首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spatio-temporal variability of submesoscale eddies off southern San Diego is investigated with two-year observations of subinertial surface currents [O(1) m depth] derived from shore-based high-frequency radars. The kinematic and dynamic quantities — velocity potential, stream function, divergence, vorticity, and deformation rates — are directly estimated from radial velocity maps using optimal interpolation. For eddy detection, the winding-angle approach based on flow geometry is applied to the calculated stream function. A cluster of nearly enclosed streamlines with persistent vorticity in time is identified as an eddy. About 700 eddies were detected for each rotation (clockwise and counter-clockwise). The two rotations show similar statistics with diameters in the range of 5–25 km and Rossby number of 0.2–2. They persist for 1–7 days with weak seasonality and migrate with a translation speed of 4–15 cm s−1 advected by background currents. The horizontal structure of eddies exhibits nearly symmetric tangential velocity with a maximum at the defined radius of the eddy, non-zero radial velocity due to background flows, and Gaussian vorticity with the highest value at the center. In contrast divergence has no consistent spatial shape. Two episodic events are presented with other in situ data (subsurface current and temperature profiles, and local winds) as an example of frontal-scale secondary circulation associated with drifting submesoscale eddies.  相似文献   

2.
Effects of mesoscale eddies on the marine ecosystem in the Kuroshio Extension (KE) region are investigated using an eddy-resolving coupled physical-biological model. The model captures the seasonal and intra-seasonal variability of chlorophyll distribution associated with the mesoscale eddies, front variability, Kuroshio meanders, and upwelling. The model also reproduces the observed interannual variability of sea surface height anomaly (SSHA) in the KE region along a zonal band of 32–34°N from 2002 to 2006. The distribution of high surface chlorophyll corresponds to low SSHA. Cyclonic eddies are found to detach from the KE jet near 150°E and 158°E and propagate westward. The westward propagating cyclonic eddies lift the nutrient-rich thermocline into the euphotic zone and maintain high levels of chlorophyll in summer. In the subsurface layer, the pattern in chlorophyll is influenced by both lateral and vertical advection. In winter, convection inside the eddy entrains high levels of nutrients into the mixed layer, increasing production, and resulting in high chlorophyll concentration throughout the surface mixed layer. There is significant interannual variability in both the cyclonic eddy activity and the surface phytoplankton bloom south of the KE jet, although whether or not there is a causal link is unclear.  相似文献   

3.
Observations are presented of currents, hydrography and turbulence in a jet-type tidally forced fjord in Svalbard. The fjord was ice covered at the time of the experiment in early spring 2004. Turbulence measurements were conducted by both moored instruments within the uppermost 5 m below the ice and a microstructure profiler covering 3–60 m at 75 m depth. Tidal choking at the mouth of the fjord induces a tidal jet advecting relatively warmer water past the measurement site and dominating the variability in hydrography. While there was no strong correlation with the observed hydrography or mixing and the phase of the semidiurnal tidal cycle, the mean structure in dissipation of turbulent kinetic energy, work done under the ice and the mixing in the water column correlated with the current when conditionally sampled for tidal jet events. Observed levels of dissipation of turbulent kinetic energy per unit mass, 1.1×10−7 W kg−1, and eddy diffusivity, 7.3×10−4 m2 s−1, were comparable to direct measurements at other coastal sites and shelves with rough topography and strong forcing. During spring tides, an average upward heat flux of 5 W m−2 in the under-ice boundary layer was observed. Instantaneous (1 h averaged) large heat flux events were correlated with periods of large inflow, hence elevated heat fluxes were associated with the tidal jet and its heat content. Vertical heat fluxes are derived from shear-probe measurements by employing a novel model for eddy diffusivity [Shih et al., 2005. Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations. Journal of Fluid Mechanics 525, 193–214]. When compared to the direct heat flux measurements using the eddy correlation method at 5 m below the ice, the upper 4–6 m averaged heat flux estimates from the microstructure profiler agreed with the direct measurements to within 10%. During the experiment water column was stably, but weakly, stratified. Destabilizing buoyancy fluxes recorded close to the ice were absent at 5 m below the ice, and overall, turbulence production was dominated by shear. A scaling for dissipation employing production by both stress and buoyancy [Lombardo and Gregg, 1989. Similarity scaling of viscous and thermal dissipation in a convecting boundary layer. Journal of Geophysical Research 94, 6273–6284] was found to be appropriate for the under-ice boundary layer.  相似文献   

