首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study is the first to measure the particulate phosphorus, including total inorganic phosphorus (TIP) and organic phosphorus (OP), in size-fractionated atmospheric particles. The results indicate that continental and marine sources are the key controls on the particle-size distribution of phosphorus species. For continental and local anthropogenic sources, both TIP and OP are associated with fine-mode aerosols during the winter and spring, and both are also associated with coarse particles during the summer and autumn. The coarse/fine ratios are low during periods with a non-oceanic source but high at other times, probably because of the biological growing season in the surface waters of the study area. The calculated annual fluxes based on estimates of dual-mode particles are 532±185, 435±172, and 96.8±48.8 μmol m−2 yr−1 for TP, TIP, and OP, respectively. Based on previously published solubility data for particulate phosphorus (34%), we calculated an annual flux of 180±63 μmol m−2 yr−1 for readily soluble particulate phosphorus.  相似文献   

2.
Cruises to Bering Strait and the Chukchi Sea in US waters from late June in 2002 to early September in 2004 and the Russian–American Long-term Census of the Arctic (RUSALCA) research cruise in 2004 covered all major water masses and contributed to a better understanding of the regional physics, nutrient dynamics, and biological systems. The integrated concentration of the high nitrate pool in the central Chukchi Sea was greater in this study than in previous studies, although the highest nitrate concentration (∼22 μM) in the Anadyr Water mass passing through the western side of Bering Strait was consistent with prior observations. The chlorophyll-a concentrations near the western side of the Diomede Islands ranged from 200 to 400 mg chl-a m−2 and the range in the central Chukchi Sea was 200–500 mg chl-a m−2 for the 2002–2004 Alpha Helix (HX) cruises. Chlorophyll-a concentrations for the 2004 RUSALCA cruise were lower than those from previous studies. The mean annual primary production of phytoplankton from this study, using a 13C–15N dual-isotope technique, was 55 g C m−2 for the whole Chukchi Sea and 145 g C m−2 for the plume of Anadyr–Bering Shelf Water in the central Chukchi Sea. In contrast, the averages of annual total nitrogen production were 13.9 g N m−2 (S.D.=±16.2 g N m−2) and 33.8 g N m−2 (S.D.=±14.1 g N m−2) for the Chukchi Sea and the plume, respectively. These carbon and nitrogen production rates of phytoplankton were consistently two-or three-fold lower than those from previous studies. We suggest that the lower rates in this study, and consequently more unused nitrate in the water column, were caused by lower phytoplankton biomass in the Bering Strait and the Chukchi Sea. However, we do not know if the lower rate of production from this study is a general decreasing trend or simply temporal variations in the Chukchi Sea, since temporal and geographical variations are substantially large and presently unpredictable.  相似文献   

3.
This study reports the annual amount of heavy metals discharged by industrial activity into the estuary of the Ría of Huelva (SW Spain). The findings showed that the discharged metals found in highest amounts were Fe (11 t y−1), Zn (3.4 t y−1) and Mo (0.88 t y−1). There were other metals with high pollutant charge, such as Ti (232 kg y−1), As (228 kg y−1), Ni (195 kg y−1), Pb (100 kg y−1), Cr (39 kg y−1) and Cd (33 kg y−1). These results were compared with pollutants transported via the Tinto and Odiel rivers from abandoned mining activities in the Iberian Pyrite Belt (IPB), and it was deduced that the amounts spilled exclusively by industries were less than 1% in relation to the total discharge. Hence, the treatment of residues from the IPB should be the priority goal to improve water quality in the estuary.  相似文献   

