid model of the M2 internal tide on the shelf edge region off the west coast of Scotland. The model is used to investigate the spatial variability of the M2 internal tide, and associated turbulence energy and mixing in the region. Initial calculations are performed with tidal forcing only, with subsequent calculations briefly examining how the tidal distribution is modified by down-welling and up-welling favourable winds. Calculations with tidal forcing only, show that there is significant spatial variability in the internal tide and associated mixing in the region. In addition, these are influenced by wind effects which may have to be taken into account in any model validation exercise. The paper ends by discussing the comprehensive nature of data sets that need to be collected to validate internal tidal models to the same level currently attained with three dimensional barotropic tidal models.  相似文献   

13.
Tidal current and elevation data were collected from five oceanographic moorings during October 2004 in Torres Strait, northern Australia, to assess the effects of large bedforms (i.e., sand banks) on the drag coefficient (CD) used for estimating bed shear stress in complex shallow shelf environments. Ten minute averages of tidal current speed and elevation data were collected for 18 days at an on-bank site (<7 m water depth) and an off-bank site (<10 m). These data were compared to data collected simultaneously from two shelf locations (<11 m) occupied to measure regional tidal behaviour. Overall CD estimates at the on- and off-bank sites attained 7.0±0.1×10−3 and 6.6±0.1×10−3, respectively. On-bank CD estimates also differed between the predominant east–west tidal streams, with easterly directed flows experiencing CD=7.8±0.18×10−3 and westerly directed flows CD=6.4±0.12×10−3. Statistically significant differences between the off-bank and on-bank sites are attributed to the large form drag exerted by the sand banks on the regional tidal currents, and statistically significant differences between the westward and eastward flows is ascribed to bedform asymmetry. Form drag from the large bedforms in Torres Strait comprises up to 65% of the total drag coefficient. When constructing sediment transport models, different CD estimates must therefore be applied to shelf regions containing steep bedforms compared to regions that do not. Our results extend the limited inventory of seabed drag coefficients for shallow shelf environments, and can be used to improve existing regional seabed mobilisation models, which have direct application to environmental management in Torres Strait.  相似文献   

14.
Hydrodynamic, suspension and bed-form measurements were made 2 km off the Dutch coast near Noordwijk aan Zee in ∼14 m water depth for a period of 32 days in 2003. Tidal currents were just able to suspend sand at the bed at peak spring tide but most suspension and transport occurred as a result of the combination of waves and currents. Burst-average (17 min) sand concentration profiles (-profiles) from an acoustic backscatter instrument were used to define the (varying) location of the sea-bed, following the method used by Green et al. [Green, M.O., Dolphin, T.J., Swales, A., Vincent, C.E., 1999. Transport of mixed-size sediments in a tidal channel. Coastal Sediments ‘99, edited by N.C. Kraus, and W.G. McDougal, ASCE, Long Island, New York, pp. 644–658]. Reference concentrations at the sea-bed (C0) and at 1 cm (C1) were examined in relation to both the hydrodynamic conditions and the type of bed forms present. The C0 predictive equations of Green and Black [Green, M.O., Black, K.P., Suspended sediment reference concentration under waves: field measurements and critical analysis of two predictive models, Coastal Engineering, 38, 115–141, 1999](short-wave ripples) and Nielsen [Nielsen, P., Suspended sediment concentrations under waves, Coastal Engineering, 10, 23–31, 1986](all bed forms; includes ripple steepness), both of which require knowledge of the bed-form type, were not as successful in explaining the variance in our C0 data as a regression of C0 against the skin-friction Shields parameter θcw that ignored bed-form type (73% of variance explained). The values of the reference concentration C1 were compared with the Lee et al. [Lee, G.-H., Dade, W.B., Friedrichs, C.T., Vincent, C.E., Examination of Reference Concentration Under Waves and Currents on the Inner Shelf., Journal of Geophysical Research, 109, 1–10, 2004] equation which predicts C1 from the product of the Shields parameter and the inverse Rouse parameter; 51% of the variance in C1 was explained.  相似文献   

