首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies on tidal dynamics of coastal aquifers have focussed on the inland propagation of oceanic tides in the cross-shore direction, a configuration that is essentially one-dimensional. Aquifers at natural coasts can also be influenced by tidal waves in nearby estuaries, resulting in a more complex behaviour of head fluctuations in the aquifers. We present an analytical solution to the two-dimensional depth-averaged groundwater flow equation for a semi-infinite aquifer subject to oscillating head conditions at the boundaries. The solution describes the tidal dynamics of a coastal aquifer that is adjacent to a cross-shore estuary. Both the effects of oceanic and estuarine tides on the aquifer are included in the solution. The analytical prediction of the head fluctuations is verified by comparison with numerical solutions computed using a standard finite-difference method. An essential feature of the present analytical solution is the interaction between the cross- and along-shore tidal waves in the aquifer area near the estuary’s entry. As the distance from the estuary or coastline increases, the wave interaction is weakened and the aquifer response is reduced, respectively, to the one-dimensional solution for oceanic tides or the solution of Sun (Sun H. A two-dimensional analytical solution of groundwater response to tidal loading in an estuary, Water Resour Res 1997;33:1429–35) for two-dimensional non-interacting tidal waves.  相似文献   

2.
This paper documents a numerical modeling study to calculate the residence time and age of dissolved substances in a partially mixed estuary. A three-dimensional, time-dependent hydrodynamic model was established and applied to the Danshuei River estuarine system and adjacent coastal sea in Taiwan. The model showed good agreement with observations of surface elevation, tidal currents and salinity made in 2002. The model was then applied to calculate the residence time and age distribution response to different freshwater discharges with and without density-induced circulations in the Danshuei River estuarine system. Regression analysis of model results reveals that an exponential equation can be used to correlate the residence time to change of freshwater input. The simulated results show it takes approximately 10, 4.5, and 3 days, respectively, for a water parcel that has entered the headwaters of the estuary to be transported out of the estuary under low, mean, and high flow conditions with density-induced circulation. The calculated age with density-induced circulation is less than that without density-induced circulation. The age of the surface layer is less than that at the bottom layer. Overall the study shows that freshwater discharges are the important factors in controlling the transport of dissolved substances in the Danshuei River estuarine system.  相似文献   

3.
A three‐dimensional, time‐dependent hydrodynamic and salinity model was applied to the Danshuei River estuarine system and adjacent coastal sea in Taiwan. The model forcing functions consist of tidal elevations along the open boundary and freshwater flows from the main stem and tributaries in the Danshuei River system. The bottom roughness height was calibrated and verified with model simulation of barotropic flow, and the turbulent diffusivities were calibrated through comparison of time‐series of salinity distributions. The overall model verification was achieved with comparisons of residual current and salinity distribution. The model simulation results are in qualitative agreement with the available field data. The model was then used to investigate the tidal current, residual current, and salinity patterns under the low freshwater flow condition in the modelling domain. The results reveal that the extensive intrusion of saline water imposes a significant baroclinic forcing and induces a strong residual circulation in the estuary. The downriver net velocity in the upper layer increases seaward despite the enlargement of the river cross‐section in that direction. Strong residual circulation can be found near the Kuan‐Du station. This may be the result of the deep bathymetric features there. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
《Journal of Hydrology》2006,316(1-4):163-183
Numerical groundwater modelling is used as the base for sound aquifer system analysis and water resources assessment. In many cases, particularly in semi-arid and arid regions, groundwater flow is intricately linked to salinity transport. A case in point is the Shashe River Valley in Botswana. A freshwater aquifer located around an ephemeral stream is depleted by the combined effect of transpiration and pumping. Quantitative system analysis reveals that the amount of water taken by transpiration is far more than the quantities pumped for water supply. Furthermore, the salinity distribution in and around Shashe River Valley as well as its temporal dynamics can be satisfactorily reproduced if the transpiration is modelled as a function of groundwater salinity. The location and dynamics of the saltwater–freshwater interface are highly sensitive to the parameterization of evaporative and transpirative salt enrichment. An existing numerical code for coupled flow/transport simulations (SEAWAT) was adapted to this situation. Model results were checked against a large set of field data including water levels, water chemistry, isotope data and ground and airborne geophysical data. The resulting groundwater model was able to reproduce the long-term development of the freshwater lens located in Shashe River Valley as well as the decline in piezometric heads observed over the last decade. Furthermore, the old age of the saline water surrounding the central freshwater lens could be explained.  相似文献   

