首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seasonal cycle of the main lunar tidal constituent M 2 is studied globally by an analysis of a high-resolution ocean circulation and tide model (STORMTIDE) simulation, of 19 years of satellite altimeter data, and of multiyear tide-gauge records. The barotropic seasonal tidal variability is dominant in coastal and polar regions with relative changes of the tidal amplitude of 5–10 %. A comparison with the observations shows that the ocean circulation and tide model captures the seasonal pattern of the M 2 tide reasonably well. There are two main processes leading to the seasonal variability in the barotropic tide: First, seasonal changes in stratification on the continental shelf affect the vertical profile of eddy viscosity and, in turn, the vertical current profile. Second, the frictional effect between sea-ice and the surface ocean layer leads to seasonally varying tidal transport. We estimate from the model simulation that the M 2 tidal energy dissipation at the sea surface varies seasonally in the Arctic (ocean regions north of 60°N) between 2 and 34 GW, whereas in the Southern Ocean, it varies between 0.5 and 2 GW. The M 2 internal tide is mainly affected by stratification, and the induced modified phase speed of the internal waves leads to amplitude differences in the surface tide signal of 0.005–0.0150 m. The seasonal signals of the M 2 surface tide are large compared to the accuracy demands of satellite altimetry and gravity observations and emphasize the importance to consider seasonal tidal variability in the correction processes of satellite data.  相似文献   

2.
Wang  Xuezhu  Wang  Qiang  Sidorenko  Dmitry  Danilov  Sergey  Schr&#;ter  Jens  Jung  Thomas 《Ocean Dynamics》2012,62(10):1471-1486

The Finite Element Sea-ice Ocean Model (FESOM) is formulated on unstructured meshes and offers geometrical flexibility which is difficult to achieve on traditional structured grids. In this work, the performance of FESOM in the North Atlantic and Arctic Ocean on large time scales is evaluated in a hindcast experiment. A water-hosing experiment is also conducted to study the model sensitivity to increased freshwater input from Greenland Ice Sheet (GrIS) melting in a 0.1-Sv discharge rate scenario. The variability of the Atlantic Meridional Overturning Circulation (AMOC) in the hindcast experiment can be explained by the variability of the thermohaline forcing over deep convection sites. The model also reproduces realistic freshwater content variability and sea ice extent in the Arctic Ocean. The anomalous freshwater in the water-hosing experiment leads to significant changes in the ocean circulation and local dynamical sea level (DSL). The most pronounced DSL rise is in the northwest North Atlantic as shown in previous studies, and also in the Arctic Ocean. The released GrIS freshwater mainly remains in the North Atlantic, Arctic Ocean and the west South Atlantic after 120 model years. The pattern of ocean freshening is similar to that of the GrIS water distribution, but changes in ocean circulation also contribute to the ocean salinity change. The changes in Arctic and sub-Arctic sea level modify exchanges between the Arctic Ocean and subpolar seas, and hence the role of the Arctic Ocean in the global climate. Not only the strength of the AMOC, but also the strength of its decadal variability is notably reduced by the anomalous freshwater input. A comparison of FESOM with results from previous studies shows that FESOM can simulate past ocean state and the impact of increased GrIS melting well.

  相似文献   

3.
The Arctic plays a fundamental role in the climate system and shows significant sensitivity to anthropogenic climate forcing and the ongoing climate change. Accelerated changes in the Arctic are already observed, including elevated air and ocean temperatures, declines of the summer sea ice extent and sea ice thickness influencing the albedo and CO2 exchange, melting of the Greenland Ice Sheet and increased thawing of surrounding permafrost regions. In turn, the hydrological cycle in the high latitude and Arctic is expected to undergo changes although to date it is challenging to accurately quantify this. Moreover, changes in the temperature and salinity of surface waters in the Arctic Ocean and Nordic Seas may also influence the flow of dense water through the Denmark Strait, which are found to be a precursor for changes in the Atlantic meridional overturning circulation with a lead time of around 10 years (Hawkins and Sutton in Geophys Res Lett 35:L11603, 2008). Evidently changes in the Arctic and surrounding seas have far reaching influences on regional and global environment and climate variability, thus emphasizing the need for advanced quantitative understanding of the ocean circulation and transport variability in the high latitude and Arctic Ocean. In this respect, this study combines in situ hydrographical data, surface drifter data and direct current meter measurements, with coupled sea ice–ocean models, radar altimeter data and the latest GOCE-based geoid in order to estimate and assess the quality, usefulness and validity of the new GOCE-derived mean dynamic topography for studies of the ocean circulation and transport estimates in the Nordic Seas and Arctic Ocean.  相似文献   

