首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
海平面变化是社会经济发展和科学研究的重要内容.利用1993年1月至2012年12月共20年的TOPEX/Poseidon、Jason-1和Jason-2卫星测高数据,研究中国海海平面的时空变化.首先通过三颗卫星伴飞阶段数据得到三颗卫星之间的逐点海面高系统偏差,进行逐点海面高改正,建立了20年的中国海海面高异常时间序列.分析了中国海海面高异常空间分布,给出了1月到12月月均平均海平面异常的空间变化规律.分析了中国海海面高异常的时变规律,分别给出了年、季度和月的海面上升速率.利用小波分析研究了中国海海面高异常周期变化规律,分别给出了渤海、黄海、东海和南海的海面高变化周期.讨论了ENSO对海面高异常的影响.  相似文献   

2.
南海夏季风爆发与南大洋海温变化之间的联系   总被引:2,自引:1,他引:1       下载免费PDF全文
利用1979-2009年NCEP第二套大气再分析资料和ERSST海温资料,分析南海夏季风爆发时间的年际和年代际变化特征,考察南海夏季风爆发早晚与南大洋海温之间的联系.主要结果为:(1)南海夏季风爆发时间年际和年代际变化明显,1979-1993年与1994-2009年前后两个阶段爆发时间存在阶段性突变;(2)南海夏季风爆发时间与前期冬季(12-1月)印度洋-南大洋(0-80°E,75°S-50°S)海温、春季(2-3月)太平洋-南大洋(170°E -80°W,75°S-50°S)海温都存在正相关关系,当前期冬、春季南大洋海温偏低(高)时,南海夏季风爆发偏早(晚).南大洋海温信号,无论是年际还是年代际变化,都对南海夏季风爆发具有一定的预测指示作用;(3)南大洋海温异常通过海气相互作用和大气遥相关影响南海夏季风爆发的迟早.当南大洋海温异常偏低(偏高)时,冬季南极涛动偏强(偏弱),同时通过遥相关作用使热带印度洋-西太平洋地区位势高度偏低(偏高)、纬向风加强(减弱),热带大气这种环流异常一直维持到春季4、5月份,位势高度和纬向风异常范围逐步向北扩展并伴随索马里越赤道气流的加强(减弱),从而为南海夏季风爆发偏早(偏晚)提供有利的环流条件.初步分析认为,热带大气环流对南大洋海气相互作用的遥响应与半球际大气质量重新分布引起的南北涛动有关.  相似文献   

3.
Based on coastal tide level, satellite altimetry, and sea surface temperature (SST) data of offshore areas of China’s coast and the equatorial Pacific Ocean, the regional characteristics of the effects of the El Niño-Southern Oscillation (ENSO) on the sea level in the China Sea were investigated. Singular value decomposition results show a significant teleconnection between the sea level in the China Sea and the SST of the tropical Pacific Ocean; the correlation coefficient decreases from south to north. Data from tide gauges along China’s coast show that the seasonal sea-level variations are significantly correlated with the ENSO. In addition, China’s coast was divided into three regions based on distinctive regional characteristics. Results obtained show that the annual amplitude of sea level was low during El Niño developing years, and especially so during the El Niño year. The ENSO intensity determined the response intensity of the annual amplitude of the sea level. The response region (amplitude) was relatively large for strong ENSO intensities. Significant oscillation periods at a timescale of 4–7 years existed in the sea level of the three regions. The largest amplitude of oscillation was 1.5 cm, which was the fluctuation with the 7-year period in the South China Sea. The largest amplitude of oscillation in the East China Sea was about 1.3 cm. The amplitude of oscillation with the 6-year period in the Bohai Sea and Yellow Sea was the smallest (less than 1 cm).  相似文献   