5.
Conceptual models of circulation theorise that the dominant forces controlling estuarine circulation are freshwater discharge from the riverine section (landward), tidal forcing from the ocean boundary, and gravitational circulation resulting from along-estuary gradients in density. In micro-tidal estuaries, sub-tidal water level changes (classified as those with periods between 3 and 10 days) with amplitudes comparable to the spring tidal range can significantly influence the circulation and distribution of water properties. Field measurements obtained from the Swan River Estuary, a diurnal, micro-tidal estuary in south-western Australia, indicated that sub-tidal water level changes at the ocean boundary were predominantly from remotely forced continental shelf waves (CSWs). The sub-tidal water levels had maximum amplitudes of 0.8 m, were comparable to the maximum tidal range of 0.6 m, propagated into the estuary to its tidal limit, and modified water levels in the whole estuary over several days. These oscillations dominated the circulation and distribution of water properties in the estuary through changing the salt wedge location and increasing the bottom water salinity by 7 units over 3 days. The observed salt wedge excursion forced by CSW was up to 5 km, whereas the maximum tidal excursion was 1.2 km. The response of the residual currents and the salinity distribution lagged behind the water level changes by ∼24 h. It was proposed that the sub-tidal forcing at the ocean boundary, which changed the circulation, salinity, and dissolved oxygen in the upper estuary, was due to a combination of two processes: (1) a gravity current generated by a process similar to a lock exchange mechanism and (2) amplified along-estuary density gradients in the upper estuary, which enhanced the gravitational circulation in the estuary. The salt intrusions under the sub-tidal forcing caused the rapid movement of anoxic water upstream, with significant implications for water quality and estuarine health.  相似文献   

6.
This study presents the groundwater flow and salinity dynamics along a river estuary, the Werribee River in Victoria, Australia, at local and regional scales. Along a single reach, salinity across a transverse section of the channel (~80 m long) with a point bar was monitored using time-lapse electrical resistivity (ER) through a tidal cycle. Groundwater fluxes were concurrently estimated by monitoring groundwater levels and temperature profiles. Regional porewater salinity distribution was mapped using 6-km long longitudinal ER surveys during summer and winter. The time-lapse ER across the channel revealed a static electrically resistive zone on the side of the channel with a pronounced cut bank. Upward groundwater flux and steep vertical temperature gradients with colder temperatures deeper within the sediment suggested a stable zone of fresh groundwater discharge along this cut bank area. Generally, less resistive zones were observed at the shallow portion of the inner meander bank and at the channel center. Subsurface temperatures close to surface water values, vertical head gradients indicating both upward and downward groundwater flux, and higher porewater salinity closer to that of estuary water suggest strong hyporheic circulation in these zones. The longitudinal surveys revealed higher ER values along deep and sinuous segments and low ER values in shallow and straighter reaches in both summer and winter; these patterns are consistent with the local channel-scale observations. This study highlights the interacting effects of channel morphology, broad groundwater–surface water interaction, and hyporheic exchange on porewater salinity dynamics underneath and adjacent to a river estuary.  相似文献   

