首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A total magnetic intensity, iso-magnetic map is presented and discussed. Between East London and Durban large east-west trending anomalies are known on land and can be traced onto the continental shelf but not beyond the slope. Elsewhere the continental shelf is characterized by a remarkably quiet magnetic field. A feature of the map is the linear anomaly, named the Cape Slope Anomaly, which is parallel to the continental margin and coincides approximately with the 68° small circle about the early pole of opening for the South Atlantic as given by Le Pichon and Hayes (1971). The anomaly is traced between 30°54S, 30°48E and 37°45S, 20°31E and is interpreted as occurring over the truncated edge of a semi-infinite, sub-horizontal, remanently magnetized plate in oceanic crust beyond the continental margin.Between 37°03S, 21°49E and 37°41S, 21°12E the Slope Anomaly occurs over a ridge named the Agulhas Ridge. A continuous seismic reflection profile over the ridge shows acoustic basement occurring under a cover of sediments. A two dimensional model study indicates that the basement materials may belong to the body causing the anomaly with the exception of the basement material that forms the landward peak of the ridge, which is non-magnetic.  相似文献   

2.
The bacterial populations of mangrove swamps of Killai backwaters (11°21–11°29N, 79°46–79°50E, South India) were studied during August 1968 (Pre monsoon period) and December (post monsoon period). The presence of these groups such as agar digesters, algin digesters, cellulose digesters, sulphate reducers etc., bring about transformation of organic matter in the mangrove swamps. The presence of denitrifiers in mangrove swamps and in association with the molluscs may bring about the precipitation of calcium carbonate by removing the acid radicals such as sulphate and nitrite, increasing alkalinity. The luminiscent bacteria such asVibrio andAeromonas were also isolated in mangrove swamps of Killai backwaters. The iron bacteria likeLeptothrix sp. andGallionella sp. were also isolated from mangrove swamps of Killai backwaters.  相似文献   

3.
Hekinian  R.  Juteau  T.  Gràcia  E.  Sichler  B.  Sichel  S.  Udintsev  G.  Apprioual  R.  Ligi  M. 《Marine Geophysical Researches》2000,21(6):529-560
The St. Paul F.Z. is a large structural domain made up of multiple transform faults interrupted by several Intra-Transform Ridge (ITR) spreading segments. Two regions were studied in details by submersible: (1) The ITR short (<20 km in length) segment near 0° 37N–25° 27W and 1° N–27° 42W and (2) The St. Peter and St. Paul's Rocks (SPPR) massif located at 29° 25W (¡3700 m depth). (1) The short ITR segments consist of a magma starved rift valley with recent volcanic activities at 4700 m depth. A geological profile made along the rift valley wall showed localized volcanics (basalts and dykes) which are believed to overlay and intrude the ultramafics. The geological setting and the high ultramafic/volcanic ratio suggest an extremely low magmatic supply and crustal-mantle uplift during lithospheric stretching and denudation. (2) The St. Peter and St. Paul's Rocks (SPPR) massif consists of a sigmoidal ridge within the active transform zone. The SPPR is divided into two different geological domains called the North and the South Ridges. The North Ridge consists of strongly tectonized fault scarps composed of banded and mylonitized peridotite, sporadic gabbros (3900–2500 m) and metabasalts (2700–1700 m). The South Ridge is less tectonized with undeformed, serpentinized spinel lherzolite (2000–1400 m) and basalts. Extensional motion and denudation accompanied by diapirism affected the South Ridge within a transform domain. Instead, the North Ridge was formed during an important strike-slip and faulting motion resulting in the uplifted portion of the St. Paul F.Z. transverse ridge. There is a regional compositional variation of the volcanics where E-MORBs and alkali basalts are produced on the SPPR massif and are comparable to the adjacent northern segments of the Mid-Atlantic Ridge. On the other hand, N and T- MORBs collected from the eastern part of the St. Paul F.Z. (25° 27W IRT) are similar to the volcanics from the southern segments of the MAR. The peridotites exposed in these provinces (SPPR and ITR) are similar in their REE and trace element distribution. Different degrees (3–15%) of partial melting of a mixed composite mantle consisting of spinel and amphibole bearing lherzolite veined with 5–40% clinopyroxenite gave rise to the observed MORBs and alkali basalts.  相似文献   

