首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《China Geology》2021,4(4):541-552
The intersection of the Kyushu-Palau Ridge (KPR) and the Central Basin Rift (CBR) of the West Philippine Basin (WPB) is a relic of a trench-trench-rift (TTR) type triple-junction, which preserves some pivotal information on the cessation of the seafloor spreading of the WPB, the emplacement and disintegration of the proto-Izu-Bonin-Mariana (IBM) Arc, and the transition from initial rifting to steady-state spreading of the Parece Vela Basin (PVB). However, the structural characteristics of this triple-junction have not been thoroughly understood. In this paper, using the newly acquired multi-beam bathymetric, gravity, and magnetic data obtained by the Qingdao Institute of Marine Geology, China Geological Survey, the authors depict the topographic, gravity, and magnetic characteristics of the triple-junction and adjacent region. Calculations including the upward continuations and total horizontal derivatives of gravity anomaly are also performed to highlight the major structural features and discontinuities. Based on these works, the morphological and structural features and their formation mechanisms are analyzed. The results show that the last episode amagmatic extension along the CBR led to the formation of a deep rift valley, which extends eastward and incised the KPR. The morphological and structural fabrics of the KPR near and to the south of the triple-junction are consistent with those of the western PVB, manifesting as a series of NNE-SSW- and N-S-trending ridges and troughs, which were produced by the extensional faults associated with the initial rifting of the PVB. The superposition of the above two reasons induced the prominent discontinuity of the KPR in deep and shallow crustal structures between 15°N–15°30′N and 13°30′N–14°N. Combined with previous authors’ results, we propose that the stress produced by the early spreading of the PVB transmitted westward and promoted the final stage amagmatic extension of the CBR. The eastward propagation of the CBR destroyed the KPR, of which the magmatism had decayed or ceased at that time. The destruction mechanism of the KPR associated with the rifting of the PVB varies along strike the KPR. Adjacent to the triple-junction, the KPR was destroyed mainly due to the oblique intersection of the PVB rifting center. Whereas south of the triple-junction, the KPR was destroyed by the E-W-directional extensional faulting on its whole width.©2021 China Geology Editorial Office.  相似文献   

2.
本文从泊松定理出发,设计三度体理论模型,运用重磁对应分析方法,研究理论模型的重磁异常相关系数R、斜率B和截距A。由其等值线图得出点、线距的疏密不影响分析窗口半径的选择,确定了分析窗口半径的选择范围在模型半径的1.5倍左右以及截距的变化是剩磁反映的结论。进而从东北地区实际资料的重磁对应分析方法处理中推断出:该区强磁性岩石的剩磁较强,且由重磁异常的斜率B和截距A确定了强磁与剩磁的分布范围。  相似文献   

3.
威德尔海是南极洲最大的边缘海。通过搜集威德尔海的重磁资料、历史文献以及总结前人的相关研究成果,介绍了威德尔海的重磁场基本特征以及指示的构造意义。威德尔海最显著的重力特征是在威德尔海的中北部分布着以鲱骨式结构展布的一系列NW-SE向重力异常,其上可见一系列弧形、上凹的以E-W为主要方向的磁力异常。沿南极半岛陆架边缘的重力高一直可延伸到南侧海域,高值区与陆架平行,但是在磁异常上反映不明显。威德尔海原始海盆的形成约在150 Ma,并伴随南北向张裂,随后在140 Ma发生东西向扩张,到约120 Ma异常形成现代南极洲、非洲和南美洲板块的分布格局,鲱骨式结构异常脊也形成于该时期。  相似文献   

4.
A compilation of new and existing gravity data, as well as geophysical and geological data, is used to assess the cumulative effects of multiple rifting episodes on crustal and upper mantle density structures beneath the Uganda-Kenya-Ethiopia-Sudan border region. This compilation includes new gravity and geological data collected in 1990 in south-western Ethiopia. Variations in the trends and amplitudes of Bouguer gravity anomalies reveal three overlapping rift systems: Mesozoic, Paleogene and Miocene-Recent. Each of these rift systems is a number of 40–100 km long sedimentary basins, and each system is approximately 1000 km long. The Bouguer anomaly patterns indicate that the Ethiopian and East African plateaux and corresponding gravity anomalies are discrete tectonic features. Models of structural and gravity profiles of two basins (Omo and Chew Bahir basins) suggest that pre-Oligocene (Cretaceous?) strata underlie 3 km or more of Neogene-Recent strata within the northern Kenya rift, and that more than 2 km of Neogene-Recent strata underlie parts of the southern Main Ethiopian rift. The superposition of perhaps three rifting episodes in the Lake Turkana (Omo) region has led to 90% crustal thinning (β ≈ 2).  相似文献   