15.
The mean sea level and mean bed stress due to tidal co-oscillations in the presence of quadratic friction is examined analytically and numerically. In some idealised situations under conditions of near M4 shelf resonances it is shown that phase relationships tend to exist between the M2 tidal currents and the M4 tidal currents which combine to give maximum currents in the flood or ebb direction. In the presence of quadratic friction these effects result in a mean bed stress and affect mean sea level. It is shown that these idealised responses are in part relevant to the sea level differences and sand transport paths due to tides around the British Isles.  相似文献   

16.
Shelf-to-canyon suspended sediment transport during major storms was studied at the southwestern end of the Gulf of Lions. Waves, near-bottom currents, temperature and water turbidity were measured on the inner shelf at 28-m water depth and in the Cap de Creus submarine canyon head at 300 m depth from November 2003 to March 2004. Two major storm events producing waves Hs>6 m coming from the E–SE sector took place, the first on 3–4 December 2003 (max Hs: 8.4 m) and the second on 20–22 February 2004 (max Hs: 7 m). During these events, shelf water flowed downcanyon producing strong near-bottom currents on the canyon head due to storm-induced downwelling, which was enhanced by dense shelf water cascading in February 2004. These processes generated different pulses of downcanyon suspended sediment transport. During the peak of both storms, the highest waves and the increasing near-bottom currents resuspended sediment on the canyon head and the adjacent outer shelf causing the first downcanyon sediment transport pulses. The December event ended just after these first pulses, when the induced downwelling finished suddenly due to restoration of shelf water stratification. This event was too short to allow the sediment resuspended on the shallow shelf to reach the canyon head. In contrast, the February event, reinforced by dense shelf water cascading, was long enough to transfer resuspended sediment from shallow shelf areas to the canyon head in two different pulses at the end of the event. The downcanyon transport during these last two pulses was one order of magnitude higher than those during the December event and during the first pulses of the February event and accounted for more than half of the total downcanyon sediment transport during the fall 2003 and winter 2004 period. Major storm events, especially during winter vertical mixing periods, produce major episodes of shelf-to-canyon sediment transport at the southwestern end of the Gulf of Lions. Hydrographic structure and storm duration are important factors controlling off-shelf sediment transport during these events.  相似文献   

17.
Observations of semidiurnal internal tidal currents from three moorings deployed on the continental shelf off central Chile during summer and winter of 2005 are reported. The spectra of the baroclinic currents showed large peaks at the semidiurnal band with a dominant counterclockwise rotation, which was consistent with internal wave activity. The amplitude of the barotropic tidal currents varied according to the spring–neap cycle following the sea level fluctuations. In contrast, the amplitudes of the internal tide showed high spatial-temporal variability not directly related to the spring–neap modulation. Near the middle of the continental shelf and near the coast (San Vicente Bay) the variance of the semidiurnal baroclinic current is larger than the variance of its barotropic counterpart. The vertical structure of the baroclinic tidal current fluctuations was similar to the structure of the first baroclinic internal wave mode. In general, in the three study sites the variance of the baroclinic current was larger near the surface and bottom and tended to show a minimum value at mid depths. Kinetic energy related to semidiurnal internal waves was larger in winter when stratification of the water column was stronger. During summer, upwelling and the decrease of freshwater input from nearby rivers reduced the vertical density stratification. The amplitude of the semidiurnal internal tide showed a tendency to be enhanced with increasing stratification as observed in other upwelling areas. The continental shelf break and submarine canyons, which limit the continental shelf in the alongshore direction, represent near-critical slopes for the semidiurnal period and are suggested to be the main internal tide generation sites in the study region.  相似文献   