4.
Pramanik  Saikat  Sil  Sourav  Mandal  Samiran  Dey  Dipanjan  Shee  Abhijit 《Ocean Dynamics》2019,69(11):1253-1271

Role of equatorial forcing on the thermocline variability in the Bay of Bengal (BoB) during positive and negative phases of the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO) was investigated using the Regional Ocean Modeling System (ROMS) simulations during 1988 to 2015. Two numerical experiments were carried out for (i) the Indian Ocean Model (IOM) with interannual open boundary conditions and (ii) the BoB Model (BoBM) with climatological boundary conditions. The first mode of Sea Surface Height Anomalies (SSHA) variability showed a west-east dipole nature in both IOM and altimetry observations around 11°N, which was absent in the BoBM. The vertical section of temperature along the same latitude showed a sharp subsurface temperature dipole with a core at ~ 100 m depth. The positive (negative) subsurface temperature anomalies were observed over the whole northeastern BoB during NIOD (PIOD) and LN (EN) composites due to stronger (weaker) second downwelling Kelvin Waves. During the negative phases of IOD and ENSO, the cyclonic eddy on the southwestern BoB strengthened due to intensified southward coastal current along the western BoB and local wind stress. The subsurface temperature dipole was at its peak during October–December (OND) with 1-month lag from IOD and was evident from the Argo observations and other reanalysis datasets as well. A new BoB dipole index (BDI) was defined as the normalized difference of 100-m temperature anomaly and found to be closely related to the frequency of cyclones and the surface chlorophyll-a concentration in the BoB.

  相似文献   

5.
The Bay of Bengal (BoB) is a distinct oceanic region for mesoscale oceanic eddies. The sea level anomaly from the Archiving, Validation, and Interpretation of Satellite Oceanographic (AVISO) help to identify an unusual anti-cyclonic eddy (ACE) over head BoB during May–July 2014. Two Indian moored buoys (BD08 and BD09) located over this region aided to study the subsurface thermohaline structures of the ACE. Compared to no-eddy environment, the temperature and salinity showed an increment of ~?3–4 °C and ~?1–2 PSU, respectively, during the ACE life period. The temperature and depth of the isothermal layer at genesis (peak) stages are increased to ~?30 °C (~?30.7 °C) and ~?20 m (30 m) when compared with no-eddy conditions (28.2 °C and 10 m). The thermocline depth is deepened to 75 m at the peak stage, while it is 50 m in no-eddy condition. A temperature difference of 3 °C between no-eddy and peak stages of ACE is observed up to 50 m. The ocean heat content (OHC) at BD08 (BD09) during genesis and peak stages has increased by ~?72% (~?50%) and ~?247% (~?181%), respectively, when compared with no-eddy conditions. Moreover, the MOHC also shows a similar increment of ~?125% (~?123%) and ~?258% (~?284%), respectively. A noticeable influence is seen in turbulent fluxes and lower atmospheric variables during eddy life. This study highlights the capability of moored buoys in understanding the subsurface thermohaline features of the eddies over northern BoB.  相似文献   

6.
Maps of satellite-derived estimates of monthly averaged chlorophyll a concentration over the northern West Florida Shelf show interannual variations concentrated near the coastline, but also extending offshore over the shelf in a tongue-like pattern from the Apalachicola River during the late winter and early spring. These anomalies are significantly correlated with interannual variability in the flow rate of the Apalachicola River, which is linked to the precipitation anomalies over the watershed, over a region extending 150–200 km offshore out to roughly the 100 m isobath. This study examines the variability of the Apalachicola River and its impacts on the variability of water properties over the northern West Florida Shelf. A series of numerical model experiments show that episodic wind-driven offshore transport of the Apalachicola River plume is a likely physical mechanism for connecting the variability of the river discharge with oceanic variability over the middle and outer shelf.  相似文献   

7.
海洋中普遍存在的涡旋对全球海洋热、盐通量有重要贡献.一条于2000 年6 月在中美洲鹦鹉湾采集的地震剖面L115 捕获到了一个海水次表层透镜状反射结构.透镜状反射的宽度约 150 km,厚度约500 m,深度从 100 m延伸到约600 m,核心深约200 m.结合和地震采集时间近同步的再分析数据中的流速和海水温度数据...  相似文献   