4.
The relationship between the sea ice cover in the North Pacific and the typhoon frequency has been studied in this paper. It follows that the index for the sea ice cover in the North Pacific (ISA) both in December-January-February (DJF) and in March-April-May (MAM) is negatively correlated with annual typhoon number over the western North Pacific (TNWNP) during 1965―2004, with correlation coeffi-cients of -0.42 and -0.49 respectively (above 99% significant level). Large sea ice cover in the North Pacific tends to decrease TNWNP. Positive ISA (MAM) is associated with the tropical circulation and SST anomalies in the North Pacific, which may lead to unfavorable dynamic and thermal conditions for typhoon genesis over WNP from June to October (JJASO). The variability of the atmospheric circula-tion over the North Pacific, associated with the ISA anomaly in MAM is connected to the tropical at-mospheric circulation variability in MAM via the teleconnection wave train. Besides, as the tropical circulation has strong seasonal persistency from the MAM to JJASO, thus, the ISA in MAM-related variability of the tropical atmospheric circulation as well as the SST can affect the typhoon activity over the western North Pacific.  相似文献   

5.
In this paper, the features and possible causes of sea surface temperature(SST) biases over the Northwest Pacific are investigated based on a mixed-layer heat budget analysis in 21 coupled general circulation models(CGCMs) from phase 5 of the Coupled Model Inter-comparison Project(CMIP5). Most CMIP5 models show cold SST biases throughout the year over the Northwest Pacific. The largest biases appear during summer, and the smallest biases occur during winter. These cold SST biases are seen at the basin scale and are mainly located in the inner region of the low and mid-latitudes. According to the mixed-layer heat budget analysis, overestimation of upward net sea surface heat fluxes associated with atmospheric processes are primarily responsible for the cold SST biases. Among the different components of surface heat fluxes, overestimated upward latent heat fluxes induced by the excessively strong surface winds contribute the most to the cold SST biases during the spring, autumn, and winter seasons. Conversely, during the summer, overestimated upward latent heat fluxes and underestimated downward solar radiations at the sea surface are equally important. Further analysis suggests that the overly strong surface winds over the Northwest Pacific during winter and spring are associated with excessive precipitation over the Maritime Continent region,whereas those occurring during summer and autumn are associated with the excessive northward extension of the intertropical convergence zone(ITCZ). The excessive precipitation over the Maritime Continent region and the biases in the simulated ITCZ induce anomalous northeasterlies, which are in favor of enhancing low-level winds over the North Pacific. The enhanced surface wind increases the sea surface evaporation, which contributes to the excessive upward latent heat fluxes. Thus, the SST over the Northwest Pacific cools.  相似文献   

6.
Long-term and high-resolution (∼1.2 km) satellite-derived sea surface temperature (SST) fields of a monthly mean time series for the 1985–1999 period, and a daily climatology have been calculated for the North West Atlantic Ocean. The SST fields extend from 78°W to 41°W in longitude, and 30°N to 56°N in latitude, encompassing the region off Cape Hatteras, North Carolina, to the southern Labrador Sea. The monthly mean time series, consists of 180 cloud-masked monthly mean SST fields, derived from a full-resolution NOAA/NASA Pathfinder SST data set for the 1985–1999 period. The satellite-derived monthly mean SST fields, as compared with in situ monthly mean near-surface ocean temperatures from buoys located in the western North Atlantic, yield an overall RMS difference of 1.15 °C. The daily climatology, which consists of 365 fields, was derived by applying a least-squares harmonic regression technique on the monthly mean SST time series for the full study period. The monthly mean and daily climatological SST fields will be useful for studying inter-annual variability related to climate variability of SST over the study domain.  相似文献   

7.
中国近海海平面变化特征分析   总被引:6,自引:1,他引:5       下载免费PDF全文
用经验正交函数分析方法,对中国近海14年多的测高海平面同化格网资料进行分析,给出了黄海、东海和南海各海平面变化主要主成分的空间变化和时间变化特征.用标准Morlet小波变换方法分析了各海区主成分时间变化序列的时频特征.分析结果表明,各主成分的空间分布特征与当地的海洋环流或洋流特征相对应.时频分析结果显示,中国近海海平面变化的显著周期主要为年周期信号.其次,黄海和东海还显示准2个月的非稳态信号,东海和南海具有较显著的半年周期信号,东海半年周期信号的能量不稳定.此外,在南海及台湾东部海域,首次发现存在较为显著的准540天周期信号,其动力学机制目前尚不明确.坎门和西沙验潮站资料的时频特征分析也验证了该信号的存在.最后本文给出了中国近海海平面在1993~2007年间的平均上升速率和其区域分布特征.  相似文献   

