首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyzed species composition and abundance of macrophytes, diatoms and non-diatom benthic algae, water chemistry and habitat structure of 24 river sites in Poland, in order to better understand which parameters structure macrophyte and benthic algae communities. Community patterns for macrophytes and diatoms are most closely related, while macrophytes and non-diatom benthic algae have the weakest relationship. Environmental parameters best explaining community patterns are channel substrate parameters for non-diatom benthic algae, and a combination of channel substrate and river bank characteristics for submerged macrophytes, emergent macrophytes and diatoms. Among the organism groups investigated, the diatom community pattern is best correlated to the environmental data similarity matrix. We hypothesize that the results can be explained by the shorter generation time of diatoms compared to macrophytes, and by a higher dispersal rate of diatoms compared to macrophytes and non-diatom benthic algae. This has several practical consequences for bioindication: (1) Diatoms are usually the organism group most closely following environmental parameters, for both increasing and decreasing impact. (2) Since the biotic indices developed for the Water Framework Directive are meant to primarily indicate ecological changes, not water chemistry, the nature of diatoms to closely reflect water chemistry is not necessarily advantageous. (3) The applicability of macrophyte and probably also non-diatom benthic algae indices is more locally restricted, while diatom indices are applicable to greater areas. (4) In ecosystems which are subject to changing environmental conditions, differences in biotic indices between macrophytes, diatoms and non-diatom benthic algae are to be expected. These differences could provide information relating to ecosystem stability. (5) In stable ecosystems, analyzing one of the three organism groups “diatoms”, “non-diatom benthic algae” and “macrophytes” will be sufficient to characterize the quality element “macrophytes and phytobenthos”, as required by the Water Framework Directive. However, in ecosystems subject to increasing pressure, macrophytes likely will have a tendency to indicate “too good”, while in ecosystems subject to decreasing pressure, diatoms will have a tendency to indicate “too good”.  相似文献   

2.
3.
Using data from 31 ponds, we investigated the importance of environmental (e.g. habitat complexity, nutrient content, pH) and biotic factors (i.e. fish predation) on the spatial patterns of planktonic (phytoplankton and zooplankton) and benthic (macroinvertebrates) assemblages. We also evaluated the degree of concordance among assemblages and between the functional and taxonomic composition of assemblages, and test the hypothesis that surrogates of biodiversity (e.g. taxonomic or functional groups) can be used in pond conservation and biomonitoring studies. We found that the spatial patterns of benthic and pelagic assemblages were determined by macrophyte coverage, water quality and, to a lesser extent, fish. However, shifts in the taxonomic and functional composition were not congruent. Moreover, local environmental variation was slightly more important for the taxonomic than the functional composition of assemblages, except for phytoplankton. The degree of concordance among assemblages was also weak, which may be partly due to the fact that species respond individualistically to environmental variation. These findings also suggest that the coupling between benthic and pelagic habitats in flatland ponds is weak, and that the use of surrogate measures or indicator groups in pond conservation studies may not be appropriate.  相似文献   

4.
The Manila clam Ruditapes philippinarum cultivation is an original shellfish farming activity strongly mechanized. In the Chausey archipelago (France) this activity settles on the Lanice conchilega beds, habitat known to host a rich and diversified benthic macrofauna and which is an attractive feeding ground for birds. A first study highlighted that this activity had strong negative effects on the L. conchilega beds and their associated benthic macrofauna. Here we assess the impacts of such an activity on the Eurasian Oystercatcher Haematopus ostralegus for which Chausey is one of the most important national breeding sites and which is also a common species in winter, spring and autumn migrations. We found that Oystercatchers significantly selected the L. conchilega beds to feed and that their spatial distribution was significantly modified after the creation of new clam concessions. In a context of a growing disappearance of pristine coastal ecosystems for the benefit of anthropo-ecosystems, we discuss the problem of the degradation of such benthic habitats with a low resilience which may loose their high functional value.  相似文献   