8.
The temporal variability of the physical and chemical conditions of coastal waters off Ensenada, Baja California (Mexico) was characterized. A historical analysis was made based on 11 years (1998–2008) of temperature and salinity data records measured quarterly by IMECOCAL, along a transect perpendicular to the coast (CalCOFI line 100). Moreover, the physical and chemical conditions at a coastal monitoring observatory called station ENSENADA were described using a 2-year data series (October 2006–November 2008) obtained with improved temporal resolution. The historical analysis of line 100 showed marked seasonal variability in the thermohaline conditions associated with fluctuations in the flow of the equatorward California Current and the poleward California Undercurrent, as well as with coastal upwelling events whose magnitude and frequency increase towards spring–summer. Interannual variability was also observed, related to warm and/or cold ENSO phases that modify the characteristics of the water column in this coastal region. The most striking characteristics of the interannual variability at station ENSENADA were La Niña conditions recorded from summer 2007 to mid 2008. During this cold ENSO phase, temperature, salinity, dissolved oxygen, density, and dissolved inorganic carbon data revealed the anomalous presence of subsurface water at the surface layers in spring 2008. Results suggest that the coastal observatory is sensitive to the temporal variability of hydrographic conditions on shelf coastal waters (<50 km) off Ensenada in the northern BC region. Consequently, station ENSENADA would be a good location to high-frequency monitors the oceanographic conditions of the transitional region between tropical/subtropical and subarctic systems of the California Current System.  相似文献   

9.
Phytoplankton biomass, community and size structure, primary production and bacterial production were measured at shelf and continental slope sites near North West Cape, Western Australia (20.5°S–22.5°S) over two summers (October–February 1997–1998 and 1998–1999), and in April 2002. The North West Cape region is characterized by upwelling-favorable, southwesterly winds throughout the summer. Surface outcropping of upwelled water is suppressed by the geostrophic pressure gradients and warm low-density surface waters of the southward flowing Leeuwin Current. Strong El Niño (ENSO) conditions (SOI <0) prevailed through the summer of 1997–1998 which resulted in lower sea levels along the northwestern Australian coast and a weaker Leeuwin Current. La Niña conditions prevailed during the 1998–1999 summer and in April 2002. During the summer of 1997–1998, the North West Cape region was characterized by a shallower thermocline (nutricline), resulting in larger euphotic zone stocks of inorganic nitrogen and silicate over the continental slope. There was evidence for episodic intrusions of upper thermocline waters and the sub-surface chlorophyll maximum onto the outer continental shelf in 1997–1998, but not in 1998–1999. Pronounced differences in phytoplankton biomass, community size structure and productivity were observed between the summers of 1997–1998 and 1998–1999 despite general similarities in irradiance, temperature and wind stress. Phytoplankton primary production and bacterial production were 2- to 4-fold higher during the summer of 1997–1998 than in 1998–1999, while total phytoplankton standing crop increased by<2-fold. Larger phytoplankton (chiefly diatoms in the >10 μm size fraction) made significant contributions to phytoplankton standing crop and primary production during the summer of 1997–1998, but not 1998–1999. Although there were no surface signs of upwelling, primary production rates near North West Cape episodically reached levels (3–8 g C m−2 day−1) characteristic of eastern boundary Ekman upwelling zones elsewhere in the world. Bacterial production (0.006–1.2 g C m−2 day−1) ranged between 0.6 and 145 percent (median=19 percent) of concurrent primary production. The observed differences between years and within individual summers suggest that variations in the Leeuwin Current driven by seasonal or ENSO-related changes in the Indonesian throughflow region may have episodic, but significant influences on pelagic productivity along the western margin of Australia.  相似文献   