4.
The southern Yellow Sea (SYS), located to the north of the East China Sea (ECS), was considered part of the ECS when Tsunogai et al. (1999) proposed the “continental shelf pump” (CSP) hypothesis. However, the original CSP carbon dioxide (CO2) uptake flux (2.9 mol C m−2 yr−1) appears to have been overestimated, primarily due to the differences between the SYS and the ECS in terms of their CO2 system. In this paper, we estimated air-sea CO2 fluxes in the SYS using the surface water partial pressure of CO2 (pCO2) measured in winter, spring, and summer, as well as that estimated in fall via the relationship of pCO2 with salinity, temperature, and chlorophyll a. The results indicate that overall, the entire investigated area was a net source of atmospheric CO2 during summer, winter, and fall, whereas it was a net sink during spring. Spatially, the nearshore area was almost a permanent CO2 source, while the central SYS shifted from being a CO2 sink in spring to a source in the other seasons of the year. Overall, the SYS is a net source of atmospheric CO2 on an annual scale, releasing ∼7.38 Tg C (1 Tg=1012 g) to the atmosphere annually. Thus, the updated CO2 uptake flux in the combined SYS and ECS is reduced to ∼0.86 mol C m−2 yr−1. If this value is extrapolated globally following Tsunogai et al. (1999), the global continental shelf would be a sink of ∼0.29 Pg C yr−1, instead of 1 Pg C yr−1 (1 Pg=1015 g).The SYS as a net annual source of atmospheric CO2 is in sharp contrast to most mid- and high-latitude continental shelves, which are CO2 sinks. We argue that unlike the ECS and the North Sea where carbon on the shelf could be exported to the open ocean, the SYS lacks the physical conditions required by the CSP to transport carbon off the shelf effectively. The global validity of the CSP theory is thus questionable.  相似文献   

5.
210Po and 210Pb in mussel (Mytilus galloprovincialis) and sediment samples collected at Candarl? Gulf during the period of 2010–2012 are presented and discussed. The activity concentrations of 210Po and 210Pb were measured by means of alpha spectrometry. Activity concentrations of 210Po and 210Pb in mussels are in the ranged of 332 ± 17–776 ± 23 Bq kg−1 dw and 14 ± 1–40 ± 5 Bq kg−1 dw, for sediments the ranges for 52 ± 5–109 ± 8 Bq kg−1 dw and 38 ± 5–92 ± 9 Bq kg−1 dw, respectively. The estimated consequent annual effective ingestion dose due to 210Po and 210Pb from mussel consumption in Candarl? Gulf coastal region were calculated. The highest dose due to 210Po and 210Po were calculated to be 4232 ± 126 μSv and 126 ± 16 μSv, respectively.  相似文献   

6.
Phytoplankton biomass and primary production were monitored in the Hauraki Gulf and on the northeastern continental shelf, New Zealand - using ship surveys, moored instruments and satellite observations (1998-2001) - capturing variability across a range of space and time scales. A depth-integrated primary production model (DIM) was used to predict integrated productivity from surface parameters, enabling regional-specific estimates from satellite data. The shelf site was dominated by pico-phytoplankton, with low chlorophyll-a (<1 mg m−3) and annual production (136 g C m−2 yr−1). In contrast, the gulf contained a micro/nano-phytoplankton-dominated community, with relatively high chlorophyll-a (>1 mg m−3) and annual production (178 g C m−2 yr−1). Biomass and productivity responded to physico-chemical factors; a combination of light, critical mixing depths and/or nutrient limitation—particularly new nitrate-N. Relatively low biomass and production was observed during 1999. This coincided with inter-annual variability in the timing and extent of upwelling- and downwelling-favourable along-shelf wind-stress, influencing the fluxes of new nitrate-N to the shelf and gulf. Relationships with the Southern Oscillation Index are also discussed. Our multi-scaled sampling highlighted details associated with stratification and de-stratification events, and deep sub-surface chlorophyll-a not visible to satellite sensors. This study demonstrates the importance of multi-scaled sampling in gaining estimates of regional production and its responses to physico-chemical forcing.  相似文献   