5.
《Marine pollution bulletin》2014,78(1-2):181-189
The HELCOM Red List biotopes project proposed a Baltic Sea wide classification consisting of six levels: The HELCOM Underwater biotopes/habitats classification system (HELCOM HUB). We present a case study from the south-western Baltic Sea where we tested the applicability of this system. More than 500 sampling stations were analyzed regarding macrozoobenthic communities and their linkage to environmental parameters. Based on the analyses of biotic and abiotic data, 21 groups were assigned to 13 biotopes of the classification. For some biotopes varying states of communities were recognized. Even though not all abiotic parameters are considered directly in the hierarchy of the classification in general, all soft-bottom communities could be allocated to a corresponding biotope. The application of the HELCOM HUB for the south-western Baltic Sea is feasible, in regard to the implementation of the European Marine Strategy Framework Directive as well as the Baltic Sea Action Plan.  相似文献   

6.
Linking the abiotic and biotic traits of ecosystems is a critical step towards understanding their structure and functioning. Here we attempt to determine the connections between the hydrodynamics, benthic landscape and the associated fish communities on the coastal continental shelf off the Balearic Islands (western Mediterranean). Specifically we investigate the role the hydrodynamics play in shaping the benthic landscape, and whether the hydrodynamics affect the composition and structure of demersal fish communities. A realistic numerical model was used to establish the hydrodynamic characteristics of the area. The study area showed high hydrodynamic variability on a medium spatial scale (tens of km) in terms of mean water velocity (ū). Principal component analysis was used to determine the main gradients of macro-epibenthic variability. Redundancy analysis (RDA) was used to model the effect of the hydrodynamics on macro-epibenthic species. RDA was also used to model the effect of the hydrodynamics and macro-epibenthos on the abundance of the associated fish fauna, and on its biomass at a community level using biomass spectra classes. The results showed that the hydrodynamics had a significant influence on the distribution of both macro-epibenthic species and the associated fish species. The latter was also influenced by the macro-epibenthos. Fish size appeared to be a key attribute for the distribution of species across gradients of ū and macro-epibenthic change. Our findings can be applied in ecosystem-based fisheries management, as they show that it is necessary to take into account both the biotic and abiotic traits of the habitats when the habitat use and requirements of the associated species are defined.  相似文献   

7.
Partitioning beta diversity into its two components of spatial turnover and nestedness is a more robust method for checking spatial variability in biological communities than calculating the total beta diversity alone. The relative contribution of spatial turnover and nestedness has been used to test the effects of climatic, environmental, spatial and temporal variables on community composition. In this study, we tested the effects of environmental factors and microhabitat features on total beta diversity and its spatial turnover and nestedness components using a comprehensive dataset of aquatic Heteroptera collected from four types of permanent freshwater habitats (i.e. streams, ponds, rock tanks and reservoirs) in the Western Ghats of India. We observed that communities in all four types of habitats were predominantly shaped by dissimilarity caused due to spatial turnover (>85 %). Each type of habitat showed the presence of one or more species uniquely associated with it, which might contribute to the turnover between communities. The abiotic environment (climatic factors, topological factors, soil characteristics and microhabitat features) as well as assemblage structure differed significantly between habitat types. Communities in each type of habitat were affected by different environmental factors, such as precipitation and temperature patterns for streams, altitude and rocky substrate for rock tanks, and soil characteristics and the presence of aquatic macrophytes for ponds and reservoirs. Assemblages observed in the four types of permanent habitats are thus compositionally distinct due to species replacements between local communities, which in turn are strongly influenced by environmental variables. Similar to previous studies, our results show that spatial turnover largely measures the same phenomenon as total beta diversity on a regional scale.  相似文献   