10.
An eddy-resolving Indo-Pacific ocean circulation model was applied to highlight the behavior of eddies throughout the Indonesian seas. The complexity of the topography and coastline at the entrance of the Makassar Strait induce an eddy-type throughflow, instead of a straightforward flow. A sill and a narrow passage in the Makassar strait creates a barrier and impedes the continuation of eddies from the Pacific ocean, but the existence of a steep deep basin (>500 m depth) between the Java and Flores seas indicates a possible area for eddies. Based on our numerical results, we described the presence of a unique eddy structure north of Lombok Island, which we designated the “Lombok Eddy” and verified it by performing a drifter release field experiment and reviewing monthly mean climatology data from the World Ocean Atlas 2001 and XBT PX2 track data. NCEP/NCAR reanalysis, satellite observation data, and mixed layer depth analysis were also used to confirm these processes. By analyzing numerical simulation results and available temperature datasets, two additional eddies were found. All eddies form primarily due to eastward local winds correlated with seasonal monsoon winds during the austral summer. These eddies vary synchronously at an interannual time scale. Together, they are referred to as the Lombok Eddy Train (LET), which affects the surface layer down to a depth of 60 m, and the intensity of the eddy system is strongly affected by mixed layer depth variability from December to February.  相似文献   

11.
Although large-scale tidal and inertial motions dominate the kinetic energy and vertical current shear in shelf seas and ocean, short-scale internal waves at higher frequencies close to the local buoyancy frequency are of some interest for studying internal wave breaking and associated diapycnal mixing. Such waves near the upper limit of the inertio-gravity wave band are thought to have relatively short O (102–103 m) horizontal scales and to show mainly up- and downward motions, which contrasts with generally low aspect ratio large-scale ocean currents. Here, short-term vertical current (w) observations using moored acoustic Doppler current profiler (ADCP) are presented from a shelf sea, above a continental slope and from the open ocean. The observed w, with amplitudes between 0.015 and 0.05 m s−1, all span a considerable part of the water column, which is not a small vertical scale O(water depth) or O (100–500 m, the maximum range of observations), with either 0 or π phase change. This implies that they actually represent internal waves of low vertical modes 1 or 2. Maximum amplitudes are found in layers of largest stratification, some in the main pycnocline bordering the frictional bottom boundary layer, suggesting a tidal source. These ‘pycnocline-w’ compose a regular train of (solitary) internal waves and linearly decrease to small values near surface and bottom.  相似文献   

12.
13.
We examined spatial variations in benthic remineralisation (measured as sediment oxygen consumption (SOC)) and sediment properties on the northeastern New Zealand continental shelf and slope to assess the importance of benthic mineralisation in this ecosystem and to provide data for more complete global carbon budgets. SOC measured in dark incubations conducted in early summer ranged from 128 μmol m−2 h−1 at the deepest (360 m) to 1222 μmol m−2 h−1 at the shallowest (4.2 m) site and decreased significantly with water depth (p<0.001, r2=0.78, SOC=1222.8−456.3×log10[water depth], n=14 sites). These rates were in the range found on continental shelves elsewhere (64–1750 μmol m−2 h−1, n=30 studies) and had a very similar distribution with water depth. SOC was also measured in light incubations at seven sites (4.2–35 m water depth) to examine the effects of microphytobenthos and accounted for 42–106% of rates measured in the dark. Measurements of near-bed light intensities suggested that microphytobenthos production was not solely regulated by light intensity but evidently influenced by other factors. A two-dimensional PCA ordination of surface sediment properties accounted for 83.3% of the total variance in the data and divided the study area into three clusters that corresponded well to its spatial division into the shallow (<30 m) Firth of Thames, the Hauraki Gulf (30–50 m) and the northern shelf-slope region. In the Firth of Thames sediments were very fine-grained with low CaCO3 and high total organic matter and pigment content, and low C:N ratios. The northern shelf-slope sediments showed the opposite trends to the Firth of Thames and those in the Hauraki Gulf had mostly intermediate values. Dark SOC was significantly correlated with sediment organic matter, carbon, nitrogen, pigments and silt/clay content (p<0.05, r=0.55–0.85) but a multiple linear regression revealed that water depth was the only significant predictor. Calculations suggest that approximately 13%, 10% and 34% of primary production is remineralised in the sediments of the northern shelf-slope region, Hauraki Gulf and Firth of Thames, respectively, indicating a strong benthic–pelagic coupling on the northeastern New Zealand continental shelf that was particularly pronounced in the Firth of Thames due to its shallow depth and significant terrestrial and riverine inputs.  相似文献   