7.
8.
Runoff and nutrient transport by rivers were analysed in the Northern Adriatic continental shelf, in order to evaluate their interannual and multidecal variability, as well as their current contribution to determine freshwater and nutrient budgets in this marine region. During the years 2004-2007, the runoff in the basin (34.1-64.6 km3 yr−1) was highly imbalanced, being 84% of freshwater discharged along the western coast, because of the contributions of Po, Adige and Brenta rivers. In the northern and eastern sections of the coast, freshwater discharge by rivers was less important (10 and 6%, respectively), but not negligible in determining the oceanographic properties at sub-regional scales. The oscillations of the transport of biogenic elements (124-262×103 t N yr−1 for TN, 72-136×103 t N yr−1 for DIN, 4.5-11.1×103t P yr−1 for TP, 2.2-3.5×103 t P yr−1 for PO4 and 104-196×103 t Si yr−1 for SiO2) were strictly dependant to the differences in the annual runoff. A strong excess of N load in comparison to P load characterised all rivers, both in inorganic nutrient (DIN/PO4=37-418) and total (TN/TP=48-208) pools, particularly in the northern and eastern areas of the basin.The annual runoff showed significant oscillations for Po on multidecadal time scale, whereas a general decrease (−33%) was observed for the other N Adriatic rivers as the recent discharges were compared to those before the 1980s. During the dry years 2005-2007, a strong reduction of river water flows and nutrient loads was experienced by the N Adriatic ecosystem with respect to years characterised by medium-high regimes. An increased frequency of similar drought periods, due to ongoing climate changes or to a larger human usage of continental waters, would be easily able to significantly change the biogeochemistry of this basin.  相似文献   

9.
Lead concentrations and isotopes in aerosols from Xiamen, China   总被引:1,自引:0,他引:1  
To investigate the magnitude and origin of lead (Pb) pollution in the atmosphere of Xiamen, China, 40 aerosol samples were collected from the coast of Xiamen from January to December 2003. All these samples were measured for Pb isotopic compositions (208Pb/206Pb = 2.10897 ± 0.00297, 207Pb/206Pb = 0.85767 ± 0.00159, n = 40) using a Multi-collector-Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS). Thirty-five out of forty samples were also measured for Pb concentrations (79.1 ± 38.3 ng/m3, n = 35) by Atomic Absorption Spectroscopy (AAS). The results indicate that the Pb concentrations display significant seasonal variations while Pb isotopic ratios remain relatively constant. The Pb concentrations were high in January and February, abruptly decreased in March, remained relatively constant (but low) from April to August, and then gradually increased from September to December. This corresponds to the rainless climate in winter and rain scavenging in summer. The higher Pb concentration of Xiamen aerosols in winter and spring may be also caused by long-range transferred anthropogenic Pb during the northeastern monsoon seasons. Although the use of leaded gasoline in Xiamen was banned in 2000, our new data indicate that the Pb annual concentrations of aerosols in Xiamen increased about 12% when compared to the data measured between 1991 and 1993. Thus, Pb pollution in the atmosphere of Xiamen has not receded even after the phase-out of leaded gasoline. Our results further confirm the previous studies’ conclusion that the primary source of atmospheric Pb in China, especially in South China, is the vast combustion of lead-containing coal, not leaded gasoline.  相似文献   

10.
A method for determining the cross-isotherm ocean transport from surface heat flux and ocean temperature data is derived. By computing the volume flux through the isotherm that extend from 19°E, 74°N to the eastern part of the Kola Peninsula, the flow through the western entrance of the Barents Sea south of 74°N is estimated. Using three different surface heat flux datasets, the inflow is found to range from 2.9 to 4.5 Sv in winter (October–March) and from 0.4 to 1.4 Sv in summer (April–September; 1 Sv=106 m3 s−1). The seasonal variations are stronger than indicated by results from direct current measurements, probably because the seasonal cycle of the surface heat fluxes is overestimated along the considered isotherm. The annual mean inflow ranges from 1.9 to 2.2 Sv during a cold period (1986–1988), and from 2.4 to 3.0 Sv during a warm period (1990–1992), close to reported observations.  相似文献   

