首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gold-copper-bismuth mineralization in the Tennant Creek goldfield of the Northern Territory occurs in pipe-like, ellipsoidal, or lensoidal lodes of magnetite ± hematite ironstones which are hosted in turbiditic sedimentary rocks of Proterozoic age. Fluid inclusion studies have revealed four major inclusion types in quartz associated with mineralized and barren ironstones at Ten nant Creek; (1) liquid-vapour inclusions with low liquid/vapour ratios (Type I), (2) liquid-vapour inclusions with high liquid/vapour ratios or high vapour/liquid ratios and characteristic dark bubbles (Type II), (3) liquid-vapour-halite inclusions (Type III), and (4) liquid-vapour inclusions with variable liquid/vapour ratios (Type V). Type I inclusions are present in the barren ironstones and the unmineralized portions of fertile ironstones, whereas Types II and III inclusions are recognized in fertile ironstones. Trails of Types II and III inclusions cut trails of Type I inclusions. Type I fluid inclusions have homogenization temperatures of 100° to 350 °C with a mode at 200° to 250 °C. Type II inclusions in mineralized ironstones (e.g. Juno, White Devil, Eldorado, TC8 and Gecko K-44 deposits) have homogenization temperatures of 250 °C to 600 °C with a mode of 350 °C. Type I fluid inclusions have a salinity range of 10 to 30 NaCl equiv. wt %. Salinity measurements on fluid inclusions in the mineralized zones gave a range of 10 to 50 NaCl equiv. wt % with a mode of 35 NaCl equiv. wt %. Fluid inclusion studies indicate that the Tennant Creek ironstones were formed from a relatively low temperature and moderately saline fluid, where as gold and copper mineralization was deposited from later hydrothermal fluids of higher temperature and salin ity. Gas analysis indicates the presence of N2 and CO2, with very minor CH4 in Types II inclusions but no N2 or CH4 gases in Type I inclusions. Microprobe analysis of the fluid inclusion decrepitates indicates that the inclusions from Tennant Creek contain sodium and calcium as dominant cations and potassium in a subordinate amount. The high temperatures ( 350 °C), high salinities ( 35 NaCl equiv. wt. %) and cation composition of the Tennant Creek ore fluids suggest that the ore fluids were derived from upward migrating heated basinal brines, although contribution from a magmatic source cannot be ruled out. Close association of vapour-rich Type IIb and salt-rich Type III inclusions in the mineralized ironstones (e.g. Juno, White Devil, Eldorado, TC8 and Gecko K-44) indicates heterogeneous trapping of ore fluids. This heterogeneous trapping is interpreted to be due to unmixing (exsolution) of a gas-rich (e.g. N2) fluid during the upward migration of the metal bearing brines and/or due to degassing caused by reaction of oxidized ore fluids and host ironstones. Fluid inclusion data have important implications regarding the deposition of gold in the ironstones, and may have application in discriminating fertile from barren ironstones.  相似文献   

2.
The Yukeng–Banling deposit is a typical fault-controlled hydrothermal Cu–Au deposit in the Shanmen Volcanic Basin (SVB), SE China. Ore bodies commonly occur as lodes, lenses and disconnected pods dipping SW with vertical zonation of ore minerals. Ore-related hydrothermal alteration is well developed on both sides of the veins, dominated by silicification, sericitization, chloritization and argillation with a banded alteration zonation. The mineralization can be divided into three stages (stages I, II and III). Native gold is present as veinlets in fractures of fine-grained pyrite from stage II.Zircon U–Pb and Rb–Sr isochron ages indicate that the Cu–Au mineralization is coeval with the Caomen alkaline granite and Xiaokeng quartz-diorite, both emplaced at ca. 102 Ma. Microthermometric measurements of fluid inclusions in quartz and sphalerite from stage II veins indicate that the Yukeng–Banling deposit is an epithermal deposit. Six ore-related quartz grains have δDH2O values of − 69 to − 43‰, and δ18OH2O values calculated using total homogenization temperatures that range from − 2.0 to 0.7‰. All samples plot in an area between the magmatic field and the meteoric line, suggesting that the ore-forming fluids are derived from a mixed source of magmatic and meteoric waters. δ34S values for eight pyrite separates range from − 2.1 to + 4.1‰ with an average of + 1.7‰, and δ34S values for galena and sphalerite are 2.3‰ and 2.2‰, similar to magmatic sulfur. Four alkaline granite samples have Pb isotopic ratios (206Pb/204Pb)t = 18.175–18.411, (207Pb/204Pb)t = 15.652–15.672 and (208Pb/204Pb)t = 38.343–38.800. Three quartz-diorite samples have ratios (206Pb/204Pb)t, (207Pb/204Pb)t and (208Pb/204Pb)t of 18.277–18.451, 15.654–15.693 and 38.673–38.846, respectively. These age-calculated lead isotopic data for alkaline granite are similar to those for the analyzed sulfides. Co/Ni ratios for stage II pyrites range from 1.42 to 5.10, indicating that the Yukeng–Banling deposit records the past involvement of magmatic hydrothermal fluids. The isotope data, together with geological, mineralogical and geochronological evidence, favor a primary magmatic source for sulfur and metals in the ore fluids. Mixing of the Cu- and Au-rich fluids with meteoric water led to precipitation of the Cu–Au veins along NW-trending faults.The Yukeng–Banling deposit, the contemporaneous Caomen alkaline granite and Xiaokeng quartz-diorite in the SVB formed under an extensional setting, due to high-angle subduction of the paleo-Pacific plate. The extensional setting facilitated the formation of Cu- and Au-rich magmas which was derived from enriched mantle and lower crust.  相似文献   