14.
Sea breezes are characteristic features of coastal regions that can extend large distances from the coastline. Oscillations close to the inertial period are thought to account for around half the kinetic energy in the global surface ocean and play an important role in mixing. In the vicinity of 30°N/S, through a resonance between the diurnal and inertial frequencies, diurnal winds could force enhanced anti-cyclonic rotary motions that contribute to near-inertial energy.Observations of strong diurnal anti-cyclonic currents in water of depth 175 m off the Namibian coastline at 28.6°S are analysed over the annual cycle. Maxima in the diurnal anti-cyclonic current and wind stress amplitudes appear to be observed during the austral summer. Both the diurnal anti-cyclonic current and wind stress components have approximately constant phase throughout the year. These observations provide further evidence that these diurnal currents may be wind forced. Realistic General Ocean Turbulence Model (GOTM) 1-D simulations of diurnal wind forcing, including the first order coast-normal surface slope response to diurnal wind forcing, represent the principal features of the observed diurnal anti-cyclonic current but do not replicate the observed vertical diurnal current structure accurately. Cross-shelf 2-D slice simulations suggest that the first order surface slope response approximation applies away from the coast (>140 km). However, nearer to the coast, additional surface slope variations associated with spatial variations in the simulated velocity field (estimated from Bernoulli theory) appear to be significant and also result in transfer of energy to higher harmonics. Evidence from 3-D simulations at similar latitude in the northern hemisphere suggests that 3-D variations, including propagating near-inertial waves, may also need to be considered.  相似文献   

15.
Hydrographic data collected during surveys carried out in austral winter 2003 and summer 2004 are used to analyze the distributions of temperature (T) and salinity (S) over the continental shelf and slope of eastern South America between 27°S and 39°S. The water mass structure and the characteristics of the transition between subantarctic and subtropical shelf water (STSW), referred to as the subtropical shelf front (STSF), as revealed by the vertical structure of temperature and salinity are discussed. During both surveys, the front intensifies downward and extends southwestward from the near coastal zone at 33°S to the shelf break at 36°S. In austral winter subantarctic shelf water (SASW), derived from the northern Patagonia shelf, forms a vertically coherent cold wedge of low salinity waters that locally separate the outer shelf STSW from the fresher inner shelf Plata Plume Water (PPW) derived from the Río de la Plata. Winter TS diagrams and cross-shelf T and S distributions indicate that mixtures of PPW and tropical water only occur beyond the northernmost extent of pure SASW, and form STSW and an inverted thermocline characteristic of this region. In summer 2004, dilution of Tropical water (TW) occurs at two distinct levels: a warm near surface layer, associated to PPW–TW mixtures, similar to but significantly warmer than winter STSW, and a colder (T∼16 °C) salinity minimum layer at 40–50 m depth, created by SASW–STSW mixtures across the STSF. In winter, the salinity distribution controls the density structure creating a cross-shore density gradient, which prevents isopycnal mixing across the STSF. Temperature stratification in summer induces a sharp pycnocline providing cross-shelf isopycnal connections across the STSF. Cooling and freshening of the upper layer observed at stations collected along the western edge of the Brazil Current suggest offshore export of shelf waters. Low T and S filaments, evident along the shelf break in the winter data, suggest that submesoscale eddies may enhance the property exchange across the shelf break. These observations suggest that as the subsurface shelf waters converge at the STSF, they flow southward along the front and are expelled offshore, primarily along the front axis.  相似文献   

16.
Core NYS-101, which was recovered at a water depth of 49 m northeast of the Shandong Peninsula in the North Yellow Sea, penetrates the Holocene subaqueous clinoform that wraps around the Shandong Peninsula. The uppermost 18 m of this well-dated core was deposited after about 13 cal kyr BP during the post-glacial transgression. We focused on trace and rare earth element (REE) chemistries of the core sediments in the uppermost 18 m to investigate the sediment provenance and factors controlling the sediment composition. On the basis of down-core distributions of REE fractionation parameters and of ratios among REEs and other immobile elements, we divided the uppermost 18 m into three distinct compositional intervals: Interval 1 (above 6.08 m, from the time tens of years earlier than 6500 cal yr BP up to the present), Interval 2 (13.90–6.08 m, from about 8200 cal yr BP to the boundary between Intervals 1 and 2), and Interval 3 (below 13.90 m, from about 13,000 to 10,400 cal yr BP). The chondrite- and upper continental crust (UCC)-normalized REE fractionation patterns of Intervals 3 and 2 are similar to those of Yellow River sediments, but the patterns in Interval 1 are obviously different.  相似文献   