4.
A three-dimensional shelf circulation model is used to examine the effect of seasonal changes in water-column stratification on the tidal circulation over the Scotian Shelf and Gulf of St. Lawrence. The model is driven by tidal forcing specified at the model’s lateral open boundaries in terms of tidal sea surface elevations and depth-averaged currents for five major tidal constituents (M2, N2, S2, K1, and O1). Three numerical experiments are conducted to determine the influence of baroclinic pressure gradients and changes in vertical mixing, both associated with stratification, on the seasonal variation of tidal circulation over the study region. The model is initialized with climatological hydrographic fields and integrated for 16 months in each experiment. Model results from the last 12 months are analyzed to determine the dominant semidiurnal and diurnal tidal components, M2 and K1. Model results suggest that the seasonal variation in the water-column stratification affects the M2 tidal circulation most strongly over the shelf break and over the deep waters off the Scotian Shelf (through the development of baroclinic pressure gradients) and along Northumberland Strait in the Gulf of St. Lawrence (through changes in vertical mixing and bottom stress). For the K1 constituent, the baroclinic pressure gradient and vertical mixing have opposing effects on the tidal circulation over several areas of the study region, while near the bottom, vertical mixing appears to play only a small role in the tidal circulation.  相似文献   

5.
The Finite Element Sea-ice Ocean Model (FESOM) is formulated on unstructured meshes and offers geometrical flexibility which is difficult to achieve on traditional structured grids. In this work, the performance of FESOM in the North Atlantic and Arctic Ocean on large time scales is evaluated in a hindcast experiment. A water-hosing experiment is also conducted to study the model sensitivity to increased freshwater input from Greenland Ice Sheet (GrIS) melting in a 0.1-Sv discharge rate scenario. The variability of the Atlantic Meridional Overturning Circulation (AMOC) in the hindcast experiment can be explained by the variability of the thermohaline forcing over deep convection sites. The model also reproduces realistic freshwater content variability and sea ice extent in the Arctic Ocean. The anomalous freshwater in the water-hosing experiment leads to significant changes in the ocean circulation and local dynamical sea level (DSL). The most pronounced DSL rise is in the northwest North Atlantic as shown in previous studies, and also in the Arctic Ocean. The released GrIS freshwater mainly remains in the North Atlantic, Arctic Ocean and the west South Atlantic after 120 model years. The pattern of ocean freshening is similar to that of the GrIS water distribution, but changes in ocean circulation also contribute to the ocean salinity change. The changes in Arctic and sub-Arctic sea level modify exchanges between the Arctic Ocean and subpolar seas, and hence the role of the Arctic Ocean in the global climate. Not only the strength of the AMOC, but also the strength of its decadal variability is notably reduced by the anomalous freshwater input. A comparison of FESOM with results from previous studies shows that FESOM can simulate past ocean state and the impact of increased GrIS melting well.  相似文献   

6.
The Bay of Fundy in eastern Canada has the highest tides in the world. Harnessing the tidal energy in the region has long been considered. In this study, the effects of tidal in-stream energy extraction in the Minas Passage on the three-dimensional (3D) tidal circulation in the Bay of Fundy (BoF) and the Gulf of Maine (GoM) are examined using a nested-grid coastal ocean circulation model based on the Princeton Ocean Model (POM). The nested-grid model consists of a coarse-resolution (~4.5 km) parent sub-model for the GoM and a high-resolution (~1.5 km) child sub-model for the BoF. The tidal in-stream energy extraction in the model is parameterized in terms of nonlinear Rayleigh friction in the momentum equation. A suite of numerical experiments are conducted to determine the ranges of extractable tidal in-stream energy and resulting effects on the 3D tidal circulation over the Bay of Fundy and the Gulf of Maine (BoF-GoM) in terms of the Rayleigh friction coefficients. The 3D model results suggest that the maximum energy extraction in the Minas Passage increases tidal elevations and tidal currents throughout the GoM and reduces tidal elevations and circulation in the upper BoF, especially in the Minas Basin. The far-field effect of tidal energy extraction in the Passage on the 3D tidal circulation in the BoF-GoM is examined in two cases of harnessing tidal in-stream energy from (a) the entire water column and (b) the lower water column within 20 m above the bottom in the Passage. The 3D model results demonstrate that tidal in-stream energy extraction from the lower water column has less impact on the tidal elevations and circulation in the BoF-GoM than the energy extraction from the whole water column in the Minas Passage.  相似文献   