4.
Miranda  J.M.  Silva  P.F.  Lourenço  N.  Henry  B.  Costa  R.  Saldanha Team  the 《Marine Geophysical Researches》2002,23(4):299-318
We present a study of the magnetic properties of a group of basalt samples from the Saldanha Massif (Mid-Atlantic Ridge – MAR – 36° 33 54 N, 33° 26 W), and we set out to interpret these properties in the tectono-magmatic framework of this sector of the MAR. Most samples have low magnetic anisotropy and magnetic minerals of single domain grain size, typical of rapid cooling. The thermomagnetic study mostly shows two different susceptibility peaks. The high temperature peak is related to mineralogical alteration due to heating. The low temperature peak shows a distinction between three different stages of low temperature oxidation: the presence of titanomagnetite, titanomagnetite and titanomaghemite, and exclusively of titanomaghemite. Based on established empirical relationships between Curie temperature and degree of oxidation, the latter is tentatively deduced for all samples. Finally, swath bathymetry and sidescan sonar data combined with dive observations show that the Saldanha Massif is located over an exposed section of upper mantle rocks interpreted to be the result of detachment tectonics. Basalt samples inside the detachment zone often have higher than expected oxidation rates; this effect can be explained by the higher permeability caused by the detachment fault activity.  相似文献   

5.
Mid-depth circulation of the Shikoku Basin was measured by tracking four SOFAR floats drifting at the 1,500 m layer. Two floats were released on 17 April 1988 at 30°N, 135°59E and tracked for 433 days. Another two were released on 3 November 1988 at 29°52N and 133°25E, and tracked for 234 days. Two floats flowed clockwise around the Shikoku Warm Water Mass with a diameter of 400 km centered at 31°N and 136°E and a mean drift speed of 4.5 cm sec–1. One of the floats showed about ten counterclockwise rotations with a period of about 8 days and a maximum speed of 80 cm sec–1 in the sea area west to the Izu Ridge. In the east to Kyushu, a southward flow was observed under the northward flowing Kuroshio. The southward flow of 4 cm sec–1 drift speed was considered to be a part of the counterclockwise circulation at deep layers along the perimeter of the Shikoku Basin. One float remained for 234 days in a limited area of 100 km by 150 km in the western part of the basin.  相似文献   

6.
The north/south-trending Panama Fracture Zone forms the present eastern boundary of the Cocos Plate, with the interplate motion being right-lateral strike-slip. This fracture zone is composed of at least four linear troughs some hundreds of kilometers in length. Separate active or historic faults undoubtedly coincide with each trough. The greatest sediment fill is found in the easternmost trough. Surface and basement depths of the western trough are generally greater than those of the other three; the western trough contains the least sediment, and is most continually linear. Morphology and sediments suggest that the principal locus of strike-slip movement within the fracture zone probably migrated incrementally westward from one fault-trough to another. From north to south, the fracture zone apparently narrows from the continental intersection to approximately 5°30N, and again widens from about 5°N to at least 3°N. Residual E/W-trending magnetic anomalies are centered between two of the four troughs; sea floor spreading in a north-south direction is interpreted to have occurred between 5°30N and 7°N from 4.5 m.y. ago to 2 m.y. ago, with the symmetric center roughly coinciding with a rift valley at 6°10N, 82°30W.  相似文献   

7.
Total magnetic intensity and bathymetric surveys were carried out in the northern Bay of Bengal between 6° to 11° 45 N latitudes and east of 84° to 93° 30 E longitudes. The hitherto known 85° E Ridge is characterised as a subsurface feature by a large amplitude, positive magnetic anomaly surrounded by Mesozoic crust. A newly identified NE to NNESSW trending magnetic anomaly between 7° N, 87° 30 E and 10° 30 N, 89–90° E may be one of the unidentified Mesozoic lineations in the northern Bay of Bengal. The Ninetyeast Ridge is not associated with any recognizable magnetic anomaly. The Sunda Trough to the east of the Ninetyeast Ridge is characterised by a positive magnetic anomaly. A combined interpretation, using Werner deconvolution and analytical signal methods, yields basement depths ~ 10 km below sea level. These depths are in agreement with the seismic results of Curray (1991).Deceased 24 December 1991  相似文献   