3.
Lead isotope compositions of nine sulfide concentrates from ore samples from the Sar-Cheshmeh deposit are reported. They range from virtually unaltered granodiorite through varying degrees of potassic alteration to ores showing strong phyllic alteration (sericite veins). The samples without strong phyllic alteration have fairly uniform lead isotope compositions around 206Pb/204Pb=18.6, 207Pb/204Pb=15.6, and 208Pb/204Pb=38.7. Two samples with sericite veins have markedly more radiogenic lead. It is concluded that the fluid responsible for the potassic alteration and the associated mineralization was essentially magmatic, whereas convecting meteoric water from the country rock acted as a mineralizing solution during phyllic alteration. In the context of the plumbotectonics model, the deposit has a typical orogen signature intermediate between primitive and mature island-arc settings.  相似文献   

4.
The occurrence of Pb–Zn deposits of Jalta district (northern Tunisia) as open space fillings and cements and breccia in the contact zones between Triassic dolostones and Miocene conglomerates along or near major faults provides evidence of the relationship between the mineralization and tectonic processes. Pb isotopes in galena from the deposits yielded average 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of 18.821, 15.676 and 38.837, respectively, implying a well-mixed multi-source upper crustal reservoir of metals. Magmatism and compressional tectonism during the Alpine orogeny favored Pb–Zn mineralization in the Jalta district. The enrichment in Pb, Zn, Cd and Co of the Triassic carbonates and enrichments in Pb, Zn and Cd in Triassic clayey shales is associated with hydrothermal alteration around faults. Alunite in the deposit has δ34S values (−2.5 to −1.5‰ VCDT), which could have been formed at and above the water table in a kind of steam-heated environment, where fluids containing H2S mixed with fluids containing K and Al. The H2S could have been produced by TSR of sulfates at high temperature at depth and then leaked upward through deep-seated faults, whereas the K and Al could have been acid-leached from Miocene volcanic rocks.  相似文献   

5.
The Macquarie Arc of New South Wales hosts several major Au and Cu deposits. We present new Pb isotope results for Cadia, the Copper Hill, Little Copper Hill and Cowal deposits, along with data from the CSIRO database. The results generally plot close to established mantle growth curves and are similar to oceanic basalts. Data for individual deposits mostly have Pb model ages consistent with independent age constraints on mineralization. Intrusions associated with the Early Silurian mineralization at Cadia and Goonumbla have narrow and distinct Pb isotope signatures that we interpret to be the result of partial melting of already LILE-enriched mantle-like sources. The data suggest that deposits of the Macquarie Arc derived Pb from one or more long-lived mantle-like Pb isotope reservoirs without significant contributions of crustal Pb prior to the Benambran Orogeny.Data for the Copper Hill deposits includes unradiogenic, possibly old Pb and supports previous workers who suggested that old MORB-like basalts may occur at depth in the area. The Peak Hill deposit has the most unradiogenic signature and has the lowest 208Pb/204Pb and 207Pb/204Pb. These signatures closely match Cambrian MORB-like basalts in the Koonenberry Belt and are unlike Cambrian mafic rocks in Victoria. Similar rocks could form part of the substrate to other parts of the Macquarie Arc.  相似文献   

6.
Black shales occur widely in the Lower Cambrian and Neoproterozoic strata on the Yangtze Platform, South China. In this study, Lower Cambrian black shales from Xiuning section and Late Neoproterozoic black shales from Weng’an section were studied and Pb isotopic compositions were analyzed following a stepwise acid-leaching technique. The 206Pb/204Pb ratios in both sections show large variations, from 18.906 to 43.737 in the Weng’an section and from 24.811 to 38.110 in the Xiuning section. In contrast, the ranges for 207Pb/204Pb and 208Pb/204Pb values in both sections are relatively smaller from 15.649 to 17.126 and 37.744-38.199 in the Weng’an section, and from 16.034 to 16.783 and 38.602-39.391 in the Xiuning section, respectively. These data yielded two Pb isotope isochron ages of 536±39 and 572±36 Ma, respectively. These ages well accord with other published data and we suggest that they represent the depositional ages for the Lower Cambrian Hetang Formation and the upper Neoproterozoic Doushantuo Formation in South China.  相似文献   