7.
Sea ice has been reported to contain contaminants from atmospheric and nearshore sediment resuspension processes. In this study successive passive microwave images from the 85.5 GHz channels on the Special Sensor Microwave Imager (SSM/I) were merged with drifting buoy trajectories from the International Arctic Buoy Program to compute Arctic sea ice motion in the Russian Arctic between 1988 and 1994. Smooth daily motion fields were averaged to prepare monthly maps making it possible to compute the 7-year mean and mean seasonal ice motions as well as principal components of directional variability of sea ice motion for the entire Arctic and surrounding basins. These mean motion vectors are used to simulate the advection of contaminants deposited on or contained within the sea ice and subsequently transported into the Arctic Ocean in order to predict both their mean trajectories and dispersal over time. The 3-year displacement of contaminants from a number of Russian sites and one American site display various behaviours from substantial displacement and dispersal to almost no movement. This computational procedure could be applied to realtime SSM/I and ice buoy data to provide detailed, all-weather, vector motion maps of ice circulation to predict the path and dispersal of any new substance introduced to the sea ice and transported into the Arctic or Antarctic ocean surface.  相似文献   

8.
为研究近期21年(1989—2009年)北极地区海冰变化原因,本文利用欧洲中期天气预报中心ERA-Interim数据集资料和美国麻省理工学院MITgcm全球海冰-海洋耦合模式开展了不同大气强迫条件下海冰变化的数值模拟研究.研究工作中共设计了6个数值试验,除1个试验全部采用1989—2009年每日4个时次的大气强迫场外,其余5个试验各有一种大气强迫(地表气温、地表大气比湿、向下短波辐射通量、向下长波辐射通量和地表风)采用1989年月平均结果.分析了各模拟试验结果中3月和9月北极地区海冰面积的年际变化特征及最小二乘拟合意义下的线性变化趋势,并以ERA-Interim结果为参照标准对各模拟试验结果进行了对比和检验,以说明不同大气强迫量变率对海冰变化的作用.结果表明:地表气温变率和向下长波辐射通量变率是造成海冰面积减少的主要原因;向下短波辐射通量变率对海冰面积变化影响几乎可以忽略;地表大气比湿变率对海冰面积线性变化趋势影响较小,但对海冰面积年际变化特征有调制作用;地表风变率对海冰季节变化、海冰面积线性变化趋势及年际变化特征均有明显影响,说明提高大气风应力精度是改善海冰数值模拟结果的重要手段.  相似文献   

9.
A new seasonal and annual dataset describing Arctic sea ice extents for 1901–2015 was constructed by individually re-calibrating sea ice data sources from the three Arctic regions (North American, Nordic and Siberian) using the corresponding surface air temperature trends for the pre-satellite era (1901–1978), so that the strong relationship between seasonal sea ice extent and surface air temperature observed for the satellite era (1979-present) also applies to the pre-satellite era. According to this new dataset, the recent period of Arctic sea ice retreat since the 1970s followed a period of sea ice growth after the mid-1940s, which in turn followed a period of sea ice retreat after the 1910s. Arctic sea ice is a key component of the Arctic hydrological cycle, through both its freshwater storage role and its influence on oceanic and atmospheric circulation. Therefore, these new insights have significance for our understanding of Arctic hydrology.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR not assigned  相似文献   