8.
Rivers and streams are unstable environments in which estimation of energetic costs and benefits of habitat utilization are the daunting exercise. Empirical models of food consumption may be used to estimate energetic benefits based on abiotic and biotic conditions in patches of habitat. We performed thirty daily surveys of fish stomach contents to estimate the consumption rates for juvenile Atlantic salmon (Salmo salar) in a river. The data were used to assess whether variations of daily consumption rates existed within the river, and to develop empirical models that could predict fish consumption rates using abiotic and biotic conditions as independent variables. Daily consumption rates based on stomach content surveys in the field (range: 0.15–1.49 g dry/(100 g wet day)) varied significantly depending on habitat patch (500–1000 m2), summer period, and sampling year. Variables such as water temperature, numerical density of salmon, water depth and moon phase explained 83–93% of the variations in daily food consumption rates. Daily consumption rates tended to increase with water temperature and depth, and were also higher near a full moon. However, they tended to decrease with the numerical density of salmon. Our work suggests that empirical models based on independent variables that are relatively simple to estimate in the field may be developed to predict fish consumption rates in different habitat patches in a river.  相似文献   

9.
Image classification approaches are widely used in mapping vegetation on remotely sensed images. Vegetation assemblages are equivalent to habitats. Whereas sub-pixel classification approaches potentially can produce more realistic, homogenous habitat maps, pixel-based hard classifier approaches often result in non-homogenous habitat zones. This salt-and-pepper habitat mapping is particularly a challenge on images of savannas, given the characteristic patchy texture of scattered trees and grass. Image segmentation techniques offer possibilities for homogenous habitat classification. This study aimed at establishing the extent to which established, field surveyed and geology-related vegetation types in South Africa’s Kruger National Park (KNP) can be reproduced using image segmentation. Rain season Landsat TM images were used, selected to coincide with the peak in vegetation productivity, which was deemed the time of year when discrimination between key habitats in KNP is most likely to be successful. The multiresolution segmentation mode in eCognition 5.0 was employed, object classification accomplished using the nearest neighbour (NN) classifier, using object texture and training area mean values in the NN feature space.Compared to delineations of the vegetation types of KNP on a digital map of the vegetation zones that was tested, image segmentation successfully mapped the zones (overall accuracy 85.3%, K^ = 82.7%) despite slight shifts in the location of vegetation zone boundaries. Maximum likelihood classification (MLC) of the same images was only 37% accurate (K^ = 24.2%). Whereas the vegetation zones resulting from MLC were non-homogenous, with considerable spectral confusion among the vegetation zones, image segmentation produced more homogenous vegetation zones, comparably more useful for conservation management, because realistic and meaningful habitat maps are important in biodiversity conservation as input data upon which to base management decisions. Image segmentation appears to be a useful approach in mapping savanna vegetation.  相似文献   

10.
For more than a decade, habitat mapping using biotopes (in‐channel hydraulically‐defined habitats) has underpinned aquatic conservation in the UK through (a) providing baseline information on system complexity and (b) allowing environmental and ecological change to be monitored and evaluated. The traditional method used is the subjective river habitat or corridor survey. This has recently been revised to include the floodplain via GeoRHS, but issues still exist concerning development of a national database due to the labour intensive nature of the data collection, subjectivity issues between samplers, temporal changes, the fuzzy nature of perceived habitats and habitat boundaries. This paper takes an innovative approach to biotope definition using high resolution spatial data to define water surface roughness for two representative reaches of the River South Tyne, Cumbria, and the River Rede, Northumberland, UK. Data was collected using a terrestrial laser scanner (TLS) and hydraulic variability simply expressed through assigning a local standard deviation value to a set of adjacent water surface values. Statistical linkage of these data with biotope locations defined visually in the field allowed complete mapping of the surveyed reach defining habitat and biotope areas to the fine scale resolution of the TLS data. Despite issues of data loss due to absorption and transmission through the water, the reflected signal generated an extremely detailed and objective map of the water surface roughness, which may be compared with known biotope locations as defined by visual identification in the field. The TLS accuracy achieved in the present study is comparable with those obtained using hyperspectral imagery: with 84% of the pool/glide/marginal deadwater amalgamated biotope, 88% of riffles, 57% of runs and 50% of the amalgamated cascade/rapid biotope successfully plotted. It is clear from this exercise that biotope distribution is more complex than previously mapped using subjective techniques, and based upon the water surface roughness delimiters presented in this study, the amalgamation of pools with glides and marginal deadwaters, riffles with unbroken standing waves, and cascades with rapids, is proposed. Copyright © 2010 John Wiley & Sons, Ltd  相似文献   