5.
大中条地区重磁场特征及其断裂分布与构造单元   总被引:1,自引:0,他引:1  
冯旭亮 《地质与勘探》2015,51(3):563-572
大中条地区是我国著名的铜、金、铁矿集区,区内各类矿床的分布与该区的构造演化有关,并受构造体系、岩浆活动等地质因素控制。因此,系统研究本区的断裂分布和构造单元是预测隐伏矿床的基础。本文通过对大中条地区重、磁场特征研究,系统推断了该区断裂分布并划分了构造单元。对重、磁场特征的研究表明,布格重力异常与化极磁力异常均呈现东西分带的特征,这是大中条地区前寒武纪、中生代和新生代三期构造演化的综合反映。研究中利用重、磁位场边缘识别技术推断出11条断裂,对断裂的研究表明,大中条地区断裂以NE向和NW向为主,大多形成于元古代和中生代,多数断裂表现出多期活动的特点。综合重、磁场特征,构造演化特征及断裂分布,大中条地区可划分为4个一级构造单元和7个二级构造单元,构造单元控制了矿床的成因和分布。上述研究成果对大中条地区构造划分和矿产资源勘查提供了地球物理依据。  相似文献   

6.
Detailed gravity data were analyzed to constrain two controversial geological models of evaporitic structures within the Triassic diapiric zone (Triassic massifs of Jebel Debadib and Ben Gasseur) of the northern Tunisian Atlas. Based on surface observations, two geological models have been used to explain the origin of the Triassic evaporitic bodies: (1) salt dome/diapiric structure or (2) a “salt glacier”. The gravity analysis included the construction of a complete Bouguer gravity anomaly map, horizontal gravity gradient (HGG) map and two and a half-dimensional (2.5D) forward models. The complete Bouguer gravity anomaly map shows a prominent negative anomaly over the Triassic evaporite outcrops. The HGG map showed the location of the lateral density changes along northeast structural trends caused by Triassic/Cretaceous lithological differences. The modeling of the complete Bouguer gravity anomaly data favored the diapiric structure as the origin of the evaporitic bodies. The final gravity model constructed over Jebel Debadib indicates that the Triassic evaporitic bodies are thick and deeply rooted involving a dome/diapiric structure and that the Triassic material has pulled upward the younger sediment cover by halokinesis. Taking in account kinematic models and the regional tectonic events affecting the northern margin of Africa, the above diapirs formed during the reactive to active to passive stages of continental margin evolution with development of sinks. Otherwise, this study shows that modeling of detailed gravity data adds useful constraints on the evolution of salt structures that may have an important impact on petroleum exploration models.  相似文献   

7.
Ten years after the USAC (U.S.Argentina–Chile) Project, which was the most comprehensive aeromagnetic effort in the Antarctic Peninsula and surrounding ocean basins, questions remain regarding the kinematics of the early opening history of the Weddell Sea. Key elements in this complex issue are a better resolution of the magnetic sequence in the western part of the Weddell Sea and merging the USAC data set with the other magnetic data sets in the region. For this purpose we reprocessed the USAC data set using a continuation between arbitrary surfaces and equivalent magnetic sources. The equivalent sources are located at a smooth crustal surface derived from the existing bathymetry/topography and depths estimated by magnetic inversions. The most critical area processed was the transition between the high altitude survey over the Antarctic Peninsula and the low altitude survey over the Weddell Sea that required downward continuation to equalize the distance to the magnetic source. This procedure was performed with eigenvalue analysis to stabilize the equivalent magnetic source inversion.The enhancement of the Mesozoic sequence permits refining the interpretation of the seafloor-spreading anomalies. In particular, the change in shape and wavelength of an elongated positive in the central Weddell Sea suggests that it was formed during the Cretaceous Normal Polarity Interval. The older lineations in the southwestern Weddell Sea are tentatively attributed to susceptibility contrasts modeled as fracture zones. Numerical experimentation to adjust synthetic isochrons to seafloor-spreading lineations and flow lines to fracture zones yields stage poles for the opening of the Weddell Sea since 160 Ma to anomaly 34 time. The corresponding reconstructions look reasonable within the known constraints for the motions of the Antarctic and South America plates. However, closure is not attained between 160 and 118 Ma if independent published East Antarctica–Africa–South America rotations are considered. The lack of closure may be overcome by considering relative motion between the Antarctic Peninsula and East Antarctica until 118 Ma time, an important component of convergence.  相似文献   