8.
The downward short- and long-wave radiation fluxes at the sea surface (S, L) were measured aboard the R/VHakuho Maru, University of Tokyo, for the period of 117 days on six cruises from 1981 to 1985 in the western North Pacific near Japan. The upward fluxes of short- and long-wave radiation (S, L) were calculated by Payne's (1972) table and the Stefan-Boltzmann's law, respectively. The sensible and laten heat fluxes (Q h ,Q e ) were also estimated from an aerodynamic bulk method.From April to August, the daily mean value ofS varied with the amplitude of 100200 Wm–2. The value ofS was estimated approximately 6% ofS in all seasons. The difference betweenL andL was so small that the net radiation flux (Q n ) was dominated byS. In addition, the net heat flux at the sea surface was also dominated byS due to small values ofQ h andQ e , and then the ocean was warmed at the rate of 111 Wm–2 in April and 63 Wm–2 in August in the Oyashio Area, and 132 Wm–2 in May and 164 Wm–2 in June in the Kuroshio Area, respectively.From September to March, a remarkable negative correlation between the day to day variation ofS and that ofL was observed except when an intense cold air outbreak occurred. It was found that the correlation was caused by the cloud climatological feature of the western North Pacific in this period.S was not a dominant factor in the net heat flux. The value ofQ h +Q e in the Kuroshio Area ranged from 260 Wm–2 to 630 Wm–2, much larger thanQ n which ranged from –8 Wm–2 to 92 Wm–2 in the leg mean values (each leg period was about 10 days). Then the ocean was cooled at the rate of –160–620 Wm–2 during this period. The net heat flux in the Kuroshio Area averaged over five legs from late November to February was –473 Wm–2. This value is 50100% larger than the climatological values reported so far.The temporal and spatial variability of radiation fluxes and heat fluxes during each leg was also discussed.  相似文献   

9.
Ishiwatari  R.  Hirakawa  Y.  Uzaki  M.  Yamada  K.  Yada  T. 《Journal of Oceanography》1994,50(2):179-195
Organic geochemical study of bulk organic matter (OM), hopanoid hydrocarbon and normal hydrocarbon (C23C35) was conducted for a 936-cm-long sediment core sample from the Oki Ridge of the Japan Sea (Core KH-79-3, C-3; 37°03.5 N, 134°42.6E, water depth 935 m). Stable carbon isotopic ratios were also measured for both bulk OM and individual hydrocarbons. The following results were obtained: (1) The weight ratios of total organic carbon to total nitrogen range from 6.2 to 9.4 in the core. The 13C values of bulk OM range from –25.1–20.7%.. The 13C values of OM in the sections of 140190 cm are lower (–25–24) than those in the other sections (–23–21). This result indicates that OM in the core except for the 140190 cm sections is essentially of marine origin. (2) The 13C value of diploptene (a hopanoid hydrocarbon) in the last glacial maximum (LGM), is –66.3 (vs. PDB), which indicates it originating in methanotrophic bacteria. This result provides evidence to support for the previous ideas (Oba et al., 1980, 1984; Masuzawa and Kitano, 1984) that the bottom waters in the Japan Sea were anoxic in LGM. (3) Long chain (C23C35) n-alkanes of higher-plant wax origin were found throughout the core. Their concentration is high in 140190 cm in depth, suggesting that eolian dust load was high in LGM. (4) The n-alkane/TOC ratio increases with decreasing 13C values of bulk OM. This result indicates that the load of terrestrial (probably eolian dust-derived) OM to the Japan Sea became higher in colder climates. (5) The CPI values of long-chain n-alkanes are different in different 13O stages of paleoclimate, probably reflecting variations in species of terrestrial higher plants as a result of climatological adaptations.  相似文献   