7.
Groundwater flow and chemical transport in subterranean estuaries are poorly understood despite their potentially important implications for chemical fluxes from aquifers to coastal waters. Here, a numerical study of the dynamics in a subterranean estuary subject to tidal forcing is presented. Simulations show that salt transport associated with tidally driven seawater recirculation leads to the formation of an upper saline plume in the intertidal region. Computed transit times and flow velocities indicate that this plume represents a more active zone for mixing and reaction than the dispersion zone of the lower, classical salt wedge. Proper conceptualisation of this surficial mixing zone extends our understanding of processes within the subterranean estuary. Numerical tracer simulations reveal that tidal forcing may reduce the threat of a land-derived contaminant discharging to the marine environment by modifying the subsurface transport pathway and local geochemical conditions. Mixing and stratification in the subterranean estuary are strongly affected by both inland and tidal forcing. Based on the estuarine analogy we present a systematic classification of subterranean estuaries.  相似文献   

8.
We conducted various field studies at the seawater intrusion monitoring wells located in the eastern part of Jeju Island, Korea, to observe the tidal effect on groundwater–seawater flow in the coastal aquifer. Studies included monitoring the fluctuations of groundwater and tide levels, electrical and temperature logging, and 2-D heat-pulse flowmeter tests. According to time-series analysis, tidal effects on groundwater level reached up to 3 km inland from the coastline. Water-level variation was more sensitive to tidal fluctuations near the coast, and more related to rainfall toward inland areas. Temporal and spatial variations in the shape and location of the freshwater–saltwater interface were analyzed using data from nine monitoring wells. The results indicated that the interface toe is located at a distance of 6–8 km from the coastline and its location was related to geological layers present. Long-term seasonal variations revealed no major changes in the interface; minor variations were due to moving boundary conditions induced by tidal fluctuations. Using the two-dimensional heat-pulse flowmeter, groundwater flow directions and velocities at four tidal stages were measured on three monitoring wells drilled into the multilayered aquifers. This direct measurement enabled us to relate the differences of flow velocities and directions with geology and tidal fluctuations. Combining the results of EC logging and flowmeter tests, we found a zone where freshwater and saltwater moved alternately in opposite directions, as influenced by the tidal fluctuations. Integrating various physical logging and flowmeter data with water-level fluctuations improved our understanding of the behavior of fresh and seawater flow in the coastal aquifers.  相似文献   

9.
A layered-aquifer model of groundwater occurrence in an atoll island was tested with a solute-transport numerical model. The computer model used, SUTRA, incorporates density-dependent flow. This can be significant in freshwater-saltwater interactions associated with the freshwater lens of an atoll island. Boundary conditions for the model included ocean and lagoon tidal variations. The model was calibrated to field data from Enjebi Island, Enewetak Atoll, and tested for sensitivity to a variety of parameters. This resulted in a hydraulic conductivity of 10 m day−1 for the surficial aquifer and 1000 m day−1 for the deeper aquifer; this combination of values gave an excellent reproduction of the tidal response data from test wells. The average salinity distribution was closely reproduced using a dispersivity of 0.02m. The computer simulation quantitatively supports the layered-aquifer model, including under conditions of density-dependent flow, and shows that tidal variations are the predominant driving force for flow beneath the island. The oscillating, vertical flow produced by the tidal variations creates an extensive mixing zone of brackish water. The layered-aquifer model with tidally driven flow is a significant improvement over the Ghyben-Herzberg-Dupuit model as it is conventionally applied to groundwater studies for many Pacific reef islands.  相似文献   