7.
The large-scale Bayanbaolege Ag polymetallic deposit is situated in the Tuquan–Linxi Fe-Sn-Cu-Pb-Zn-Ag metallogenic sub-belt in eastern slopes of the southern Great Xing’an Range, NE China. The sulfide-quartz vein-type orebodies in the deposit are hosted primarily in the Early Cretaceous granodiorite porphyry and Late Permian strata. Three primary paragenetic stages of veining have been identified: (I) arsenopyrite- pyrite-quartz stage, (II) pyrite-sphalerite-quartz stage, and (III) galena-silver minerals (pyrargyrite, argentite, and pearceite)-calcite stage. The Rb–Sr dating of sulfides yielded an isochron age of 129.9 ± 2.9 Ma (MSWD = 2.1) for the sphalerite, which constrains the mineralization age to the Early Cretaceous. Rb and Sr concentrations in the sulfides ranged from 0.0940 to 1.0294 ppm and 0.0950–3.3818 ppm, respectively. The initial 87Sr/86Sr value of the sphalerite was 0.70852 ± 0.00018, indicating that the mineralized materials were derived from the mixed crust-mantle source area. S isotope analysis showed that the δ34S values of the sulfide samples varied in a narrow range, from −1.5‰ to +1.3‰ (mean −0.65‰), indicating a magmatic S source. Pb isotopic ratios of the sulfides (206Pb/204Pb = 18.306–18.416, 207Pb/204Pb = 15.524–15.605, 208Pb/204Pb = 38.095–38.479) and the granodiorite porphyry (206Pb/204Pb = 18.341–18.933, 207Pb/204Pb = 15.539–15.600, 208Pb/204Pb = 38.134–38.944) reflect that the ore-forming materials originated from contemporaneous magma with Early Cretaceous granodiorite porphyry. This study of the Bayanbaolege deposit and other hydrothermal deposits in the area provides compelling evidence that the widespread Mesozoic magmatism and mineralization in the southern Great Xing’an Range occurred in an intracontinental extensional tectonic setting, which was associated with the westward subduction of the paleo-Pacific plate.  相似文献   

8.
The Pb-Zn-Ba(-Ag-Au) mineralization in the Triades and Galana mine areas is hosted in 2.5–1.4 Ma pyroclastic rocks, and structurally controlled mostly by NE-SW or N-S trending brittle faults. Proximal pervasive silica and distal pervasive sericite-illite alteration are the two main alteration types present at the surface. The distribution of mineralization-alteration in the district suggests at least two hydrothermal events or that hydrothermal activity lasted longer at Galana. The Sr isotope signature of sphalerite and barite (87Sr/86Sr = 0.709162 to 0.710214) and calculated oxygen isotope composition of a fluid in equilibrium with barite and associated quartz at temperatures of around 230°C are suggestive of a seawater hydrothermal system and fluid/rock interaction. Lead isotope ratios of galena and sphalerite (206Pb/204Pb from 18.8384 to 18.8711; 207Pb/204Pb from 15.6695 to 15.6976; 208Pb/204Pb from 38.9158 to 39.0161) are similar to those of South Aegean Arc volcanic and Aegean Miocene plutonic rocks, and compatible with Pb derived from an igneous source. Galena and sphalerite from Triades-Galana have δ34SVCDT values ranging from +1 to +3.6‰, whereas barite sulfate shows δ34SVCDT values from +22.8 to +24.4‰. The sulfur isotope signatures of these minerals are explained by seawater sulfate reduction processes. The new analytical data are consistent with a seawater-dominated hydrothermal system and interaction of the hydrothermal fluid with the country rocks, which are the source of the ore metals.  相似文献   

9.
Using the high-precision technique of MC-ICP mass spectrometry, the isotope composition of lead was studied for the first time in sulfides of different mineral associations at the Verninskoe deposit that belong to large gold deposits of the Lena Province. In 23 monofractions of sulfides (pyrite, arsenopyrite, galena, and sphalerite), the Pb-Pb data showed a pronounced heterogeneity of the isotope composition of ore lead (206Pb/204Pb = 18.21–18.69, 207Pb/204Pb = 15.59–15.67, and 208Pb/204Pb = 37.98–38.63) for the deposit as a whole. This heterogeneity is also seen to a lesser degree within individual samples. In this case, a correlation takes place between the isotope composition of ore Pb and the type of mineral association: the sulfides in earlier associations are characterized by lower contents of the 206Pb, 207Pb, and 208Pb radiogenic isotopes compared to the minerals of later parageneses. The comparison of Pb-Pb isotope characteristics of ore mineralization of the Verninskoe deposit to those of the Sukhoi Log deposit (the greatest in the Lena Province) testifies to the geochemical similarity of the sources of ore Pb involved in the formation of these deposits. The sources as such were terrigenous rocks of the Bodaibo synclinorium formed mainly as a result of the disintegration of Precambrian rocks of the Siberian craton.  相似文献   