10.
Long-term variability of heat content (HC) in the upper 1,000 m of the Arctic Ocean is investigated using surface and subsurface temperature and current data during 1958–2005 compiled by Simple Ocean Data Assimilation. Annual cycle of the Arctic Ocean HC is controlled primarily by the negative and positive excursions in net upper ocean heat flux, while the inter-annual variability is mainly associated with meridional thermal advection from the North Atlantic Ocean. Variability in HC is experienced as a basin-wide cooling/warming in association with the Arctic Oscillation on a decadal time scale. In the first three dominant modes of Empirical Orthogonal Function, the maximum amplitude of HC variability occurs in the Greenland–Norwegian Sea and Eurasian Basin. In general, HC showed increasing trend during 1958–2005 indicating continuous warming with regional variations in magnitude.  相似文献   

11.
This study examines connections between mean sea level (MSL) variability and diurnal and semidiurnal tidal constituent variations at 17 open-ocean and 9 continental shelf tide gauges in the western tropical Pacific Ocean, a region showing anomalous rise in MSL over the last 20 years and strong interannual variability. Detrended MSL fluctuations are correlated with detrended tidal amplitude and phase fluctuations, defined as tidal anomaly trends (TATs), to quantify the response of tidal properties to MSL variation. About 20 significant amplitude and phase TATs are found for each of the two strongest tidal constituents, K1 (diurnal) and M2 (semidiurnal). Lesser constituents (O1 and S2) show trends at nearly half of all gauges. Fluctuations in MSL shift amplitudes and phases; both positive and negative responses occur. Changing overtides suggest that TATs are influenced by changing shallow water friction over the equatorial Western Pacific and the eastern coast of Australia (especially near the Great Barrier Reef). There is a strong connection between semidiurnal TATs at stations around the Solomon Islands and changes in thermocline depth, overtide generation, and the El Niño Southern Oscillation (ENSO). TATs for O1, K1, and M2 are related to each other in a manner that suggests transfer of energy from M2 to the two diurnals via resonant triad interactions; these cause major tidal variability on sub-decadal time scales, especially for M2. The response of tides to MSL variability is not only spatially complex, it is frequency dependent; therefore, short-term responses may not predict long-term behavior.  相似文献   

12.
Captured CO2 could be deliberately injected into the ocean at great depth, where most of it would remain isolated from the atmosphere for centuries. CO2 can be transported via pipeline or ship for release in the ocean or on the sea floor. No matter what for medium depth or deep sea, it appears that a potential area exists between 122–122.5°E and 21.8–22.3°N for CO2 sequestration. The east coast of Taiwan can be a candidate for CO2 temporary storage or transmitted plant. To have whole picture of assessment of sea level fluctuation, a completed statistical summary of seasonal sea level at six tidal gauge stations along the east coast of Taiwan is provided herein. Seasonal sea level time series is analyzed using spectral analysis in frequency domain to identify periodic component and phase propagation, especially for the astronomical-driven tidal effects. It identifies that the semi-diurnal and diurnal components in the resultant time series are related to astronomical tides M2, and K1 and O1, respectively. It demonstrates a full analysis of sea level variations, and results can be useful when construction of testing or operating facilities on sea surface becomes desirable in the future.  相似文献   

13.
The Solomon Sea is a key region in the Pacific Ocean where equatorial and subtropical circulations are connected. The region exhibits the highest levels in sea level variability in the entire south tropical Pacific Ocean. Altimeter data was utilized to explore sea level and western boundary currents in this poorly understood portion of the ocean. Since the geography of the region is extremely intricate, with numerous islands and complex bathymetry, specifically reprocessed along-track data in addition to standard gridded data were utilized in this study. Sea level anomalies (SLA) in the Solomon Sea principally evolve at seasonal and interannual time scales. The annual cycle is phased by Rossby waves arriving in the Solomon Strait, whereas the interannual signature corresponds to the basin-scale ENSO mode. The highest SLA variability are concentrated in the eastern Solomon Sea, particularly at the mouth of the Solomon Strait, where they are associated with a high eddy kinetic energy signal that was particularly active during the phase transition during the 1997–1998 ENSO event. Track data appear especially helpful for documenting the fine structure of surface coastal currents. The annual variability of the boundary currents that emerged from altimetry compared quite well with the variability seen at the thermocline level, as based on numerical simulations. At interannual time scales, western boundary current transport anomalies counterbalance changes in western equatorial Pacific warm water volume, confirming the phasing of South Pacific western boundary currents to ENSO. Altimetry appears to be a valuable source of information for variability in low latitude western boundary currents and their associated transport in the South Pacific.  相似文献   