10.
River stage fluctuations drive surface water-groundwater exchanges within river corridors. This study evaluates how repeated daily stage fluctuations, representative of hydropeaking conditions, influence aerobic respiration of river-sourced dissolved organic carbon (DOC) in the riparian exchange zone using reactive flow and transport simulations. Over 50 hypothetical scenarios were modelled to evaluate how the duration of the daily flood signal, river DOC concentration, aquifer hydraulic conductivity and ambient groundwater flow condition affect the fate and transport of DOC and DO in the riparian aquifer. Time series subsurface snapshots highlight how the various factors influence the subsurface distribution of DOC and DO. The total mass of DOC respired per meter of river had a wide range depending on the parameters, spanning from 1.4 to 71 g over 24-h, with high hydraulic conductivity and losing ambient groundwater flow conditions favouring the largest amount of DOC respired. The ratio of DOC mass entering the riparian zone with the mass returning to the river showed that as little as 5% to as much as 76% of the DOC that enters the bank during stage fluctuations returns to the river. This return ratio is dependent on river DOC concentration, hydraulic conductivity and ambient groundwater flow. The results illustrate that stage variations due to river regulation can be a significant control on aerobic respiration in riparian exchange zones.  相似文献   

11.
Groundwater salinity is a widespread problem and a challenge to water resources management. It is an increasing concern in the alluvial plains of Delhi and neighbouring Haryana state as well as a risk for agricultural production water supply and sustainable development. This study aims to identify potential sources of dissolved salts and the driving mechanisms of salinity ingress in the shallow aquifer. It combines a comprehensive review of environmental conditions and the analysis of groundwater samples from 25 sampling points. Major ions are analysed to describe the composition and distribution of saline groundwater and dissolution/precipitation dynamics. Density stratification and local upconing of saline waters were identified by multilevel monitoring and temperature logging. Bromide–chloride ratios hold information on the formation of saline waters, and nitrate is used as an indicator for anthropogenic influences. In addition, stable isotope analysis helps to identify evaporation and to better understand recharge processes and mixing dynamics in the study region. The results lead to the conclusion that surface water and groundwater influx into the poorly drained semiarid basin naturally results in the accumulation of salts in soil, sediments and groundwater. Human‐induced changes of environmental conditions, especially the implementation of traditional canal and modern groundwater irrigation, have augmented evapotranspiration and led to waterlogging in large areas. In addition, water‐level fluctuations and perturbation of the natural hydraulic equilibrium favour the mobilisation of salts from salt stores in the unsaturated zone and deeper aquifer sections. The holistic approach of this study demonstrates the importance of various salinity mechanisms and provides new insights into the interference of natural and anthropogenic influences. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
In the polder region of coastal Bangladesh, shallow groundwater is primarily brackish with unpredictable occurrence of freshwater pockets. Delta building processes, including the codeposition of fresh-to-saline porewater and sediments, have formed the shallow aquifer. Impermeable clay facies and the lack of a topographical gradient limit the flow of groundwater and its mixing with surface water so controls on spatial variability of salinity are not obvious. By characterizing groundwater-surface water (GW-SW) interactions, this study attempted to identify areas of potable groundwater for the polder communities. We used transects of piezometers, cores, electromagnetic induction, and water chemistry surveys to explore two sources of potential fresh groundwater: (1) tidal channel-aquifer exchange and (2) meteoric recharge. Fresh groundwater proved difficult to find due to heterogeneous subsurface lithology, asymmetrical tidal dynamics, extreme seasonal fluctuations in rainfall, and limited field data. Geophysical observations suggest substantial lateral variability in shallow subsurface conductivity profiles. Piezometers show varying degrees of tidal pressure attenuation away from the channels. Nevertheless, the active exchange of freshwater appears to be limited due to low permeability of banks and surface sediments. Results indicate that pockets of fresh groundwater cannot be identified using readily available hydrogeological methods, so alternative drinking water sources should be pursued. By better understanding the hydrogeology of the system, however, communities will be better equipped to redirect water management resources to more feasible and sustainable drinking water options.  相似文献   