10.
The western margin of the Yangtze Block hosts the giant Upper Yangtze Pb-Zn metallogenic province, with the occurrence of >400 carbonate-hosted Pb-Zn deposits. More than 50% of these deposits are hosted in carbonate rocks of late Ediacaran to early Cambrian age. Although they have attracted great attention over the past two decades, it is still unclear why such carbonate sequences host so many Pb-Zn deposits and the role that the country rocks played during mineralization. The newly-discovered Maliping Pb-Zn deposit (~6 Mt @ 4.18 wt% Pb and 9.18 wt% Zn) is hosted in early Cambrian strata composed of carbonate and phosphate rocks, black shales, as well as evaporite sulfates, of which the carbonate rocks are the direct ore-hosting rocks. Evidence from mineralogy and the concentrations of ore-forming metals indicate that the phosphate rocks played an important role in providing geochemical barriers during Pb-Zn ore formation. Homogenization temperatures of the primary fluid inclusions in sphalerite and quartz range from 185 to 282 °C, and their salinities vary from 3.39 to 17.17 wt% NaCl equiv. The REE and C-O isotopes imply that the hydrothermal carbonates were formed under relatively oxidizing conditions and that the wall rocks were involved in the Pb-Zn mineralization through dissolution. Sulfur isotopic compositions (δ34S = +7.60–+31.79‰) of sulfides reveal that S2− originated from evaporite sulfates within the ore-hosting strata, and that the black shales acted as an important reducing agent during thermo-chemical reduction (TSR). Pb isotopic ratios of galena (206Pb/204Pb = 17.856–17.973, 207Pb/204Pb = 15.668–15.689 and 208Pb/204Pb = 37.953–38.101) are similar to those of Proterozoic basement rocks in the region. This implies that the basement could be the key source of mineralizing metals. Hence, we propose that: (i) The favorable lithological combination of early Cambrian phosphate rocks, black shales, carbonates and evaporites, as well as Proterozoic basement in the area, were responsible for controlling the majority of Pb-Zn deposits in the late Ediacaran-early Cambrian carbonate sequences in the western Yangtze Block; and (ii) the Maliping Pb-Zn deposit resulted from a combination of mineralized fluids, various trap structures and favorable lithologies, of which the fluids were epigenetic with low to moderate temperatures and salinities.  相似文献   

11.
Lead isotope measurements on gossans may be used as an exploration tool for Pb-Zn-Cu deposits of the “stratiform” type. The method is based on the homogeneous isotopic composition of stratiform orebodies and the close fit of their ratios to the so-called “growth curve”. These features also characterize oxidized outcrops. (gossans) of the primary sulphide ore. The retention of homogeneous Pb isotope ratios during oxidation was tested and proved for true gossans derived from known mineralization in which there was a variation in vertical depth from gossan to primary sulphide, different ages and different geological environments. The deposits included Pb-Zn-Cu (Woodlawn), Pb-Zn (Broken Hill), Zn-Pb (Dugald River), Zn-Cu-Pb (Currawang).The method has been extended to distinguish true gossans from false (pseudo) gossans where the base metals and associated trace elements have been scavenged from the surrounding rocks. It has also been applied to a company exploration program in which a number of ironstone cappings had been drilled and other geochemical information was available. Diamond drilling indicated that five prospects were barren, i.e. underlain by iron sulphides devoid of significant base metal mineralization. On the Pb isotope data, three of the prospects would be rejected; a fourth shows a particularly high potential and is worthy of further exploration, whilst the fifth initially showed high potential but a comparison of gossan and sulphide Pb isotope data after drilling suggests that the drill hole was sited on the fringes of economic mineralization.The Pb isotope method may be utilized further in exploration at the drilling stage. If sulphides are intersected, Pb isotopes may be used to distinguish barren sulphides from those with economic potential, even though they both may contain similar base metal concentrations.  相似文献   