11.
Acoustic diversity charts were produced for a Portuguese soft bottom mid-shelf area, depth from 30 to 90 m, using a single-beam echo sounder coupled to the acoustic systems QTC VIEW Series IV and V. A similar acoustic pattern was identified by both systems, which, after ground-truth interpretation based in available sediment and biological data, established a preliminary spatial distribution model of the benthic habitats in this coastal area. However, some of the acoustic areas were interpreted using one or very few sediment and benthic samples. A specific validation survey was conducted a posteriori, in which the positioning of the sediment and benthic community sampling sites was based on the acoustic diversity previously identified. The results clearly confirm the benthic habitats distribution model suggested by the acoustic method, indicating a high potential for the use of such approach in the identification and mapping of large-scale soft bottom coastal shelf habitat diversity.  相似文献   

12.
A key ecological role hypothesized for the hyporheic zone is as a refugium that promotes survival of benthic invertebrates during adverse conditions in the surface stream. Many studies have investigated use of the hyporheic refugium during hydrological extremes (spates and streambed drying), and recent research has linked an increase in the abundance of benthic invertebrates within hyporheic sediments to increasing biotic interactions during flow recession in a temporary stream. This study examined spatial variability in the refugial capacity of the hyporheic zone in two groundwater-dominated streams in which flow permanence varied over small areas. Two non-insect taxa, Gammarus pulex and Polycelis spp. were common to both streams and were investigated in detail. Hydrological conditions in both streams comprised a four-month period of flow recession and low flows, accompanied by reductions in water depth and wetted width. Consequent declines in submerged benthic habitat availability were associated with increases in population densities of mobile benthic taxa, in particular G. pulex. The reduction in the spatial extent of the hyporheic zone was minimal, and this habitat was therefore a potential refugium from increasing biotic interactions in the benthic sediments. Concurrent increases in the hyporheic abundance and hyporheic proportion of a taxon’s total (benthic + hyporheic) population were considered as evidence of active refugium use. Such evidence was species-specific and site-specific, with refugium use being observed only for G. pulex and at sites dominated by downwelling water. A conceptual model of spatial variability in the refugial capacity of the hyporheic zone during habitat contraction is presented, which highlights the potential importance of the direction of hydrologic exchange.  相似文献   

13.
According to the European Water Framework Directive, the ecological status (ES) of a water body is determined by comparing observation data with undisturbed Reference Conditions (RCs). Defining RCs is crucial when evaluating the ES of a water body as it strongly affects the final outcome of any index application. Identifying RCs by observing real sites is not feasible in many marine environments, such as the Emilia-Romagna coast (Italy, N-Adriatic Sea). We used a statistical approach on a large dataset to derive RCs for the application of the benthic index M-AMBI in this area. We then applied M-AMBI to samples collected along a gradient of presumed environmental disturbance. The results put 14.8% of the Emilia-Romagna samples in “High” ES, 60.2% in “Good”, 23.0% in “Moderate” and 2.0% in “Poor”, showing a spatial gradient of improving quality. These results are in agreement with the extensive ecological knowledge available for this area.  相似文献   