10.
Using a new tool of seafloor characterisation (sonar images from FARA-SIGMA cruise; Needham et al., 1992), coupled with submersible observations (DIVA1 cruise) we compare, at different scales of observation, three contiguous segments of the Mid-Atlantic Ridge, South of the Azores Triple Junction, between 37° N and 38°30 N.The two northernmost segments (38°20 N and Menez-Gwen) show unusual morphological features for the MAR; the rift valley is absent and the present-day magmatism is focused on shallow axial volcanoes. On the third segment (Lucky Strike), the morphology is the one usually found on the MAR. On the Menez-Gwen and 38°20 N segments, volcanic constructional activity can obliterate, during periods of high magmatic supply, the morphology inherited from tectonic activity. The dive results constrain the recent evolution of each segment and show that a temporal variability in volcanic dynamics exists. On the three segments, outcrops of eruptive lavas alternate with large areas of explosive volcanic ejecta. This cycle in volcanic activity is influenced by changes in water depth, both spatially (i.e. between segments) and temporally (i.e. for the same segment through time).Each segment has known a specific history in its accretionary processes with a succession of tectonic and volcanic predominance and changes in its volcanic phases between volcanic ejecta and effusive dynamics.The hydrothermal activity is focused at the central part of each segment and is controlled by the presence of fresh lava and major tectonic features.  相似文献   

11.
The morphotectonic setting of the East Pacific Rise (EPR) between21°12 and 22°40 S and its recent and past hydrothermalactivity were the focus of the Russian R/V Geolog Fersmans expeditionin 1987–1988.The EPR axial zone in the study area is comprised of three segmentsseparated by overlapping spreading centers (OSCs) near 21°44 and22°08 S. The northern segment is the shallowest of three and hasa distinct massive axial ridge, trapeziodal in cross-section, toppedby a very wide flat summit surface and cut by a well-developedcentral graben. These features testify to intense magmatism and to avoluminous crustal magmatic chamber underlying the whole segment.Fine-scale segmentation is most clearly revealed in the structure ofthe central graben within which several 4th-order segments can bedistinguished. This scale of segmentation is also reflected on flanks of theaxis by variations in the character and intensity of faulting.According to structural and petrologic data, the magmatism is mostintense in the central part of the segment which is probably locateddirectly over a magmatic diapir supplying the melt to the whole segment.Magma migration at the subcrustal level from the center towards the ends ofthe segment with discrete injection into the crustal magmatic chamber ispresumed.The central segment is broken into two morphologically distinct partsseparated by a deval. In the subsided northern part, the wide summit of theaxial ridge is cut by a well-developed, intensely fractured axialgraben. In the southern part, the axial ridge is relatively elevated, butnarrow with an ephemeral graben along its crest. The character and intensityof faulting on the axial flanks are also considerably different in thenorthern and southern parts of the segment. Thus, the magmatic supply tothese two parts is thought to originate from two different sources. If so,then at present the magma chamber underlying the southern part of thesegment is probably at the stage of replenishment, while in the north it isat the stage of deep cooling.The southern segment is structurally similar to the central one. Howeverthere is considerably less intensive magmatic activity in this region,especially south of 22°30 S where the axial ridge is narrow, andtriangular in cross-section.Both OSCs studied are marked by abrupt narrowing and sharp subsidence ofthe tips of axial ridges within the northern limbs. The southern OSC limbsare morphologically similar to normal sections of axial ridges. In bothcases the flanks are structurally and morphologically disrupted adjacent tothe OSCs and oblique structures can be traced far southward of the OSCflanks. Due to the spatial position of oblique structures on the the flanksit is presumed that the OSC near 22°07 S is migrating northward.The 21°44 S OSC zone has apparently undergone small spatialoscillations. In spite of the small amplitude of lateral displacement, thiszone is marked by prominent bathymetric anomalies.Numerous massive sulfide deposits were discovered atop the axial ridgealong the entire length of the uplifted and hydrothermally active northernsegment. Ore metal concentrations in near-bottom waters are maximumover the southern part of the northern segment, while maximum concentrationsof the same metals in surficial sediments are confined to the central partof the same segment. We surmise that there has been a recentalong-axis shift of the zone of maximum hydrothermal activity fromthe middle of the segment to its present position in the southern part ofthe segment. Considering sedimentation rates, the age of this shift can beapproximately estimated to be 5 to 10 thousand years before the present.The relatively Mg-enriched basalts of the middle part of thenorthern segment represent a tike of a more primitive pattern, while therelatively Fe-rich rocks of its southern part probably reflect alarge degree of fractionation at shallow crustal levels. Considering thistrend, in addition to morphotectonic data we presume that subaxial magmaflow from the middle to the southern part of the segment is responsible forthe along-axis shift of hydrothermal activity.In the central segment of the study area, massive sulfides have only beendiscovered south of the 21°55 S deval, where the axial ridgeshoals and where the existence of a subjacent magma chamber is presumed.The very weak manifestations of recent volcanism within the southernsegment explain the absence of hydrothermal activity and sulfide depositswithin this segment.  相似文献   