12.
Zijinshan is a large porphyry–epithermal Cu–Au–Mo–Ag ore system located in the Zijinshan mineral field (ZMF) of southwestern Fujian Province, China. Although it is commonly accepted that the early Cretaceous magmatism and the metallogenesis of the mineral field are closely related, the tectonic setting for the ore-forming event(s) has been controversial and regarded as either extensional or subduction-related. New U–Pb zircon geochronology, Sr–Nd–Pb isotopic systematics, and geochemical data presented here from granites and volcanic rocks in the mineral field help to clarify this uncertainty.LA–MC–ICP-MS U–Pb zircon analyses yield weighted mean ages of between ca. 165 and 157 for the monzogranite, ca. 112 Ma for granodiorite, and between ca. 111 and 102 Ma for nine samples of volcanic units in the study area. These dates, integrated with previous geochronological data, indicate that there were two magmatic events in the area during the Middle to Late Jurassic and the Early Cretaceous. Major and trace element geochemistry indicates that these rocks are high-K, calc-alkaline granites, are enriched in LREE and Th, U, Ta, Nd, Sm and Yb, and depleted in Ba, K, Sr, P, Ti and Y. These features are characteristic of volcanic-arc granites or active-continental margin granites. The Middle to Late Jurassic monzogranitic plutons in the region have initial 87Sr/86Sr ratios of 0.7096 to 0.7173, εNdT values of − 10.1 to − 7.6, 206Pb/204Pb isotope ratios of 18.51–18.86, 207Pb/204Pb isotope ratios of 15.64–15.73, and 208Pb/204Pb isotope ratios of 38.76–39.18. The Early Cretaceous granodiorite and volcanic rocks are distinctly different with initial 87Sr/86Sr ratios of 0.7055–0.7116, εNdT values of − 8 to 0.5, 206Pb/204Pb ratios ranging between 18.49 and 19.77, 207Pb/204Pb ratios of 15.63–15.71, and 208Pb/204Pb ratios of 38.71–40.62. These characteristics suggest that the source for the Middle to Late Jurassic monzogranitic plutons is a partially melted Mesoproterozoic substrate, with a minor component from Paleozoic material, whereas the Early Cretaceous granodiorite and volcanic rocks may represent mixing of crustal and mantle-derived melts. It is therefore suggested that the Middle to Late Jurassic monzogranitic plutons, and the Early Cretaceous granodiorite and volcanic rocks in the ZMF are the result of an active continental-margin setting related to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent. Given that the mineralization and the early Cretaceous granodiorite and volcanic rocks in the area are genetically related, the Zijinshan porphyry–epithermal ore system formed in the subduction-related tectonic setting.  相似文献   

13.
The Hammam Zriba F-Ba-(Zn-Pb) ore deposit in the Province of Zaghouan in north-eastern Tunisia is hosted in the shallow dipping unconformity between green marls with chalky biomicritic limestones of Campanian age and Uppermost Jurassic carbonates. The mineralization consists mainly of fluorite and barite with minor sphalerite and galena. Calcite is the main gangue mineral. Two types of Zn-Pb sulfides can be distinguished according to the geometry of the orebodies, i.e., lenticular or stratiform ores, intra-karstic fillings. Sulfur isotope compositions (δ34S) of barite range from 14.7 to 17.2‰, indicating that sulfur was derived from Triassic evaporites and the higher ones (19–25.7‰) are due to reservoir effect associated with thermo-chemical sulfate reduction (TSR) or bacterial sulfate reduction (BSR) under conditions of restricted sulfate supply. δ34S of galena and sphalerite in lenticluar and intra-karstic orebodies range from −13.8 to 2.1‰, and could be explained by multiple sources of reduced sulfur: Triassic evaporites, diagenetic primary sulfides as well as sulfur from organic matter. Both TSR and BSR as potential contributors of sulfur are needed for sulfide precipitation. Lead isotope compositions of galena exhibit very similar: 206Pb/204Pb (18.858–18.876), 207Pb/204Pb (15.667–15.684), and 208Pb/204Pb (38.680–38.747) ratios, and plot between the upper crust and orogene average growth curves, reflecting involvement of a mixing and subsequent homogenization of Pb isotopic compositions of different source Pb reservoirs. The underlying Paleozoic basement rocks were the plausible source of metals. The economic ore (fluorite F1) mineralization was formed during the Eocene-Miocene compressional phase. During this deformation phase, deep-seated basinal brines have been circulated as hydrothermal fluids that have interacted with the Paleozoic rocks, thereby leaching metals, and have been channelized through subsidiary faults associated with the major regional NE–SW-trending deep-seated Zaghouan-Ressas fault. Hydrothermal fluids then migrated to the site of deposition where they got mixed with shallow, cooler, metal-depleted, TSR- and BSR-derived sulfur-rich fluids, which triggered the precipitation of the ores.  相似文献   