11.
The annual and life-cycle mercury bioaccumulation pattern in selected tissues of the economically relevant Elasmobranchii species Scyliorhinus canicula was studied, and the risks associated with its consumption evaluated.Preferential mercury bioaccumulation occurred in muscle tissue, and followed the order muscle > heart > liver > gills > pancreas. Total mercury in muscle tissue ranged from 0.13 mg kg−1 (wwt) in 1+ year old males to 0.8 mg kg−1 (wwt) in 8+ year old mature females, with no significant differences found between genders, and no clear lifespan bioaccumulation pattern observed, except for mature females. Organic mercury in the muscle ranged from 0.05 mg kg−1 (wwt) to 0.52 mg kg−1 (wwt), corresponding to an average of 70% of total mercury content. In mature females, a significant correlation (R = 0.99, P = 0.01) was found between size and organic mercury fraction, suggesting reproduction as an important factor controlling organic mercury bioaccumulation in the spotted dogfish.  相似文献   

12.
13.
Previous work concerning Gulf Stream warm-core rings (WCRs) and their associated shelf water entrainments have been based upon single surveys or time series from individual WCRs. To date, estimates of annual shelf water volume entrained into the Slope Sea by WCRs and its interannual variability have not been made. Using a long time series of satellite-derived sea surface temperature (SST) observations of Slope Sea WCRs, we have completed an analysis of 22 years of WCR data (1978–1999) between 75°W and 50°W to understand the interannual variability of WCRs and their role in entraining shelf water. Satellite-derived SST data digitized at Bedford Institute of Oceanography are analyzed using an ellipse-fitting feature model to determine key WCR characteristics including WCR center position, radius and orientation. Key characteristics are then used to compute WCR swirl velocity by finite-differencing WCR orientations (θ) obtained from the feature model time series. Global mean WCR-edge swirl velocity calculated from all observations is 105.72±10.7 km day−1 (122.36±12.4 cm s−1), and global mean WCR radius is 64.8±6.2 km. Primary and derived WCR data are incorporated into a two-dimensional ring entrainment model (RM) using the quasi-geostrophic approximation of the potential vorticity equation. The RM defines ambient water as entrained by a WCR only if the gradient of relative vorticity term (horizontal shear) dominates the potential vorticity. Proximity of a WCR to the position of the shelf-slope front (SSF) is then used to determine whether the ambient water is entrained from the outer continental shelf. WCR-induced shelf entrainment derived from the RM displays considerable spatial variability, with maximum entrainment occurring offshore of Georges Bank, advecting a mean total annual shelf water volume of 7500 km3 year−1 from the region. Estimates of shelf water fluxes display significant interannual variability, which may be in part due to the observed covariance between WCR occurrences and the state of the North Atlantic Oscillation (NAO). Increased (decreased) occurrences of WCRs are evidenced during positive (negative) phases of the NAO. The total mean annual shelf-wide WCR-induced shelf water transport is estimated to be 23,700 km3 year−1 (0.75 Sv), accounting for nearly 25% of the total transport in the Slope Sea region neighboring the outer continental shelf.  相似文献   

14.
Annual litter production in alien (Sonneratia apetala) and native (Kandelia obovata) mangrove forests in Shenzhen, China were compared from 1999 to 2010. S. apetala had significantly higher litter production than K. obovata, with mean annual total litter of 18.1 t ha−1 yr−1 and 15.2 t ha−1 yr−1, respectively. The higher litter production in S. apetala forest indicates higher productivity and consequently more nutrient supply to the estuarine ecosystems but may be more invasive due to positive plant-soil feedbacks and nutrient availability to this alien species. Two peaks were recorded in S. apetala (May and October), while only one peak was observed in K. obovata, in early spring (March and April). Leaf and reproductive materials were the main contributors to litter production (>80%) in both forests. These results suggest that the ecological function of S. apetala and its invasive potential can be better understood based on a long-term litter fall analysis.  相似文献   