12.
PCBs, DDT compounds and HCH isomers were detected in the air and surface waters of the North Pacific and Indian Oceans, including the Bering Sea, East China Sea, South China Sea, Bay of Bengal and the Arabian Sea. The general concentrations of each chlorinated hydrocarbon were as follows: water PCBs 0.1 to 1.0, DDT 0.01 to 1.0, HCH 1.0 to 10 ngl –1; air DDT 0.01 to 1.0, HCH 0.1 to 10 ng m–3. PCB concentrations in surface waters were slightly lower than those of the North Atlantic and North Sea previously reported, while DDT concentrations in the air and water were higher. Remarkably high concentrations of DDT and HCH were found in the air off the western coast of India. Also in the Pacific site off Central America, a fairly high concentration of DDT was observed in an air sample. These data suggest that large amounts of DDT and HCH are being used in the tropical zone, especially in southern Asia. Furthermore, high concentrations were observed both in the air and water of the Northwest Pacific between 30°N and 40°N latitude. There is a possibility that both pesticides are not only still being used in lower latitude countries but also in the mid-latitude ones of the Asian continent excluding Japan. In addition to this atmospheric circulation may also contribute to the concentration of these pesticides in the mid-latitudinal zone.  相似文献   

13.
Sea Beam and Deep-Tow were used in a tectonic investigation of the fast-spreading (151 mm yr-1) East Pacific Rise (EPR) at 19°30 S. Detailed surveys were conducted at the EPR axis and at the Brunhes/Matuyama magnetic reversal boundary, while four long traverses (the longest 96 km) surveyed the rise flanks. Faulting accounts for the vast majority of the relief. Both inward and outward facing fault scarps appear in almost equal numbers, and they form the horsts and grabens which compose the abyssal hills. This mechanism for abyssal hill formation differs from that observed at slow and intermediate spreading rates where abyssal hills are formed by back-tilted inward facing normal faults or by volcanic bow-forms. At 19°30 S, systematic back tilting of fault blocks is not observed, and volcanic constructional relief is a short wavelength signal (less than a few hundred meters) superimposed upon the dominant faulted structure (wavelength 2–8 km). Active faulting is confined to within approximately 5–8 km of the rise axis. In terms of frequency, more faulting occurs at fast spreading rates than at slow. The half extension rate due to faulting is 4.1 mm yr-1 at 19°30 S versus 1.6 mm yr-1 in the FAMOUS area on the Mid-Atlantic Ridge (MAR). Both spreading and horizontal extension are asymmetric at 19°30 S, and both are greater on the east flank of the rise axis. The fault density observed at 19°30 S is not constant, and zones with very high fault density follow zones with very little faulting. Three mechanisms are proposed which might account for these observations. In the first, faults are buried episodically by massive eruptions which flow more than 5–8 km from the spreading axis, beyond the outer boundary of the active fault zone. This is the least favored mechanism as there is no evidence that lavas which flow that far off axis are sufficiently thick to bury 50–150 m high fault scarps. In the second mechanism, the rate of faulting is reduced during major episodes of volcanism due to changes in the near axis thermal structure associated with swelling of the axial magma chamber. Thus the variation in fault spacing is caused by alternate episodes of faulting and volcanism. In the third mechanism, the rate of faulting may be constant (down to a time scale of decades), but the locus of faulting shifts relative to the axis. A master fault forms near the axis and takes up most of the strain release until the fault or fault set is transported into lithosphere which is sufficiently thick so that the faults become locked. At this point, the locus of faulting shifts to the thinnest, weakest lithosphere near the axis, and the cycle repeats.  相似文献   