14.
Qingdong Zeng    Jianming Liu    Zuolun Zhang    Changshun Jia    Changming Yu    Jie Ye    Hongtao Liu 《Resource Geology》2009,59(2):170-180
The Baiyinnuoer deposit (32.74 Mt ore with grades of 5.44% Zn, 2.02% Pb and 31.36 g t?1 Ag), the largest Zn‐Pb‐Ag deposit in northern China, is hosted by crystalline limestone and slate of the Early Permian Huanggangliang Formation. Detailed cross‐section mapping indicates stratigraphic and fold structural controls on the mineralization. The Zn‐Pb‐Ag mineralization is hosted predominantly by skarn, which occurs as bedding‐parallel lens that pinch out at the margins of the main economic zone. Three skarn stages are identified at the deposit: (i) garnet‐clinopyroxene; (ii) sulfides; and (iii) carbonate‐epidote. Lead isotopic compositions were determined for galena and sphalerite of the ores, whole rock samples of the Yanshanian granite and granodiorite, Permian marble and tuff, and Jurassic volcanic and subvolcanic rocks in and around the Baiyinnuoer area in order to discuss the sources of ore‐forming materials and the relationship between the ore formation and these whole rocks. Galena and sphalerite of the Baiyinnuoer ore have uniform isotopic ratios (206Pb/204Pb, 18.267–18.369; 207Pb/204Pb, 15.506–15.624; 208Pb/204Pb, 38.078–38.394) consistent with the granite and granodiorite (206Pb/204Pb, 18.252–18.346; 207Pb/204Pb, 15.504–15.560; 208Pb/204Pb, 38.141–38.320), whereas the ratios for Jurassic volcanic and subvolcanic rocks are variable and radiogenic (206Pb/204Pb, 18.468–18.614; 207Pb/204Pb, 15.521–15.557; 208Pb/204Pb, 38.304–38.375). These results indicate that the mineralization was not related to the Jurassic volcanism, but to the Yanshanian magmatism. The Permian strata may have a slight contribution to the mineralization. All features show that the Baiyinnuoer deposit is related to the Yanshanian granitic magmatism, and can be classified as a zinc‐lead‐silver skarn deposit.  相似文献   

15.
The Yanjiagou deposit, located in the central North China Craton (NCC), is a newly found porphyry‐type Mo deposit. The Mo mineralization here is spatially associated with the Mapeng batholith. In this study, we identify four stages of ore formation in this deposit: pyrite phyllic stage (I), quartz–pyrite stage (II), quartz–pyrite–molybdenite stage (III), which is the main mineralization stage, and quartz–carbonate stage (IV). We present sulphur and lead isotope data on pyrite, and rhenium and osmium isotopes of molybdenite from the porphyry deposit and evaluate the timing and origin of ore formation. The δ34S values of the pyrite range from ‐1.1‰ to −0.6‰, with an average of −0.875‰, suggesting origin from a mixture of magmatic/mantle sources and the basement rocks. The Pb isotope compositions of the pyrite show a range of 16.369 to 17.079 for 206Pb/204Pb, 15.201 to 15.355 for 207Pb/204Pb, and 36.696 to 37.380 for 208Pb/204Pb, indicating that the ore‐forming materials were derived from a mixture of lower crust (or basement rocks) and mantle. Rhenium contents in molybdenite samples from the main ore stage are between 74.73 to 254.43 ppm, with an average of 147.9 ppm, indicating a mixed crustal‐mantle source for the metal. Eight molybdenite separates yield model ages ranging from 124.17 to 130.80 Ma and a mean model age of 128.46 Ma. An isochron age of 126.7 ± 1.1 Ma (MSWD = 2.1, initial 187Os = 0.0032 ± 0.0012 ppb) is computed, which reveals a close link between the Mo mineralization and the magmatism that generated the Mapeng batholith. The age is close to the zircon U–Pb age of ca. 130 Ma from the batholith reported in a recent study. The age is also consistent with the timing of mineralization in the Fuping ore cluster in the central NCC, as well as the peak time of lithosphere thinning and destruction of the NCC. We evaluate the spatio‐temporal distribution of the Mo deposits in the NCC and identify three important molybdenum provinces along the northern and southern margins of the craton formed during three distinct episodes: Middle to Late Triassic (240–220 Ma), Early Jurassic (190–175 Ma), and Late Jurassic to Early Cretaceous (150–125 Ma). The third period is considered to mark the most important metallogenic event, coinciding with the peak of lithosphere thinning and craton destruction in the NCC. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The southern Great Xing'an Range is one of the most important metallogenic belts in northern China, and contains numerous Pb–Zn–Ag–Cu–Sn–Fe–Mo deposits. The Huanggang iron–tin polymetallic skarn deposit is located in the Sn-polymetallic metallogenic sub-belt. Skarns and iron orebodies occur as lenses along the contact between granite plutons and the Lower Permian Huanggangliang Formation marble or Dashizhai Formation andesite. Field evidence and petrographic observations indicate that the three stages of hydrothermal activity, i.e., skarn, oxide and sulfide stages, all contributed to the formation of the Huanggang deposit.The skarn stage is characterized by the formation of garnet and pyroxene, and high-temperature, hypersaline hydrothermal fluids with isotopic compositions that are similar to those of typical magmatic fluids. These fluids most likely were generated by the separation of brine from a silicate melt instead of being a product of aqueous fluid immiscibility. The iron oxide stage coincides with the replacement of garnet and pyroxene by amphibole, chlorite, quartz and magnetite. The hydrothermal fluids of this stage are represented by L-type fluid inclusions that coexist with V-type inclusions with anomalously low δD values (approximately − 100 to − 116‰). The decrease in ore fluid δ18OH2O values with time coincides with marked decreases in the fluid salinity and temperature. Based on the fluid inclusion and stable isotopic data, the ore fluid evolved by boiling of the magmatic brine. The sulfide stage is characterized by the development of sphalerite, chalcopyrite, fluorite, and calcite veins, and these veins cut across the skarns and orebodies. The fluids during this stage are represented by inclusions with a variable but continuous sequence of salinities, mainly low-salinity inclusions. These fluids yield the lowest δ18OH2O values and moderate δD values ( − 1.6 to − 2.8‰ and − 101 to − 104‰, respectively). The data indicate that the sulfide stage fluids originated from the mixing of residual oxide-stage fluids with various amounts of meteoric water. Boiling occurred during this stage at low temperatures.The sulfur isotope (δ34S) values of the sulfides are in a narrow range of − 6.70 to 4.50‰ (mean =  1.01‰), and the oxygen isotope (δ18O) values of the magnetite are in a narrow range of 0.1 to 3.4‰. Both of these sets of values suggest that the ore-forming fluid is of magmatic origin. The lead isotope compositions of the ore (206Pb/204Pb = 18.252–18.345, 207Pb/204Pb = 15.511–15.607, and 208Pb/204Pb = 38.071–38.388) are consistent with those of K-feldspar granites (206Pb/204Pb = 18.183–18.495, 207Pb/204Pb = 15.448–15.602, 208Pb/204Pb = 37.877–38.325), but significantly differ from those of Permian marble (206Pb/204Pb = 18.367–18.449, 207Pb/204Pb = 15.676–15.695, 208Pb/204Pb = 38.469–38.465), which also suggests that the ore-forming fluid is of magmatic origin.  相似文献   