15.
We estimated the net annual air–sea exchange of carbon dioxide (CO2) using monitoring data from the East Gotland Sea, Bornholm Sea, and Kattegat for the 1993–2009 period. Wind speed and the sea surface partial pressure of CO2 (pCO2w), calculated from pH, total alkalinity, temperature, and salinity, were used for the flux calculations. We demonstrate that regions in the central Baltic Sea and the Kattegat alternate between being sinks (−) and sources (+) of CO2 within the −4.2 to +5.2 mol m−2 yr−1 range. On average, for the 1994–2008 period, the East Gotland Sea was a source of CO2 (1.64 mol m−2 yr−1), the Bornholm Sea was a source (2.34 mol m−2 yr−1), and the Kattegat was a sink (−1.16 mol m−2 yr−1). Large inter-annual and regional variations in the air–sea balance were observed. We used two parameterizations for the gas transfer velocity (k) and the choice varied the air–sea exchange by a factor of two. Inter-annual variations in pCO2w between summers were controlled by the maximum concentration of phosphate in winter. Inter-annual variations in the CO2 flux and gas transfer velocity were larger between winters than between summers. This indicates that the inter-annual variability in the total flux was controlled by winter conditions. The large differences between the central Baltic Sea and Kattegat were considered to depend partly on the differences in the mixed layer depth.  相似文献   

16.
Ecological environment changes in Daya Bay, China, from 1982 to 2004   总被引:7,自引:0,他引:7  
Data collected from 12 marine monitoring stations in Daya Bay from 1982 to 2004 reveal a substantial change in the ecological environment of this region. The average N/P ratio increased from 1.377 in 1985 to 49.09 in 2004. Algal species changed from 159 species of 46 genera in 1982 to 126 species of 44 genera in 2004. Major zooplankton species went from 46 species in 1983 to 36 species in 2004. The annual mean biomass of benthic animals was recorded at 123.10 g m−2 in 1982 and 126.68 g m−2 in 2004. Mean biomass and species of benthic animals near nuclear power plants ranged from 317.9 g m−2 in 1991 to 45.24 g m−2 in 2004 and from 250 species in 1991 to 177 species in 2004. A total of 12-19 species of hermatypic corals and 13 species of mangrove plants were observed in Daya Bay from 1984 to 2002.  相似文献   

17.
The aim of this study is to explore the contribution of living phytoplankton carbon to vertical fluxes in a coastal upwelling system as a key piece to understand the coupling between primary production in the photic layer and the transfer mechanisms of the organic material from the photic zone. Between April 2004 and January 2005, five campaigns were carried out in the Ría de Vigo (NW Iberian Peninsula) covering the most representative oceanographic conditions for this region. Measurements of particulate organic carbon (POC), chlorophyll-a (chl a), phaeopigments (phaeo), and identification of phytoplankton species were performed on the water column samples and on the organic material collected in sediment traps.The POC fluxes measured by the sediment traps presented no seasonal variation along the studied period ranging around a mean annual value of 1085±365 mg m−2 d−1, in the upper range of the previously reported values for other coastal systems. The fact that higher POC fluxes were registered during autumn and winter, when primary production rates were at their minimum levels points to a dominant contribution of organic carbon from resuspended sediments on the trap collected material. On the contrary, fluxes of living phytoplankton carbon (Cphyto) and chl a clearly presented a seasonal trend with maximum values during summer upwelling (546 mg m−2 d−1 and 22 mg chl m−2 d−1, respectively) and minimum values during winter (22 mg m−2 d−1 and 0.1 mg chl m−2 d−1, respectively). The contribution of Cphyto to the vertical flux of POC ranged between 2% and 49% in response to the pelagic phytoplankton community structure. Higher values of Cphyto fluxes were registered under upwelling conditions which favour the dominance of large chain-forming diatoms (Asterionellopsis glacialis and Detonula pumila) that were rapidly transferred to the sediments. By contrast, Cphyto fluxes decreased during the summer stratification associated with a pelagic phytoplankton community dominated by single-cell diatoms and flagellates. Minimal Cphyto fluxes were observed during the winter mixing conditions, when the presence of the benthic specie Paralia sulcata in the water column also points toward strong sediment resuspension.  相似文献   