17.
The relationship between the Kuroshio volume transport east of Taiwan (~24°N) and the impinging mesoscale eddies is investigated using 8-year reanalysis of a primitive equation ocean model that assimilates satellite altimetry and SST data. The mean and fluctuations of the model Kuroshio transport agree well with the available observations. Analysis of model dynamic heights and velocity fields reveals three dominant eddy modes. The first mode describes a large eddy of ~500 km in diameter, centered at ~22° N. The second mode describes a pair of the north–south counter-rotating eddies of?~?400 km in diameter each, centered at 23° and 20° N, respectively. The third mode describes a pair of the east–west counter-rotating eddies of?~?300 km in diameter each, centered at 21° N. The associated velocity fields indicate eddies extending to 600–700 m in depth with vertical shears concentrated in the upper 400 m. All three modes and the model Kuroshio transport have similar dominant timescales of 70–150 days and generally are coherent. The decreased Kuroshio volume transports typically are associated with the impinging cyclonic eddies and the increased transports with the anticyclonic eddies. Selected drifter trajectories are presented to illustrate the three eddy modes and their correspondence with the varying Kuroshio transports.  相似文献   

18.
19.
Gahyun Goh  Yign Noh 《Ocean Dynamics》2013,63(9-10):1083-1092
Large eddy simulation (LES) reveals that the Coriolis force plays an important role in seasonal thermocline formation. In the high-latitude ocean, a seasonal thermocline is formed at a certain depth, across which the downward transports of heat and momentum are prohibited. On the other hand, in the equatorial ocean, heat and momentum continue to propagate downward to the deeper ocean without forming a well-defined thermocline. Mechanism to clarify the latitudinal difference is suggested. The depth of a seasonal thermocline h is scaled in terms of both the Ekman length scale λ and the Monin–Obukhov length scale L, as h ??? 0.5()1/2, which is in contrast to the earlier suggestion as h?∝?L.  相似文献   

20.
Previous work concerning Gulf Stream warm-core rings (WCRs) and their associated shelf water entrainments have been based upon single surveys or time series from individual WCRs. To date, estimates of annual shelf water volume entrained into the Slope Sea by WCRs and its interannual variability have not been made. Using a long time series of satellite-derived sea surface temperature (SST) observations of Slope Sea WCRs, we have completed an analysis of 22 years of WCR data (1978–1999) between 75°W and 50°W to understand the interannual variability of WCRs and their role in entraining shelf water. Satellite-derived SST data digitized at Bedford Institute of Oceanography are analyzed using an ellipse-fitting feature model to determine key WCR characteristics including WCR center position, radius and orientation. Key characteristics are then used to compute WCR swirl velocity by finite-differencing WCR orientations (θ) obtained from the feature model time series. Global mean WCR-edge swirl velocity calculated from all observations is 105.72±10.7 km day−1 (122.36±12.4 cm s−1), and global mean WCR radius is 64.8±6.2 km. Primary and derived WCR data are incorporated into a two-dimensional ring entrainment model (RM) using the quasi-geostrophic approximation of the potential vorticity equation. The RM defines ambient water as entrained by a WCR only if the gradient of relative vorticity term (horizontal shear) dominates the potential vorticity. Proximity of a WCR to the position of the shelf-slope front (SSF) is then used to determine whether the ambient water is entrained from the outer continental shelf. WCR-induced shelf entrainment derived from the RM displays considerable spatial variability, with maximum entrainment occurring offshore of Georges Bank, advecting a mean total annual shelf water volume of 7500 km3 year−1 from the region. Estimates of shelf water fluxes display significant interannual variability, which may be in part due to the observed covariance between WCR occurrences and the state of the North Atlantic Oscillation (NAO). Increased (decreased) occurrences of WCRs are evidenced during positive (negative) phases of the NAO. The total mean annual shelf-wide WCR-induced shelf water transport is estimated to be 23,700 km3 year−1 (0.75 Sv), accounting for nearly 25% of the total transport in the Slope Sea region neighboring the outer continental shelf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号