17.
The isotopic composition of Pb in pyrite of the Mindyak orogenic gold deposit located in the Main Ural Fault Zone, the Southern Urals, has been studied by the high-precision MC-ICP-MS method. Orebodies at the deposit are composed of early pyrite and late polysulfide–carbonate–quartz mineral assemblages. The orebodies are localized in olistostrome with carbonaceous clayey-cherty cement. Pyrites from early and late mineral assemblages are close in Pb isotope ratios. For early pyrite 206Pb/204Pb = 18.250–18.336, 207Pb/204Pb = 15.645–15.653, 208Pb/204Pb = 38.179–38.461; while for late pyrite 206Pb/204Pb = 18.102–18.378, 207Pb/204Pb = 15.635–15.646, 208Pb/204Pb = 38.149–38.320. The model parameters μ2 (238U/204Pb = 9.91 ± 2), ω2 (232Th/204Pb = 38.5 ± 4), and 232Th/238U = 3.88 ± 3 indicate that an upper crustal Pb source played a leading role in ore formation. Carbonaceous shale as an olistostrome cement and syngenetic sulfide mineralization are considered to be the main Pb sources of both early and late mineral assemblages. An additional recept in apparently magmatic lead is suggested for the late veinlet mineralization. The involvement of lead from several sources in ore formation is consistent with the genetic model, which assumes a two-stage formation of orebodies at the Mindyak deposit.  相似文献   

18.
We studied the mineralogic and geochemical features of metasomatic rocks and ores from the Pogromnoe gold deposit, which is unconventional for Transbaikalia. The deposit, which formed in the Early Cretaceous, at the rifting stage of the regional evolution, is localized in the dynamoclastic strata of the Mongol-Okhotsk suture, along which the Siberian continent joined the Mongolia-China continent in the Early-Middle Jurassic. Gold mineralization occurs as two morphologic types of ores: stockwork quartz-carbonate-arsenopyrite-pyrite ores in altered volcanics (orebody no. 1) and veinlet-vein quartz ones (with disseminated sulfides) in altered carbonaceous shales (orebody no. 10). The host rocks of the deposit are the highly altered volcanosedimentary rocks of the Butorovskii Formation (Shadoron Group, J2–3), which transformed into metasomatic (by composition) and dynamoclastic (by texture and structure) rocks. It has been found that the formation of the metasomatic rocks and mineralization proceeded in several stages. Propylites formed at the preore stage (J3); tectonic schists and albitophyres, at the late preore stage; and sericitolites and albite-carbonate-sericite-quartz metasomatic rocks (quartzites), at the synore stage. The 40Ar/39Ar age of the stockwork system of ore-bearing fractures and metasomatic rocks which formed at the late preore stage is estimated as 139.5 ± 1.8 Ma. The gold-bearing rocks at the deposit are the late preore and synore metasomatic rocks formed after volcanics with sulfide mineralization (gold concentrators are pyrite II and III and arsenopyrite I and II) and after altered carbonaceous shales (gold concentrators are vein quartz and arsenopyrite II). Gold grade is completely consistent with silicification, saturation with quartz-sulfide and sulfide microveinlets, and fine sulfide dissemination. By genesis, the Pogromnoe deposit belongs to objects which formed in shear zones with the contribution of gold-bearing mantle fluids. The authors presume that the sources of mineralization are the ore-producing granitoids of the Amudzhikan-Sretensk intrusive assemblage within the Aprelkovo ore-magmatic system (OMS) (Os’kina and Urguchan plutons). This is confirmed by Pb isotope compositions (207Pb/204Pb and 206Pb/204Pb) for the pyrite and arsenopyrite of the Pogromnoe gold-bearing ores, which testify to the widespread occurrence of “mantle” Pb isotope signatures. The 40Ar/39Ar age of the ore-producing granitoids of the Aprelkovo OMS is 131.0 ± 1.2 Ma. Gold in the orebodies occurs in native form and is fine and very fine. By gold grade, the Pogromnoe deposit deserves very close attention as a new commercial type of gold mineralization in Transbaikalia.  相似文献   