8.
From analysis of the geological and geophysical data (gravity, magnetic, seismic and petrophysics), we propose that geophysical anomalies are produced by a serpentinized mantle peridotite body (SMPB) situated in the middle to lower crust in the Sulu Belt. The SMPB was formed by crustal emplacement of mantle peridotites accompanied by ultrahigh-pressure (UHP) metamorphism. Our finding suggests an emplacement mechanism for the serpentinized mantle wedge (SMW), early in the subduction process. This is different from the classic view, which holds that the serpentinized forearc mantle is formed by in situ hydration processes (Blakely et al., 2005). The petrophysical properties of the SMPB are similar to those of the serpentinized forearc mantle or SMW in modern subduction-zones worldwide, but the formation mechanisms for SMPB and SMW are different. This observation is important for understanding the geodynamic processes that operated in the large UHP metamorphic belt in the Dabie-Sulu area, eastern China.  相似文献   

9.
A geophysical perspective based on well-acquired gravity, magnetic, and radiometric data provides good insights into the basin architectural elements and tectonic evolution of the Rio do Peixe Basin (RPB), an Early Cretaceous intracontinental basin in the northeast Brazilian rift system, which developed during the opening of the South Atlantic. NW–SE-trending extensional forces acting over an intensively deformed Precambrian basement yielded a composite basin architecture strongly controlled by preexisting, mechanically weak fault zones in the upper crust. Reactivated NE–SW and E–W ductile shear zones of Brasiliano age (0.6 Ga) divided the RPB into three asymmetrical half-grabens (Brejo das Freiras, Sousa, and Pombal subbasins), separated by basement highs of granite bodies that seem to anchor and distinguish the mechanical subsidence of the subbasins. Radiometric and geopotential field data highlight the relationship between the tectonic stress field and the role of a preexisting structural framework inserted in the final rift geometry. The up-to-2000 m thick half-grabens are sequentially located at the inflexion of sigmoidal-shaped shear zones and acquire a typical NE–SW-oriented elliptic shape. The Sousa Subbasin is the single exception. Because of its uncommon E–W elongated form, three-dimensional gravity modeling reveals an E–W axis of depocenters within the Sousa Subbasin framework, in which the eastern shoulders are controlled by NE–SW-trending faults. These faults belong to the Precambrian structural fabric, as is well illustrated by the gamma ray and magnetic signatures of the basement grain. Release faults were identified nearly perpendicular or oblique to master faults, forming marginal strike ramps and horst structures in all subbasins. The emplacement mechanism of Brasiliano granites around the RPB was partially oriented by the same structural framework, as is indicated by the gravity signature of the granitic bodies after removal of the gravity effect of the basin-filling deposits. The RPB major-fault occurrence along the releasing bend of a strong discontinuity – the so-called Portalegre Shear Zone – in addition to the configuration of a gentle crustal thinning, according to gravity field studies, suggests that a crustal discontinuity governs the nucleation of the RPB, followed probably by small displacement in deep crustal levels accommodating low-rate stretching during basin subsidence.  相似文献   