14.
Cross-ecosystem subsidies, such as terrestrial invertebrates and leaf litter falling into water as resources for aquatic communities, can vary across environmental gradients. We examined whether the effect of terrestrial subsidy inputs on benthic invertebrates was mediated by resident coastal cutthroat trout (Oncorhynchus clarki) in two representative streams. We experimentally manipulated the input rates (reduced, ambient) of terrestrial subsidies (terrestrial invertebrates and leaf litter) as well as the presence or absence of cutthroat trout in the two streams. The hypothesis that the reduction of terrestrial subsidies to the stream influences benthic invertebrate assemblages was supported by experimental results. The treatments of terrestrial subsidy reduction and cutthroat trout presence had a significant negative effect on benthic invertebrate community biomass and shredder biomass in East Creek with high natural terrestrial subsidy input and small amount of large wood in channel. In contrast, results from Spring Creek with low subsidy input and large amount of large wood in channel showed that only the terrestrial subsidy reduction significantly reduced the biomass of shredders. The effects of the terrestrial subsidy input and trout predation on benthic invertebrate communities varied between the two streams. Our results indicate that a subsidy effect on benthic communities can vary between nearby streams differing in canopy and habitats. This study, with the major finding of highly context-dependent effects of spatial subsidies, suggests that the interplay of resource subsidies and predators on invertebrate community assemblages can be site-specific and context-dependent on habitat features.  相似文献   

15.
The Adriatic coast of Punta Marina (Ravenna) is protected by 3-km long low crested breakwater structures (LCSs). Through a 3-years long multidisciplinar study, we assessed the impact of such defensive structures on environmental and biological condition. LCSs create pools where conditions are very different from the surrounding nearshore system. Mechanical disturbance by currents and waves varied greatly in intensity and frequency between seaward and landward sides of the structures. Sedimentary budget was positive at the landward side, but it was due to a gain on the seafloor and not on the emerged beach. The budget at seaward was negative. LCSs determine differences in benthic assemblages, alter the seasonal pattern of communities, and modify seasonal fluctuations of animal assemblages. Landward sheltered areas can be seen as “lagoonal island” surrounded by a “sea of marine habitat”. Differences in ecological quality status, obtained through M-AMBI, are due to the sum of these factors.  相似文献   

16.
Distribution of benthic microcrustacean (Crustacea: Cladocera) was investigated with paleolimnological approach by using their fossil surface sediment assemblages within a thermally extreme lake in the Niedere Tauern, Austrian Alps. The results from 20 surface sediment samples suggested that the spatial distribution of chydorids is clearly heterogeneous along the water depth gradient (1.8-6.1 m); Alona quadrangularis dominated in shallow (warm, minerogenic) habitats, Chydorus sphaericus-type succeeded at intermediate depths, and Alona affinis dominated in deep (cold, organic) sites. Apparently, these benthic cladocerans exhibit clear habitat and resource segregation. The distributional patterns revealed local community thresholds at approximately 2.5 and 4.5 m water depths and these thresholds were likely to be forced by variances in habitat quality (minerogenic-organic), food resources (periphyton/detritus), thermal properties (warm-cold), and UV-exposure (high-low). The results emphasize the usability of the paleolimnological approach in distributional investigations and its applicability in providing information on species-environmental relationships for environmental change evaluations and paleoecological interpretations.  相似文献   

17.
Benthic macro-invertebrates are vital components of river ecosystems.The effects of fluvial processes and human activities on the distribution of macro-invertebrates were studied through field investigations and experiment.Sixty-one sampling sites on 31 rivers in China were selected to investigate the structures of macro-invertebrate assemblages.The rivers,according to their fluvial conditions,are classified as streams with a stable channel bed,degrading channel bed,aggrading channel bed,and intensive bed load motion.The structures of macro-invertebrate fauna for the four types of rivers are very different.Stable rivers have a large number of individuals,abundant fauna, and high biodiversity;while the density and taxa richness for degrading rivers are small,and those for aggrading rivers are much less;whereas the ecology of rivers with intensive bed load motion are the worst.This paper proposes that streambed stability is the primary influential factor shaping the structure of benthic macro-invertebrate communities.Organic pollution can obviously result in the decrease of biodiversity,in the simplification of macro-invertebrate structures,and in the distortion of functional feeding group composition.In a river with high total nitrogen content,the relative abundance of collector-gatherers is high,and that of collector-filterers,scrapers,shredders,and predators are low.Scrapers,shredders,and predators disappear in severely polluted rivers.The isolation of aquatic habitat results in a distinct decrease of individual numbers and taxa richness.This result demonstrates that the connectivity of aquatic habitat significantly affects macro-invertebrate assemblages.A practical method to calculate a Habitat Suitability Index(HSI) is proposed,integrating the effects of the primary physical(including biotic and abiotic) and chemical factors.The biodiversity and taxa richness increase non-linearly with HSI.  相似文献   