14.
Chlorofluorocarbons (CFC-11 and CFC-12) in the intermediate water having between 26.4 and 27.2 were determined at 75 stations in the western North Pacific north of 20°N and west of 175.5°E in 1993. The intermediate water of 26.4–26.6 was almost saturated with respect to the present atmospheric CFC-11 in the zone between 35 and 45°N around the subarctic front. Furthermore, the ratios of CFC-11/CFC-12 of the water were also of those formed after 1975. These suggest that the upper intermediate water (26.4–26.6) was recently formed by cooling and sinking of the surface water not by mixing with old waters. The water below the isopycnal surface of 26.8 contained less CFCs and the area containing higher CFCs around the subarctic front was greatly reduced. However, the CFC age of the lower intermediate water (26.8–27.2) in the zone around the subarctic front was not old, suggesting that the water was formed by diapycnal mixing of the water ventilated with the atmosphere with old waters not containing appreciable CFCs, probably the Pacific Deep Water. The southward spreading rate decreased with depth and it was one sixth of its eastward spreading rate of the North Pacific Intermediate Water (NPIW).  相似文献   

15.
Six Deep-Tow magnetic profiles across the axis of the East Pacific Rise [EPR] in two small areas between 19°25 and 20°10S were collected during the 1983 Protea 1 cruise of the R/V Melville. These near-bottom profiles are of extremely high resolution allowing the interpretation of very short wavelength features. We have inverted the magnetic field data to determine the rock magnetization distribution near the axis of this ultrafast speading center (162 mm yr-1). The solutions reveal large amplitude (up to 35 A m-1) short wavelength (1–3 km) variations in magnetization. Specifically all crossings show a narrow (0.5 to 1.5 km) low in magnetization superimposed on a broader (2.5 to 4 km) high directly over the ridge axis. Four profiles in the northern area (19°25 to 19°33S) also show symmetrical near-axis (within 4 km) lows which are remarkably continuous along strike. Explanations for the short-wavelength variations are discussed which fall into the following categories: (1) variations in the thickness of the magnetized layer, (2) variations in rock chemistry (e.g. alteration due to hydrothermal activity), and (3) paleofield intensity variations. None of the mechanisms discussed alone adequately explain the observed phenomena in the study area or on a world-wide scale. Further sampling and high resolution surveying will be required in order to accurately determine the relative importance of the mechanisms discussed.  相似文献   

16.
The rift valley at three widely separated sites along the Mid-Atlantic Ridge is characterized using geological and geophysical data. An analysis of bottom photographs and fine-scale bathymetry indicates that each study area has a unique detailed geology and structure. Spreading rates are apparently asymmetric at each site. Relationships between tectonic and volcanic structure and hydrothermal activity show that various stages in the evolution of the rift valley are most favorable for seafloor expression of hydrothermal activity. In a stage found at 26°08 N, site 1 (TAG), the rift valley is narrow, consisting of both a narrow volcanically active valley floor and inner walls with small overall slopes. High-temperature hydrothermal venting occurs along the faster spreading eastern inner wall of this U-shaped rift valley. Site 2 (16°46 N) has a narrow valley floor and wide block faulted walls and is at a stage where the rift valley is characterized by a V-shape. No neovolcanic zone is observed within the marginally faulted, predominantly sedimented floor and hydrothermal activity is not observed. The rift valley at site 3 (14°54 N), with postulated extrusive volcanic activity and a stage in valley evolution tending toward a U-shape, shows evidence of hydrothermal activity within the slightly faster spreading eastern inner wall. Evidence for tectonic activity (inward- and outward-facing faults and pervasive fissuring) exists throughout the wide inner wall. Hydrothermal activity appears to be favored within a U-shaped rift valley characterized by a narrow neovolcanic zone and secondarily faulted inner walls.  相似文献   