10.
Opening of the Fram Strait gateway: A review of plate tectonic constraints   总被引:1,自引:0,他引:1  
We have revised the regional crustal structure, oceanic age distribution, and conjugate margin segmentation in and around the Lena Trough, the oceanic part of the Fram Strait between the Norwegian–Greenland Sea and the Eurasia Basin (Arctic Ocean). The Lena Trough started to open after Eurasia–Greenland relative plate motions changed from right-lateral shear to oblique divergence at Chron 13 times (33.3 Ma; earliest Oligocene). A new Bouguer gravity map, supported by existing seismic data and aeromagnetic profiles, has been applied to interpret the continent–ocean transition and the influence of Eocene shear structures on the timing of breakup and initial seafloor spreading. Assuming that the onset of deep-water exchange depended on the formation of a narrow, oceanic corridor, the gateway formed during early Miocene times (20–15 Ma). However, if the initial Lena Trough was blocked by terrigenous sediments or was insufficiently subsided to allow for deep-water circulation, the gateway probably formed with the first well developed magnetic seafloor spreading anomaly around Chron 5 times (9.8 Ma; Late Miocene). Paleoceanographic changes at ODP Site 909 (northern Hovgård Ridge) are consistent with both hypotheses of gateway formation. We cannot rule out that a minor gateway formed across stretched continental crust prior to the onset of seafloor spreading in the Lena Trough. The gravity, seismic and magnetic observations question the prevailing hypotheses on the Yermak Plateau and the Morris Jesup Rise as Eocene oceanic plateaus and the Hovgård Ridge as a microcontinent.  相似文献   

11.
A.K. Martin   《Tectonophysics》2007,445(3-4):245-272
A model has been developed where two arc-parallel rifts propagate in opposite directions from an initial central location during backarc seafloor spreading and subduction rollback. The resultant geometry causes pairs of terranes to simultaneously rotate clockwise and counterclockwise like the motion of double-saloon-doors about their hinges. As movement proceeds and the two terranes rotate, a gap begins to extend between them, where a third rift initiates and propagates in the opposite direction to subduction rollback. Observations from the Oligocene to Recent Western Mediterranean, the Miocene to Recent Carpathians, the Miocene to Recent Aegean and the Oligocene to Recent Caribbean point to a two-stage process. Initially, pairs of terranes comprising a pre-existing retro-arc fold thrust belt and magmatic arc rotate about poles and accrete to adjacent continents. Terrane docking reduces the width of the subduction zone, leading to a second phase during which subduction to strike-slip transitions initiate. The clockwise rotated terrane is caught up in a dextral strike-slip zone, whereas the counterclockwise rotated terrane is entrained in a sinistral strike-slip fault system. The likely driving force is a pair of rotational torques caused by slab sinking and rollback of a curved subduction hingeline.By analogy with the above model, a revised five-stage Early Jurassic to Early Cretaceous Gondwana dispersal model is proposed in which three plates always separate about a single triple rift or triple junction in the Weddell Sea area. Seven features are considered diagnostic of double-saloon-door rifting and seafloor spreading:
i) earliest movement involves clockwise and counterclockwise rotations of the Falkland Islands Block and the Ellsworth Whitmore Terrane respectively;
ii) terranes comprise areas of a pre-existing retro-arc fold thrust belt (the Permo-Triassic Gondwanide Orogeny) attached to an accretionary wedge/magmatic arc; the Falklands Islands Block is initially attached to Southern Patagonia/West Antarctic Peninsula, while the Ellsworth Whitmore Terrane is combined with the Thurston Island Block;
iii) paleogeographies demonstrate rifting and extension in a backarc environment relative to a Pacific margin subduction zone/accretionary wedge where simultaneous crustal shortening occurs;
iv) a ridge jump towards the subduction zone from east of the Falkland Islands to the Rocas Verdes Basin evinces subduction rollback;
v) this ridge jump combined with backarc extension isolated an area of thicker continental crust — The Falkland Islands Block;
vi) well-documented EW oriented seafloor spreading anomalies in the Weddell Sea are perpendicular to the subduction zone and propagate in the opposite direction to rollback;
vii) the dextral strike-slip Gastre and sub-parallel faults form one boundary of the Gondwana subduction rollback, whereas the other boundary may be formed by inferred sinistral strike-slip motion between a combined Thurston Island/Ellsworth Whitmore Terrane and Marie Byrd Land/East Antarctica.
Keywords: Gondwana breakup; Double-saloon-door seafloor spreading; Plate tectonics; Backarc basin; Subduction rollback; Opposite rotations of terranes  相似文献   