18.
The concentrations and sea-to-air fluxes of dissolved methane (CH4) were investigated in the North Yellow Sea during August 2006, January, April and October 2007. Dissolved CH4 concentrations showed obvious seasonal variation, with maximum values occurring in summer and lowest values occurring in winter. The saturations of dissolved CH4 in surface waters ranged from 78.7% to 1679.7% with an average of 252.4%. The estimated atmospheric CH4 fluxes using the Liss and Merlivat (LM86), and Wanninkhof formulae (W92) were (4.2±4.7), (11.6±10.3), (8.5±12.7) and (0.2±1.0), and (6.9±7.3), (14.6±22.3), (13.8±14.3) and (0.4±1.7) μmol·(m2 d)−1, respectively, for spring, summer, autumn and winter. Based on the average annual atmospheric CH4 flux and the area of the North Yellow Sea, the annual CH4 emission was estimated to be (2.4×10−2–4.2×10−2) Tg a−1, which suggests that the North Yellow Sea was a net source of atmospheric CH4.  相似文献   

19.
A population of Theodoxus fluviatilis L in the littoral zone of Lake Esrom was investigated from November 1977 to February 1979. The population was sampled every month in the winter period and twice during the rest of the year. Biomass was estimated as ash-free dry weight (AFDW) of the organic matter both of the soft parts of the animal and the shell itself. The relation between AFDW (c) and shell length (l) was log c=2.9509×log (l)−1.7120. The population comprised more than 1 year-class, which could be separated by shell length, by a narrow band on the shells and the growth of algae on the shell. The life cycle lasted years. The oldest animals had a shell length of 7.0-7.5 mm. A few individuals who were estimated to be years had a shell length up to 8.6 mm. Population density varied between 575 and 2115 individuals m−2 on the stony substratum. The average was 1160 individuals m−2. Mortality was low during the summer period. In winter many animals died due to the effect of ice and stormy weather on the stony substratum. Growth of the animals was estimated from the shell length. Maximum growth was observed from May to August with no growth during the winter. Egg capsules were found on the stones all year round. New capsules were found from late May to the middle of November. Most freshly laid capsules were observed in May-June and August-September. Capsules from the late summer hatched in spring and capsules laid in the spring hatched in August-September. The average annual net production for the whole population was estimated by three methods. The Allen curve method gave 1.895 AFDW m−2, the growth-increment method gave 1.784 mg AFDW m−2 and the Hynes method 2.284 mg AFDW m−2. Corresponding estimated P/B ratios were 1.29, 1.30 and 1.57. Annual net-production of the four investigated year-classes was 16 mg AFDW m−2 year−1 for 1975, 224 mg AFDW m−2 year−1 for 1976, 1.258 mg AFDW m−2 year−1 for 1977 and 287 mg AFDW m−2 year−1 for 1978. P/B ratios for the three oldest year-classes were, respectively, 0.32, 0.50 and 1.67. A comparison with other investigations on gastropod life cycles, reproduction and P/B ratios is made and differences discussed. Variations are correlated to temperature, and food quality and quantity.  相似文献   

20.
The ongoing regression of sea ice cover is expected to significantly affect the fate of organic carbon over the Arctic continental shelves. Long-term moored sediment traps were deployed in 2005–2006 in the Beaufort Sea, Northern Baffin Bay and the Laptev Sea to compare the annual variability of POC fluxes and to evaluate the factors regulating the annual cycle of carbon export over these continental shelves. Annual POC fluxes at 200 m ranged from 1.6 to 5.9 g C m−2 yr−1 with the highest export in Northern Baffin Bay and the lowest export over the Mackenzie Shelf in the Beaufort Sea. Each annual cycle exhibited an increase in POC export a few weeks before, during, or immediately following sea ice melt, but showed different patterns over the remainder of the cycle. Enhanced primary production, discharge of the Lena River, and resuspension events contributed to periods of elevated POC export over the Laptev Sea slope. High POC fluxes in Northern Baffin Bay reflected periods of elevated primary production in the North Water polynya. In the Beaufort Sea sediment resuspension contributed to most of the large export events. Our results suggest that the outer shelf of the Laptev Sea will likely sustain the largest increase in POC export in the next few years due to the large reduction in ice cover and the possible increase in the Lena River discharge. The large differences in forcing among the regions investigated reinforce the importance of monitoring POC fluxes in the different oceanographic regimes that characterize the Arctic shelves to assess the response of the Arctic Ocean carbon cycle to interannual variability and climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号