19.
The Xujiashan antimony deposit is hosted by marine carbonates of the Upper Sinian Doushantuo and Dengying Formations in Hubei Province, South China. Our Sr isotopic data from pre‐ and syn‐mineralization calcites that host the mineralization show that the pre‐mineralization calcite displays a narrow range of 87Sr/86Sr ratios (0.7096 to 0.7097), similar to the ratios of the Sinian seawater, and high Sr concentrations (2645 to 8174 ppm). In contrast, the syn‐mineralization calcite exhibits low Sr concentrations (785 to 2563 ppm) and high 87Sr/86Sr ratios (0.7109 to 0.7154), which is interpreted as the result of addition of radiogenic strontium during the antimony mineralization. The study of Sr isotopes suggests that their Sr component to the pre‐mineralization calcite derived directly from the host rocks (i.e. the Sinian marine carbonates), while radiogenic 87Sr for the syn‐mineralization calcite derived from the underlying Mesoproterozoic Lengjiaxi Group basement through hydrothermal fluid circulation along the major fault that hosts the mineralization. The Pb isotopic ratios of stibnite are subdivided into two groups (Group A and Group B), Group A is characterized by higher radiogenic lead, with 206Pb/204Pb = 18.874 to 19.288, 207Pb/204Pb = 15.708 to 15.805, and 208Pb/204Pb = 38.642 to 39.001. Group B shows lower lead isotope ratios (206Pb/204Pb = 17.882 to 18.171, 207Pb/204Pb = 15.555 to 15.686, and 208Pb/204Pb = 37.950 to 38.340). The single‐stage model ages of Group A are mainly negative or slightly positive values (‐258 to 3 Ma), while those of Group B range from 636 to 392 Ma, with an average of 495 ± 65 Ma. In addition, there are positive linear correlations among Pb isotopic ratios. These results suggest that the lead of Group A stibnite was mainly derived from the Sinian marine carbonates, and that of Group B stibnite from the underlying Lengjiaxi Group basement. This conclusion is consistent with the results of the Sr isotopes. These results indicate that the Xujiashan deposit is not syngenetic sedimentary and in situ reworked origin as previously considered. The metal (mainly Sb) of this deposit was not only derived from the Sinian host rocks, but also partly derived from the underlying Mesoproterozoic Lengjiaxi Group basement.  相似文献   

20.
Lead isotope analyses were performed on 26 polymetallic massive sulphide deposits of the Iberian Pyrite Belt, as well as on overlying gossans and associated volcanic rocks. All the massive sulphide deposits (except for Neves-Corvo), and nearly all the volcanic rocks show very similar isotopic compositions grouped around 18.183 (206Pb/204Pb), 15.622 (207Pb/204Pb) and 38.191 (208Pb/204Pb), indicating that most of the ore deposit lead was derived from the same continental crust environment as the associated volcanic rocks. The isotopic compositions are representative of the average south Iberian crust during the Devonian to Early Carboniferous (Dinantian), and their constancy implies a homogenization of the mineralizing fluids before the deposition of the massive sulphides from hydrothermal fluids circulating through interconnected regional fracture systems. This isotopic constancy is incompatible with multiple, small, independent hydrothermal cells of the East Pacific Rise type, and fits much better with a model of hydrothermal convections driven by “magmatic floor heating”. Neves-Corvo is the only south Iberian massive sulphide deposit to have a heterogeneous isotopic composition with, in particular, a highly radiogenic stanniferous ore (206Pb/204Pb of the cassiterite is >18.40). A model of lead mixing with three components is proposed to explain these variations: (1) one derived from the Devonian to Early Carboniferous (Dinantian) continental crust that generated all the other massive ores; (2) an Eohercynian stanniferous mineralization partly remobilized during the formation of the massive sulphides, but independent of them; and (3) a Precambrian continental crust component. The juxtaposition of three different sources places Neves-Corvo in a specific paleogeographic situation that could also explain its mineralogical specificity. The geodynamic context that best explains all the obtained isotopic results is one of an accretionary prism. The fact that lead isotope signatures of the gossans are almost identical to those of the underlying massive sulphides means that this technique could be a useful exploration tool for the Iberian Pyrite Belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号