12.
Based on the high accuracy airborne gravity and magnetic data of South Yellow Sea, combined with the characteristics of gravitational and magnetic field and geophysical properties, the authors analyzed the matched filtering through radially averaged logarithmic power spectrum to separate and extract the gravity and magnetic anomaly caused by the interfacial fluctuation of marine strata. And the depth of the marine strata interface of South Yellow Sea was interpreted by the tangent and Vaquier methods. The authors also compiled the depth of the bottom and top interface of the marine strata after geological and geophysical interpretations. In addition, a preliminary division of South Yellow Sea marine strata tectonic units was carried out and the strata distribution was also discussed. The central depression and southern depression of Subei- South Yellow Sea depression area were developed on the strongly magnetic basement, with weak tectonic deformation. The marine strata remain intact with a shallow depth of 4 km to 8 km. South Yellow Sea is the oil and gas exploration area with great resource potential.  相似文献   

13.
基于南黄海海域实测高精度航空重、磁数据,结合航空重、磁场及物性特征,通过平均对数功率谱分析匹配滤波方法技术,对南黄海海相地层界面起伏引起的重、磁异常特征进行分离、提取,采用切线法和外奎尔法计算海相地层界面的深度,经地质和地球物理综合解释,编制了南黄海海相地层底界面、顶界面深度图及海相地层厚度图。在此基础上,初步划分了南黄海海相地层构造单元,探讨了南黄海海相地层的分布特征。苏北—南黄海坳陷区的中部坳陷和南部坳陷均发育在强磁性基底之上,构造变形较弱,海相地层保存完整,埋藏浅,厚度为4~8 km,是南黄海地区具有较大资源潜力的油气勘探区。  相似文献   

14.
The study region forms the western part of the Madurai block (southern block) and shares several lithological characteristics of the Proterozoic exhumed South Indian Granulite Terrain (SGT). The crustal structure of the area has been derived from gravity data, constrained partly by aeromagnetic data. The Bouguer anomaly map of the region prepared based on detailed gravity observations shows a number of features (i) the Periyar lineament separates two distinctly different gravity fields, one, a high gravity gradient tending to be positive towards the coast in south west and significant gravity lows ranging from − 85 to as low as − 150 mGal in the NE covering a large part of the Periyar plateau (ii) within the broad gravity low, three localised circular anomalies of considerable amplitude occur in the region of Munnar granite. A magnetic low region in the central part coincides with the area of retrogressed charnockites and the major lineaments suggestive of a genetic link and considerable downward extent. The crustal models indicate that the upper layer containing exhumed lower crustal rocks (2.76 gm/cc) is almost homogeneous, most part of the gravity field resulting from variations in intracrustal layers of decharnockitised hornblendic gneisses and granite bodies. Below it, a denser layer (2.85 gm/cc) of unknown composition exists with Moho depth ranging from 36 to 41 km. The structure below the region is compared with that of two other segments of the SGT from which it differs markedly. The Wynad plateau forming the western part of the Northern Block of the SGT is characterised by a heterogeneity due to the presence of contrasting crustal blocks on either side of the Bavali shear zone, possibly a westward extension of the Moyar shear zone and presence of high density material in the mid-to-lower crustal portions. The crust below the Kuppam–Palani transect has a distinctive four-layer structure with a mid-crustal low density layer. The differences in crustal structure are consistent with the different tectonic settings of the three regions discussed in the paper. It is suggested that the crustal structure below the Kuppam–Palani transect corridor is not representative of the SGT as a whole, an aspect of great relevance to intra-continental comparisons and trans-continental reconstructions of continent configurations of the Gondwanaland.  相似文献   

15.
胡森清  明彦伯  姚刚 《世界地质》2018,37(2):579-584
针对现有重磁构造识别深部地质体分辨率低的情况,提出改进局部相位边界识别技术,采用不同阶水平导数的比值函数有效地均衡不同深度构造的响应,提高了对深部地质体的分辨能力。理论模型试验表明改进局部相位边界识别技术能更加清晰和准确地识别地质体边界,且受噪声干扰较小。利用改进局部相位边界识别技术对东海陆架盆地重磁数据进行构造识别,并比照欧拉反褶积结果进行断裂划分,结合东海基底反演结果和地质资料给定东海陆架盆地的边界和主干构造格架。  相似文献   