18.
The European seas are under anthropogenic pressures impacting the state of water quality, benthic habitats and species. The EU Marine Strategy Framework Directive (MSFD) requires the Member States to assess the impacts of pressures and make a programme of measures leading to good environmental status (GES) by 2020. This study presents a method for assessing the quantity and distribution of anthropogenic impacts on benthic habitats in the Baltic Sea by using spatial data of human pressures and benthic habitats. The southern sub-basins were more extensively impacted than the northern sub-basins. Over the entire sea area, deep sea habitats were more impacted than shallower infralittoral and circalittoral habitats. Sand and coarse sediments were the seabed types relatively most impacted in the Baltic Sea scale. A comparison against tentative thresholds for GES showed that in the sub-basin scale only one third of the habitat types was in GES.  相似文献   

19.
Equatorial glacier‐fed streams present unique hydraulic patterns when compared to glacier‐fed observed in temperate regions as the main variability in discharge occurs on a daily basis. To assess how benthic fauna respond to these specific hydraulic conditions, we investigated the relationships between flow regime, hydraulic conditions (boundary Reynolds number, Re*), and macroinvertebrate communities (taxon richness and abundance) in a tropical glacier‐fed stream located in the high Ecuadorian Andes (> 4000 m). Both physical and biotic variables were measured under four discharge conditions (base‐flow and glacial flood pulses of various intensities), at 30 random points, in two sites whose hydraulic conditions were representative to those found in other streams of the study catchment. While daily glacial flood pulses significantly increased hydraulic stress in the benthic habitats (appearance of Re* > 2000), low stress areas still persisted even during extreme flood events (Re* < 500). In contrast to previous research in temperate glacier‐fed streams, taxon richness and abundance were not significantly affected by changes in hydraulic conditions induced by daily glacial flood pulses. However, we found that a few rare taxa, in particular rare ones, preferentially occurred in highly stressed hydraulic habitats. Monte‐Carlo simulations of benthic communities under glacial flood reduction scenarios predicted that taxon richness would be significantly reduced by the loss of high hydraulic stress habitats following glacier shrinking. This pioneer study on the relationship between hydraulic conditions and benthic diversity in an equatorial glacial stream evidenced unknown effects of climate change on singular yet endangered aquatic systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The Pearl River Estuary is among the largest estuaries in the subtropical areas of the world. Along the salinity and turbidity gradient between the freshwater reach of the Pearl River and the marine water of the South China Sea, the spatial and temporal composition and abundance of phytoplankton was examined in relation to physic-chemical variables during the dry and wet seasons of 2009. Water samples for phytoplankton and environmental parameters were collected from 18 stations during two seasons along a transect from upper estuary to estuarine and marine sectors. A total of 162 species belonging to 7 phyla were identified, with diatoms dominated in both seasons while dinoflagellates proliferated in autumn. Two main clusters and three sub-clades under each main cluster corresponding to seasons and water sectors were defined with multivariate analysis (cluster and nMDS). Based on the species composition and abundance of phytoplankton, both seasonal and spatial variability were observed at a significant level (ANOSIM: season effect, R=0.896, P<0.01; station effect, R=0.463, P<0.01). The correlation analysis between biotic and abiotic variables indicated that instead of the “proverbial” anthropogenic nutrients loading and salinity gradient, the best 2-variable combination (temperature and turbidity) showed a significant effect on the pattern of phytoplankton assemblages (ρw=0.49, BIOENV analysis) between wet and dry seasons in the Pearl River Estuary. This result suggests that physical disturbance either natural or manmade is a more important factor in regulating the phytoplankton community structure within the hydrologically distinct zone of estuaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号