14.
Ezer  Tal 《Ocean Dynamics》2022,72(11):741-759

The long-term variability of sea level and surface flows in the Gulf of Mexico (GOM) is studied using global monthly sea level reconstruction (RecSL) for 1900–2015. The study explored the long-term relation between the dynamics of the GOM and inflows/outflows through the Yucatan Channel (YC) and the Florida Straits (FS). The results show a century-long trend of increased mean velocity and variability in the Loop Current (LC); however, no significant upward trend was found in the YC and FS flows, only increased variability. Empirical orthogonal function (EOF) analysis of sea surface height found spatial patterns dominated by variations in the LC and temporal variations on time scales ranging from a few months to multidecadal. The time evolution of each EOF mode of sea level is correlated with the velocity of either the LC, the YC, or the FS or some combination of the different flows. The mean sea level difference between the GOM and the northwestern Caribbean Sea was found to be influenced by the North Atlantic Oscillation (NAO), with unusually high differences during the 1970s when the NAO index was low and the Atlantic Ocean circulation was weak. Extreme peaks in SL difference coincide with the extension of the LC and the seasonal eddy shedding pattern. The observed seasonal cycle in the extension area of the LC as obtained from 20 years of altimeter data is significantly correlated (R = 0.63; confidence level = 98%) with the seasonal YC flow obtained from 116 years of the RecSL data. However, the same LC extension record had lower correlation (R = 0.45; confidence level = 90%) with the observed YC transport obtained from direct moored measurements over ~ 5 years, indicating the need for much longer measurements, since the LC extension and the YC flow are strongly affected by interannual and decadal variations. The study demonstrates the usefulness of even a coarse-resolution reconstruction for studies of regional ocean variability and climate change over longer time scales than current direct observations allow.

  相似文献   

15.
The Canadian Arctic Archipelago (CAA) is a complex area formed by narrow straits and islands in the Arctic. It is an important pathway for freshwater and sea-ice transport from the Arctic Ocean to the Labrador Sea and ultimately to the Atlantic Ocean. The narrow straits are often crudely represented in coupled sea-ice–ocean models, leading to a misrepresentation of transports through these straits. Unstructured meshes are an alternative in modelling this complex region, since they are able to capture the complex geometry of the CAA. This provides higher resolution in the flow field and allows for more accurate transports (but not necessarily better modelling). In this paper, a finite element sea-ice model of the Arctic region is described and used to estimate the sea-ice fluxes through the CAA. The model is a dynamic–thermodynamic sea-ice model with elastic–viscous–plastic rheology and is coupled to a slab ocean, where the temperature and salinity are restored to climatology, with no velocities and surface elevation. The model is spun-up from 1973 to 1978 with NCEP/NARR reanalysis data. From 1979 to 2007, the model is forced by NCEP/DoE reanalysis data. The large scale sea-ice characteristics show good agreement with observations. The total sea-ice area agrees very well with observations and shows a sensitivity to the Arctic oscillation (AO). For 1998–2002, we find estimates for the sea-ice volume and area fluxes through Admunsen Gulf, McClure Strait and the Queen Elizabeth Islands that compare well with observation and are slightly better than estimates from other models. For Nares Strait, we find that the fluxes are much lower than observed, due to the missing effect of topographic steering on the atmospheric forcing fields. The 1979–2007 fluxes show large seasonal and interannual variability driven primarily by variability in the ice velocity field and a sensitivity to the AO and other large-scale atmospheric variability, which suggests that accurate atmospheric forcing might be crucial to modelling the CAA.  相似文献   

16.
Tidal ice drift is regarded as an element of the 3D tidal dynamics on the Siberian continental shelf. Two cases are considered: (1) when sea ice is immobile (in a horizontal plane), so that ice-induced changes of tidal characteristics may be treated as if they are limiting, and (2) when sea ice is moveable and internal stresses in the ice cover are described by a viscous-elastic rheology. It is shown that sea ice does not lead to radical changes of the tidal and energetic regimes, although their quantitative changes may be quite significant. In general, the ice-induced influence on the tidal dynamics is less than that on the tidal energetics. Therefore, the commonly accepted assumption that this influence may be viewed as being negligible is justified only partially. We present model results for tidal ice drift parameters—its magnitude, direction, the amplitude of tidal variations of ice concentration and the pressure of ice compression—as well as for ice-induced changes of tidal characteristics and the residual tidal ice drift. Partial attention is given to revealing the zones of ice compression–rarefaction, that is of importance in Arctic navigation.  相似文献   