16.
The seismically active Marmara region, located in NW Turkey, lies on the westward end of the North Anatolian Fault (NAF). The NAF is well defined on land. Previous investigations of its extension in the Marmara Sea include marine bathymetry, seismological activity and seismic profiles. In this study, faults and their configurations identified inland are extended into the Marmara Sea by means of aeromagnetic anomalies, as well as seismic and gravity profiles. The deep structure was resolved by constructing a map of the Tertiary bottom. Shallow Curie isotherm was determined by spectral analysis, indicating a thinner crust in the northern Marmara depression area with respect to the continental crust. A combination of the geophysical data allows us to propose the existence of subsidence and isostatic equilibrium in the northern Marmara Sea. A less-active zone identified in the central high zone dividing the Marmara Sea into two parts may also be deduced from the seismic data. This structural arrangement may play a key role in earthquakes that will affect the surrounding regions.  相似文献   

17.
Episodic plate reorganisations abruptly change plate boundary configurations. To illustrate their role, we review the plate reorganisations that appear in the present-day oceans and in the reconstructed Tethys ocean. These time periods cover the dispersal of the Pangea super-continent and the collisions with Eurasia that foreshadow a new super-continent. Plate reorganisations have played a fundamental role in the tectonic history of the Earth, being responsible for continental break-up and, after oceanic spreading, for continental collisions. As a result, they governed the formation and dispersal of super-continents. We observe a bulk polarity in plate motion that governs continental collision and the opposite bulk polarity in plate reorganisation that governs continental break-up. Such opposite polarities show in the tectonic history that we follow since the 550 Ma formation of the Gondwana super-continent.In order to decipher the rules that govern plate reorganisation, we investigate the distribution of spreading and subduction that derives from the current plate motion. We observe a mismatch between the evolution tendency of the plate boundary network and convection in the deep mantle. The actual network of plate boundaries illustrates a compromise between the two. Based on the opposite polarities in plate motion and plate reorganisation, we propose that this compromise is maintained by plate reorganisations that counterbalance free evolution of the network in abruptly changing its boundaries. We propose that plate reorganisations are basically caused by the mismatch between the free evolution of the plate boundary network and the current convection pattern in the deep mantle.Evidence on Proterozoic rifting and continent collisions allows dating the oldest known plate reorganisation around 2 Ga, which is the age of the oldest known super-continent. Based on the geology of the Archean before 3 Ga, mantle convection appears limited under a greenstone cover and different from the current mantle convection. The distribution of the diapiric granitoids that intrude this cover points to a honeycomb convection centred on downwelling sites separated by diffuse upwelling, which fits the theory on the early Earth mantle convection when plates did not cover the globe. We propose that the plate reorganisation regime appeared sometime between 3 and 2 Ga.  相似文献   

18.
《China Geology》2021,4(4):553-570
The southern part of the Kyushu-Palau Ridge (KPR) is located at the conjunction of the West Philippine Basin, the Parece Vela Basin, the Palau Basin, and the Caroline Basin. This area has extremely complex structures and is critical for the research on the tectonic evolution of marginal seas in the Western Pacific Ocean. However, only few studies have been completed on the southern part, and the geophysical fields and deep structures in this part are not well understood. Given this, this study finely depicts the characteristics of the gravity and magnetic anomalies and extracts information on deep structures in the southern part of the KPR based on the gravity and magnetic data obtained from the 11th expedition of the deep-sea geological survey of the Western Pacific Ocean conducted by the Guangzhou Marine Geological Survey, China Geological Survey using the R/V Haiyangdizhi 6. Furthermore, with the data collected on the water depth, sediment thickness, and multichannel seismic transects as constraints, a 3D density model and Moho depths of the study area were obtained using 3D density inversion. The results are as follows. (1) The gravity and magnetic anomalies in the study area show distinct zoning and segmentation. In detail, the gravity and magnetic anomalies to the south of 11°N of the KPR transition from high-amplitude continuous linear positive anomalies into low-amplitude intermittent linear positive anomalies. In contrast, the gravity and magnetic anomalies to the north of 11°N of the KPR are discontinuous and show alternating positive and negative anomalies. These anomalies can be divided into four sections, of which the separation points correspond well to the locations of deep faults, thus, revealing different field-source attributes and tectonic genesis of the KPR. (2) The Moho depth in the basins in the study area is 6–12 km. The Moho depth in the southern part of KPR show segmentation. Specifically, the depth is 10–12 km to the north of 11°N, 12–14 km from 9.5°N to 11°N, 14–16 km from 8.5°N to 9.5°N, and 16–25 km in the Palau Islands. (3) The KPR is a remnant intra-oceanic arc with the oceanic-crust basement.which shows noticeably discontinuous from north to south in geological structure and is intersected by NEE-trending lithospheric-scale deep faults. With large and deep faults F3 and F1 (the Mindanao fault) as boundaries overall, the southern part of the KPR can be divided into three zones. In detail, the portion to the south of 8.5°N (F3) is a tectonically active zone, the KPR portion between 8.5°N and 11°N is a tectonically active transition zone, and the portion to the north of 11°N is a tectonically inactive zone. (4) The oceanic crust in the KPR is slightly thicker than that in the basins on both sides of the ridge, and it is inferred that the KPR formed from the thickening of the oceanic crust induced by the upwelling of deep magma in the process of rifting of remnant arcs during the Middle Oligocene. In addition, it is inferred that the thick oceanic crust under the Palau Islands is related to the constant upwelling of deep magma induced by the continuous northwestward subduction of the Caroline Plate toward the Palau Trench since the Late Oligocene. This study provides a scientific basis for systematically understanding the crustal attributes, deep structures, and evolution of the KPR.©2021 China Geology Editorial Office.  相似文献   