8.
A recently extended and spatially rich English Channel sea level dataset has been used to evaluate changes in extreme still water levels throughout the 20th century. Sea level records from 18 tide gauges have been rigorously checked for errors and split into mean sea level, tidal and non-tidal components. These components and the interaction between surge and tide have been analysed separately for significant trends before determining changes in extreme sea level. Mean sea level is rising at 0.8–2.3 mm/year, depending on location. There is a small increase (0.1–0.3 mm/year) in the annual mean high water of astronomical tidal origin, relative to mean sea level, and an increase (0.2–0.6 mm/year) in annual mean tidal range. There is considerable intra- and inter-decadal variability in surge intensity with the strongest intensity in the late 1950s. Storm surges show a statistically significant weak negative correlation to the winter North Atlantic Oscillation index throughout the Channel and a stronger significant positive correlation at the boundary with the southern North Sea. Tide–surge interactions increase eastward along the English Channel, but no significant long-term changes in the distribution of tide–surge interaction are evident. In conclusion, extreme sea levels increased at all of the 18 sites, but at rates not statistically different from that observed in mean sea level.  相似文献   

9.
应用美国宇航局Goddard地球观测系统四维资料同化系统、计算了我国大陆地区和近海海域1998年各月月平均能量收支各项和10m气温、比湿及风矢量的地理分布特征. 模式计算结果表明,地表短波净辐射最强出现在夏季(7月)新疆和西藏中部地区,高值中心区可达275W/m2,在黄海东海海域春季(4月)最大,其值为250W/m2左右. 地表长波净辐射最强出现在夏季(7月)我国西北地区,中心区值为125W/m2,我国近海海域在冬季(1月)最强,其值为75-100W/m2. 我国近海海面,冬季(1月)潜热通量值高于一般月份,中心区值可达250W/m2,夏季我国大陆西南、华北和东北一带为潜热通量高值区,其值为125W/m2. 月平均能量收支计算结果显示,在黄海、东海海域冬季(1月)净通量为海洋向大气输送,夏季(7月)则反之,新疆和西藏高原中部夏季为净通量正值区. 综合温度、湿度和风矢量场分布发现,夏季从南海向华东地区,孟加拉湾向印度次大陆有明显的水汽平流输送,西藏西南部也有来自西南方向的水汽输送.  相似文献   

10.
渤海、黄海和东海等中国东部海域在地质构造上是大陆向海的自然延伸,海域内的构造方向与大陆一致,均为NNE-NE向,但属于不同的二级大地构造单元,渤海和北黄海属于华北地块,南黄海属于扬子地块,东海属于华南地块.由于各地块与现今活动板块边界位置不同,构造与地震活动性差异较大,渤海和北黄海地区地震活动主要受印度板块与欧亚板块碰...  相似文献   

11.
冯伟  钟敏  江敏  许厚泽 《地球物理学报》2010,53(7):1562-1570
本文在考虑洋底压力变化的情况下,利用2003~2008年融合多颗卫星的测高资料估计了全球和中国近海的海水热含量变化.顾及洋底压力(OBP)变化以及热膨胀系数随海水深度变化的影响,提出的改进方法提高了对中高纬度地区热含量变化的估算精度.在OBP变化较为明显的北太平洋区域I(30°N~50°N,170°E~190°E)、南印度洋区域II(40°S~60°S,100°E~120°E)和南太平洋区域III(40°S~60°S,100°W~120°W),改进方法的均方差较传统方法分别降低了16.3%、60.5%和48.4%.同时研究表明,卫星测高的精度以及盐度变化是影响中高纬度地区热含量估计精度的重要因素.在中国近海地区,东海和黄海的热含量主要表现为周年变化;南海区域的热含量除周年变化外,还存在半周年项和年际变化项,且南海的海水热含量近年有增加的趋势.  相似文献   