18.
The finite element ocean tide model of Le Provost and Vincent (1986) has been applied to the simulation of the M2 and K1 components over the South Atlantic Ocean. The discretisation of the domain, of the order of 200 km over the deep ocean, is refined down to 15 km along the coasts, such refinement enables wave propagation and damping over the continental shelves to be correctly solved. The marine boundary conditions, from Dakar to Natal, through the Drake passage and from South Africa to Antarctica, are deduced from in situ data and from Schwiderski’s solution and then optimised following a procedure previously developed by the authors. The solutions presented are in very good agreement with in situ data: the root mean square deviations from a standard subset of 13 pelagic stations are 1.4 cm for M2 and 0.45 cm for K1, which is significantly better overall than solutions published to date in the literature. Zooms of the M2 solution are presented for the Falkland Archipelago, the Weddell Sea and the Patagonian Shelf. The first zoom allows detailing of the tidal structure around the Falklands and its interpretation in terms of a stationary trapped Kelvin wave system. The second zoom, over the Weddell Sea, reveals for the first time what must be the tidal signal under the permanent ice shelf and gives a solution over that sea which is generally in agreement with observations. The third zoom is over the complex Patagonian Shelf. This zoom illustrates the ability of the model to simulate the tides, even over this area, with a surprising level of realism, following purely hydrodynamic modelling procedures, within a global ocean tide model. Maps of maximum associated tidal currents are also given, as a first illustration of a by-product of these simulations.  相似文献   

19.
The southern Yellow Sea (SYS), located to the north of the East China Sea (ECS), was considered part of the ECS when Tsunogai et al. (1999) proposed the “continental shelf pump” (CSP) hypothesis. However, the original CSP carbon dioxide (CO2) uptake flux (2.9 mol C m−2 yr−1) appears to have been overestimated, primarily due to the differences between the SYS and the ECS in terms of their CO2 system. In this paper, we estimated air-sea CO2 fluxes in the SYS using the surface water partial pressure of CO2 (pCO2) measured in winter, spring, and summer, as well as that estimated in fall via the relationship of pCO2 with salinity, temperature, and chlorophyll a. The results indicate that overall, the entire investigated area was a net source of atmospheric CO2 during summer, winter, and fall, whereas it was a net sink during spring. Spatially, the nearshore area was almost a permanent CO2 source, while the central SYS shifted from being a CO2 sink in spring to a source in the other seasons of the year. Overall, the SYS is a net source of atmospheric CO2 on an annual scale, releasing ∼7.38 Tg C (1 Tg=1012 g) to the atmosphere annually. Thus, the updated CO2 uptake flux in the combined SYS and ECS is reduced to ∼0.86 mol C m−2 yr−1. If this value is extrapolated globally following Tsunogai et al. (1999), the global continental shelf would be a sink of ∼0.29 Pg C yr−1, instead of 1 Pg C yr−1 (1 Pg=1015 g).The SYS as a net annual source of atmospheric CO2 is in sharp contrast to most mid- and high-latitude continental shelves, which are CO2 sinks. We argue that unlike the ECS and the North Sea where carbon on the shelf could be exported to the open ocean, the SYS lacks the physical conditions required by the CSP to transport carbon off the shelf effectively. The global validity of the CSP theory is thus questionable.  相似文献   

20.
Although large-scale tidal and inertial motions dominate the kinetic energy and vertical current shear in shelf seas and ocean, short-scale internal waves at higher frequencies close to the local buoyancy frequency are of some interest for studying internal wave breaking and associated diapycnal mixing. Such waves near the upper limit of the inertio-gravity wave band are thought to have relatively short O (102–103 m) horizontal scales and to show mainly up- and downward motions, which contrasts with generally low aspect ratio large-scale ocean currents. Here, short-term vertical current (w) observations using moored acoustic Doppler current profiler (ADCP) are presented from a shelf sea, above a continental slope and from the open ocean. The observed w, with amplitudes between 0.015 and 0.05 m s−1, all span a considerable part of the water column, which is not a small vertical scale O(water depth) or O (100–500 m, the maximum range of observations), with either 0 or π phase change. This implies that they actually represent internal waves of low vertical modes 1 or 2. Maximum amplitudes are found in layers of largest stratification, some in the main pycnocline bordering the frictional bottom boundary layer, suggesting a tidal source. These ‘pycnocline-w’ compose a regular train of (solitary) internal waves and linearly decrease to small values near surface and bottom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号