19.
银坑示范区位于中国东南部南岭东段于都—赣县矿集区内的银坑镇,具有良好的找矿前景。该区花岗岩与成矿关系密切。因此,系统探查花岗岩体分布是深部找矿的关键问题之一。笔者主要利用重力、磁力平面资料,并结合物性、地质、电法、地震等资料,综合研究了该区花岗岩空间分布特征。首先研究推断了该区6个花岗岩体的平面分布,其中,江背岩体、长潭岩体、高山角岩体为部分隐伏岩体;柳木坑岩体、葛凹圩浅部岩体和葛凹圩深部岩体为完全隐伏岩体。6个岩体总体走向为NE和NNE向。然后利用研究区内4条剖面重(磁)资料反演了花岗岩的空间分布,进一步揭示了上述6个岩体的空间分布特征,其推断成果与利用平面重、磁资料推断成果一致,也与电法、地震剖面解释结果一致。  相似文献   

20.
The assembly of the crystalline basement of the western Barents Sea is related to the Caledonian orogeny during the Silurian. However, the development southeast of Svalbard is not well understood, as conventional seismic reflection data does not provide reliable mapping below the Permian sequence. A wide-angle seismic survey from 1998, conducted with ocean bottom seismometers in the northwestern Barents Sea, provides data that enables the identification and mapping of the depths to crystalline basement and Moho by ray tracing and inversion. The four profiles modeled show pre-Permian basins and highs with a configuration distinct from later Mesozoic structural elements. Several strong reflections from within the crystalline crust indicate an inhomogeneous basement terrain. Refractions from the top of the basement together with reflections from the Moho constrain the basement velocity to increase from 6.3 km s−1 at the top to 6.6 km s−1 at the base of the crust. On two profiles, the Moho deepens locally into root structures, which are associated with high top mantle velocities of 8.5 km s−1. Combined P- and S-wave data indicate a mixed sand/clay/carbonate lithology for the sedimentary section, and a predominantly felsic to intermediate crystalline crust. In general, the top basement and Moho surfaces exhibit poor correlation with the observed gravity field, and the gravity models required high-density bodies in the basement and upper mantle to account for the positive gravity anomalies in the area. Comparisons with the Ural suture zone suggest that the Barents Sea data may be interpreted in terms of a proto-Caledonian subduction zone dipping to the southeast, with a crustal root representing remnant of the continental collision, and high mantle velocities and densities representing eclogitized oceanic crust. High-density bodies within the crystalline crust may be accreted island arc or oceanic terrain. The mapped trend of the suture resembles a previously published model of the Caledonian orogeny. This model postulates a separate branch extending into central parts of the Barents Sea coupled with the northerly trending Svalbard Caledonides, and a microcontinent consisting of Svalbard and northern parts of the Barents Sea independent of Laurentia and Baltica at the time. Later, compressional faulting within the suture zone apparently formed the Sentralbanken High.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号