12.
The impact on a large-scale sea level pressure field to the regional mean sea level changes of the German Bight is analysed. A multiple linear regression together with an empirical orthogonal function analysis is used to describe the relationship between the sea level pressure and the regional mean sea level considering the time period 1924–2001. Both, the part of the variability and of the long-term trend that can be associated with changes in the sea level pressure, are investigated. Considering the whole time period, this regression explains 58?% of the variance and 33?% of the long-term trend of the regional mean sea level. The index of agreement between the regression result and the observed time series is 0.82. As a proxy for large-scale mean sea level changes, the mean sea level of the North East Atlantic is subsequently introduced as an additional predictor. This further improves the results. For that case, the regression explains 74?% of the variance and 87?% of the linear trend. The index of agreement rises to 0.92. These results suggest that the sea level pressure mainly accounts for the inter-annual variability and parts of the long-term trend of regional mean sea level in the German Bight while large-scale sea level changes in the North East Atlantic account for another considerable fraction of the observed long-term trend. Sea level pressure effects and the mean sea level of the North East Atlantic provide thus significant contributions to regional sea level rise and variability. When future developments are considered, scenarios for their future long-term trends thus need to be comprised in order to provide reliable estimates of potential future long-term changes of mean sea level in the German Bight.  相似文献   

13.
Sea fog is typically formed and developed under a set of favorable environmental conditions, which are associated with the station pressure changes, sea level pressure, winds, temperature, water vapor supply, and sea surface temperature. Understanding of these environmental factors during the evolution of a sea fog episode is crucial for forecasting the occurrence and severity of sea fogs over the ocean and adjacent coastal areas. In this study, the large-scale environment variability of six fog events over the Yellow Sea was investigated. It was realized in the present study that the northwest Pacific Ocean high (NPH) is vital to fog formation over the Yellow Sea. In our study, six fog cases can be basically divided into two types: (1) pressure-weakening type, (2) pressure-strengthening type. The former type happened in spring and the latter type in summer. Prevailing southerly winds, accompanied with the well-positioned NPH, may supply a large amount of warm water vapor for the fog formation and maintenance. The intensity of the air temperature inversion is stronger in summer cases than that in spring ones. The wind direction change from south to north and the unstable lower atmosphere may lead to fog’s dissipation. This study may provide a comprehensive understanding of sea fog’s onset, maintenance, and dissipation over the Yellow Sea.  相似文献   

14.
Previous studies have demonstrated that the low-frequency sea surface temperature (SST) variability in the Yellow Sea and East China Sea (YECS) is linked to large-scale climate variability, but explanations on the mechanisms vary. This study examines the low-frequency variability and trends of some atmospheric and oceanic variables to discuss their different effects on the YECS warming. The increasing temperature trend is also observed at a hydrographic section transecting the Kuroshio. The increasing rate of ocean temperature decreases with depth, which might result in an increase in vertical stratification and a decrease in vertical mixing, and thus plays a positive role on the YECS warming. The surface net heat flux (downward positive) displays a decreasing trend, which is possibly a result of the YECS warming, and, in turn, inhibits it. Wind speeds show different trends in different datasets, such that its role in the YECS warming is uncertain. The trends in wind stress divergence and curl have large uncertainties, so their effects on SST warming are still unclear. The Kuroshio heat transport calculated in this study, displays no significantly increasing trend, so is an unlikely explanation for the SST warming. Limited by sparse ocean observations, sophisticated assimilative climate models are still needed to unravel the mechanisms behind the YECS warming.  相似文献   