17.
Characteristics of the pCO2 distribution in surface water of the Bering Abyssal Plain and their relationships with the ambient hydrological conditions were discussed using variations of the partial pressure of CO2 in surface water of the Bering Abyssal Plain and the Chukchi Sea. Data in this study are from a field investigation during the First Chinese National Arctic Research Expedition in 1999. Compared to the high productivity in the Bering Continental Shelf, much lower levels of chlorophyll a were observed in the Bering Abyssal Plain. The effect of hydrological factors on the pCO2 distribution in surface seawater of the Plain in summer has become a major driving force and dominated over biological factors. The Plain also presents a High Nutrient Low Chlorophyll (HNLC). In addition, the pCO2 distribution in the Bering Abyssal Plain has also been found to be influenced from the Bering Slope Current which would transform to the Anadyr Current when it inflows northwestward over the Plain. The Anadyr Current would bring a high nutrient water to the western Arctic Ocean where local nutrients are almost depleted in the surface water during the summer time. Resupplying nutrients would stimulate the growth of phytoplankton and enhance capacity of absorbing atmospheric CO2 in the surface water. Otherwise, in the Bering Sea the dissolved inorganic carbon brought from freshwater are not deposited down to the deep sea water but most of them would be transported into the western Arctic Ocean by the Alaska Coastal Current to form a carbon sink there. Therefore, the two carbon sinks in the western Arctic Ocean, one carried by the Anadyr Current and another by the Alaska Costal Current, will implicate the western Arctic Ocean in global change.  相似文献   

18.
The Arctic Ocean, the northernmost parts of the earth, covers the total surface area of 14.79 million square kilometers and amounts to only about 4% of global ocean surface area. Although its surface area is the smallest in the four major oceans, the Arct…  相似文献   

19.
Using 1-year simulated data from extended Prince William Sound (PWS) nowcast/forecast system, both barotropic and baroclinic transports through two-strait, semi-enclosed PWS are examined. With major tidal constituents removed, hourly time series of volume transports through two straits are significantly correlated with net transport well balanced by the time rate of change of the PWS spatial-mean sea level. A transition frequency band occurs within the coherence function of hourly volume transports, which is characterized by a nearly 180° phase shift between low-frequency (>30 h) and high-frequency (<6 h) bands. The transition band is implicitly related to the horizontally divergent and horizontally non-divergent flows inside the Sound. Further investigation of monthly and annual mean volume transports indicates strong seasonal variability of flows through two straits. On the other hand, baroclinic transport through PWS demonstrates the transition between a two-layered flow structure during the wintertime and a well-defined three-layered structure, i.e., inflow in both the surface and bottom layer with outflow in the intermediate layer, in the remainder of the year. This three-layer exchange flow is determined to be mainly buoyancy-driven, geostrophic flow, and thus largely affected by seasonal variability of buoyancy over the shelf and PWS.  相似文献   

20.
Patagonia Argentina is a key area for the study of sea level changes in the southern hemisphere, but the availability of reliable sea level markers in this area is still problematic. In fact the storm deposits (beach ridge) commonly used here to reconstruct past sea level oscillations introduce a wide error. Along the Puerto Deseado coast (Santa Cruz), morphometric analyses of 11 features were carried out using traditional measurement tools and a digital software‐based method (tested on one selected feature) with the aim to investigate the possibility of their use as sea level markers. By undertaking accurate topographic profiles we identified the relationship between notches and current sea level. In detail, we identified two clusters of notch retreat point elevations, with a very low internal variability. The lower was located a little below the mean high tide level (mHT) and the upper located at least 0.5 m above the maximum high tide level (MHT). Field observations of tidal levels and the position of notches suggest that the lower notches are active and the upper are inactive. This study on the abrasive notches attests their quality as sea level markers and opens up the use of fossil abrasive notches as palaeo sea level markers because the error linked to these features is substantially smaller than that introduced by beach ridges commonly used in the study area. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号