17.
The detailed oceanic structure was observed near the shoal Kokusho-sone (3000N, 12830E), which is located near the axis of the Kuroshio in the East China Sea. The detailed temperature cross-sections along the meridian 12830E, which passes over the shoal, strongly suggest that upwelling is forced along the north slope of the shoal. The behavior of the coastal waters near the Kuroshio front and of the cold water belt along the north-western side of the Kuroshio are also discussed.  相似文献   

18.
In 1983 a combined SeaMARC I, Sea Beam swath mapping expedition traversed the East Pacific Rise from 13°20 N to 9°50 N, including most of the Clipperton Transform Fault at 10°15 N, and a chain of seamounts at 9°50 N which runs obliquely to both the ridge axis and transform fault trends. We collected temperature, salinity and magnetic data along the same track. These data, combined with Deep-Tow data and French hydrocasts, are used to construct a thermal section of the rise axis from 13°10 N to 8°20 N.Thermal data collected out to 25 km from the rise axis and along the Clipperton Transform Fault indicate that temperatures above the rise axis are uniformly warmer by 0.065°C than bottom water temperatures at equal depths off the axis. The rise axis thermal structure is punctuated by four distinct thermal fields with an average spacing of 155 km. All four of these fields are located on morphologic highs. Three fields are characterized by lenses of warmed water 20 km in length and 300 m thick. Additional clues to hydrothermal activity are provided in two cases by high concentrations of CH4, dissolved Mn and 3He in the water column and in another case by concentrations of benthic animals commonly associated with hydrothermal regions.We use three methods to estimate large-scale heat loss. Heat flow estimates range from 1250 MW to 5600 MW for one thermal field 25 km in length. Total convective heat loss for the four major fields is estimated to lie between 2100 MW and 9450 MW. If we add the amount of heat it takes to warm the rest of the rise axis (489 km in length) by 0.065.°C, then the calculated axial heat loss is from 12,275 to 38,525 MW (19–61% of the total heat theoretically emitted from crust between 0 and 1 m.y. in age).  相似文献   

19.
Bispectral analysis is applied to records of the vertical profile of the vertical temperature gradient in the oceanic thermocline in the San Diego Trough. The bispectra exhibit three notable features; (1) bispectral peaks at the points (0.2 m–1, 0.2 m–1) and (0.2 m–1, 0.1 m–1), (2) bispectral ridges along the lines ( 1= 0, 2= 0 and 1+ 2= 0 corresponding to peak wavenumbers 0 in power spectra, and (3) array of bispectral peaks of interval of 0.2 m–1 The results are compared with the bispectra of several modeled time series of spike-array type. The periodicity of 5 m found in the records seems to have two meanings: spacing of predominant spikes and wavelength of predominant sinusoidal wave. If this indicates the existence of internal waves having a vertical wavelength the same as the scale of homogeneous layers, it would suggest the possible importance of internal waves in the formation and maintenance mechanisms of oceanic microstructure.  相似文献   

20.
A detailed survey of a 1°×1°-square of seafloor 100 miles south-east of the Azores shows a strong correlation between directions of regional topographic and magnetic lineations. The area is dissected by the East Azores Fracture Zone at 36°55N, identified as the active Eurasian-African plate boundary, and by another large, non-active fracture zone at 36°10N. Both fracture zones strike 265° and are accompanied by large amplitude magnetic anomalies. The general strike in the area in between is 000°–015°. The skewing effect at this magnetic latitude is very sensitive to variations in strike of the magnetic contrasts. This effect was eliminated by a non-linear transformation which also gives the positions of magnetic contrasts. Some N-S contrasts were identified as sea floor spreading polarity contrasts (anomalies 31 and 32). Weak contrasts could be identified as topographic effects and gave a magnetization intensity of 5 A m-1. The identified sea floor spreading anomalies to both sides of the fracture zone at 36°10N agree very well, also quantatively, with a three-dimensional model for the fracture zone anomalies. This model describes the non-linear anomalies as end effects of the magnetic layer which is divided in blocks of alternating polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号