15.
Thermal and optical remote sensing data were used to investigate the spatial and temporal distribution of sea surface temperature (SST) and of suspended particulate matter (SPM) in the southern North Sea. Monthly SST composites showed pronounced seasonal warming of the southern North Sea and delineated the English coastal and continental coastal waters. The East-Anglia Plume is the dominant feature of the English coastal waters in the winter and autumn SPM composites, and the Rhine region of freshwater influence (ROFI), including the Flemish Banks, is the dominant feature of the continental waters. These mesoscale spatial structures are also influenced by the evolution of fronts, such as the seasonal front separating well-mixed water in the southern Bight, from the seasonally stratified central North Sea waters. A harmonic analysis of the SST and SPM images showed pronounced seasonal variability, as well as spring-neap variations in the level of tidal mixing in the East Anglia Plume, the Rhine ROFI and central North Sea. The harmonic analysis indicates the important role played by the local meteorology and tides in governing the SST and near-surface SPM concentrations in the southern North Sea. In the summer, thermal stratification affects the visibility of SPM to satellite sensors in the waters to the north of the Flamborough and Frisian Fronts. Haline stratification plays an important role in the visibility of SPM in the Rhine ROFI throughout the year. When stratified, both regions typically exhibit low surface SPM values. A numerical model study, together with the harmonic analysis, highlights the importance of tides and waves in controlling the stratification in the southern North Sea and hence the visibility of SPM.  相似文献   

16.
赤道MJO活动对南海夏季风爆发的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
利用1979—2013年NCEP/DOE再分析资料的大气多要素日平均资料、美国NOAA日平均向外长波辐射资料和ERSST月平均海温资料,分析赤道大气季节内振荡(简称MJO)活动对南海夏季风爆发的影响及其与热带海温信号等的协同作用.结果表明,赤道MJO活动与南海夏季风爆发密切联系,MJO的湿位相(即对流活跃位相)处于西太平洋位相时,有利于南海夏季风爆发,而MJO湿位相处于印度洋位相时,则不利于南海夏季风爆发.赤道MJO活动影响南海夏季风爆发的物理过程主要是大气对热源响应的结果,当MJO湿位相处于西太平洋位相时,一方面热带西太平洋对流加强使潜热释放增加,导致处于热源西北侧的南海—西北太平洋地区对流层低层由于Rossby响应产生气旋性环流异常,气旋性环流异常则有利于西太平洋副热带高压的东退,另一方面菲律宾附近热源促进对流层高层南亚高压在中南半岛和南海北部的建立,使南海地区高层为偏东风,从而有利于南海夏季风建立;当湿位相MJO处于印度洋位相时,热带西太平洋对流减弱转为大气冷源,情况基本相反,不利于南海夏季风建立.MJO活动、孟加拉湾气旋性环流与年际尺度海温变化协同作用,共同对南海夏季风爆发迟早产生影响,近35年南海夏季风爆发时间与海温信号不一致的年份,基本上是由于季节转换期间的MJO活动特征及孟加拉湾气旋性环流是否形成而造成,因此三者综合考虑对于提高季风爆发时间预测水平具有重要意义.  相似文献   

17.
Eight years of AVHRR-derived sea surface temperature (SST) and SeaWiFS-derived surface chlorophyll (Chl) data (1998–2005) are used to investigate key processes affecting the spatial and temporal variability of the two parameters in the Aegean Sea. Seasonal mean SST and Chl maps are constructed using daily data to study seasonal dynamics whereas empirical orthogonal function (EOF) and correlational analysis is applied to the 8-day composite SST and Chl anomaly time-series in order to study the variability and co-variability of the two parameters from subseasonal to interannual time-scales. The seasonal mean fields show that Black Sea cold and chlorophyll-rich waters enter through the Dardanelles Strait and they are accumulated in the north-eastern part of the Aegean Sea, steered by the Samothraki anticyclone. Large chlorophyll concentrations are encountered in the hydrological front off the Dardanelles Strait as well as in coastal areas affected by large riverine/anthropogenic nutrient loads. The SST seasonal mean patterns reveal strong cooling that is associated with upwelling along the eastern boundary of the basin during summer due to strong northerly winds, a process which is not present in the surface chlorophyll climatology. The Chl dataset presents much stronger sub-seasonal variability than SST, with large variations in the phase and strength of the phytoplankton seasonal cycles. EOF analysis of the anomaly time-series shows that SST non-seasonal variability is controlled by synoptic weather variations and anomalies in the north–south wind-stress component regulating the summer coastal upwelling regime. Mean SST and Chl patterns, and their associated variations, are not closely linked implying that Black Sea and riverine inputs mainly control the intra-annual and interannual variability of the surface chlorophyll in the Aegean Sea rather than mixing and/or upwelling processes.  相似文献   

18.
华南前汛期降水异常与太平洋海表温度异常的关系   总被引:9,自引:0,他引:9       下载免费PDF全文
利用近50年华南地区站点逐日降水观测资料和全球大气、海洋分析资料,分析了华南前汛期降水异常的变化特征及其与太平洋海温异常的联系.结果表明,近50年来华南前汛期降水总体呈现减少趋势.影响华南前汛期降水异常的太平洋海温异常型是一个类似于ENSO的西太平洋暖池模态,即显著海温异常区域位于西太平洋暖池.西太平洋暖池区域(120°E-180°E,20°S-20°N)前期冬季海温异常同华南前汛期降水存在显著的负相关关系,是具有预报意义的海温关键区.该关键区海温异常影响华南前汛期降水的可能物理过程是:当前期冬季暖池异常偏暖时,菲律宾周围地区对流活动加强,导致Walker环流及东亚太平洋中低纬局地Hadley环流增强;该异常通过影响东亚-太平洋遥相关波列,使前汛期期间西太平洋副高加强西伸,脊线位置偏北,同时副热带西风急流减弱北退.随着Hadley环流上升支的增强,东亚副热带地区下沉运动也增强了,华南地区对流活动受到抑制.而且由于副高的增强,经过其北侧向华南地区的西南水汽输送辐合也减弱了,因此前汛期降水偏少.冷海温年的情形则相反,华南前汛期降水偏多.近50年来华南前汛期降水总体呈现趋势性减少正是由于前冬西太平洋暖池趋势性增暖所致.  相似文献   

19.
It has long been recognized that the circulation in the East China Sea (ECS) and Japan/East Sea (JES) is closely related with that in Pacific, especially with the Kuroshio (e.g., Nitani[1], Hi-daka[2]). Based on current measurements in the Taiwan Strait a…  相似文献   

20.
Using the monthly mean NCEP/NCAR reanalysis and NOAA Extended Reconstructed sea surface temperature (SST) datasets, strong correlations between the SST anomalies in the North Pacific and calculated three-dimensional Eliassen–Palm vertical fluxes are indicated in December 1958–1976 and 1992–2006. These correlations between the interannual variations of the SST anomalies and the penetration of planetary waves into the stratosphere are much less during the decadal sub-period 1976–1992 in the positive phase of the Pacific Decadal Oscillation (PDO) and the decadal cold SST anomalies in the North Pacific. Interannual variations of the polar jet in the lower stratosphere in January are strongly associated with SST anomalies in the Aleutian Low region in December for the years with positive PDO index. This sub-period corresponds well with that of the violation of the Holton–Tan relationship between the equatorial Quasi-Beinnial Oscillation (QBO) and the stratospheric circulation in the extra-tropics. It is shown that interannual and interdecadal variations of stratospheric dynamics, including stratospheric warming occurrences in January, depend strongly on changes of the upward propagation of planetary waves from the troposphere to the stratosphere over North Eurasia in preceding December. These findings give evidences of a large impact of the decadal SST variations in the North Pacific on wave activity in early winter due to changes of thermal excitation of planetary waves during distinct decadal periods. Possible causes of the decadal violation of the Holton–Tan relationship, its relation to the PDO and an influence of the 11-year solar cycle on the stratosphere are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号