13.
This study employed a coupled water-air two-phase flow and salt water transport model to analyze the behaviors of generated airflow in unsaturated zones and the fluctuations of salinity at the salt–fresh water interface in a two-layered unconfined aquifer with a sloping beach surface subjected to tidal oscillations. The simulation results show that as the new dynamic steady state including effects of tidal fluctuations is reached through multiple tidal cycles, the dispersion zone in the lower salt water wedge is broadened because fresh water/salt water therein flows continuously landward or seaward during tidal cycles. The upper salt–fresh water interface exhibits more vulnerable to the tidal fluctuations, and the variation of salinity therein is periodic, which is irrelevant to the hydraulic head but is influenced by the direction and velocity of surrounding water-flow. With the tidal level fluctuating, airflow is mainly concentrated in the lower permeable layer due to the restraint of the upper semi-permeable layer, and the time-lag between the pore-air pressure and the tidal level increases with distance from the coastline. The effect of airflow in unsaturated zones can be transmitted downward, causing both the magnitude of salinity and its amplitude in the upper salt–fresh water interface to be smaller for the case with airflow than without airflow due to the resistance of airflow to water-flow. Sensitivity analysis reveal that distributions of airflow in unsaturated zones are affected by the permeability of the upper/lower layer and the van Genuchten parameter of the lower layer, not by the van Genuchten parameter of the upper layer, whereas the salinity fluctuations in the salt–fresh water interface are affected only by soil parameters of the lower layer.  相似文献   

14.
Analyses of independent laboratory- and field-scale measurements from two sites on Sapelo Island, Georgia reveal heterogeneity in hydraulic parameters across the upland–estuary interface. Regardless of the method used (short-duration pumping tests, amplitude attenuation of tidal pumping data, sediment grain size distributions, and falling head permeameter tests), we obtain hydraulic conductivity of 10−4 m s−1 for the fine-grained, well-sorted, clean sands that make up the upland areas. Proximal to the upland–estuary boundary, the tidal pumping analyses and permeameter tests suggest that hydraulic conductivities decrease by more than two orders of magnitude, a result consistent with the presence of a clogging layer. Such a clogging layer may arise due to a variety of physical, chemical, or biological processes. The extent and orientation of the layers of reduced hydraulic conductivity near the upland–estuary boundary influence the nature of the aquifer's response to tidal forcing. Where the lower conductivity layer forms a relatively flat creek bank, tidal pumping produces a primarily mechanical response in the adjacent aquifer. Where the creek bank is nearly vertical, there is a more direct hydraulic connection between the tidal creek and the adjacent aquifer. The clogging layer likely contributes to the development of complicated flow pathways across the upland–estuary boundary. Effective flow paths calculated from tidal pumping data terminate within the marsh, beyond the boundary of the upland aquifer, suggesting a diffuse regime of groundwater discharge in the marsh. We postulate that, in many settings, submarsh flow may be as important as seepage faces for groundwater discharge into the marsh–estuary complex.  相似文献   

15.
The variation of seawater level resulting from tidal fluctuations is usually neglected in regional groundwater flow studies. Although the tidal oscillation is damped near the shoreline, there is a quasi‐steady‐state rise in the mean water‐table position, which may have an influence on regional groundwater flow. In this paper the effects of tidal fluctuations on groundwater hydraulics are investigated using a variably saturated numerical model that includes the effects of a realistic mild beach slope, seepage face and the unsaturated zone. In particular the impact of these factors on the velocity field in the aquifer is assessed. Simulations show that the tidal fluctuation has substantial consequences for the local velocity field in the vicinity of the exit face, which affects the nearshore migration of contaminant in coastal aquifers. An overheight in the water table as a result of the tidal fluctuation is observed and this has a significant effect on groundwater discharge to the sea when the landward boundary condition is a constant water level. The effect of beach slope is very significant and simplifying the problem by considering a vertical beach face causes serious errors in predicting the water‐table position and the groundwater flux. For media with a high effective capillary fringe, the moisture retained above the water table is important in determining the effects of the tidal fluctuations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
Groundwater in coastal areas is commonly disturbed by tidal fluctuations. A two‐dimensional analytical solution is derived to describe the groundwater fluctuation in a leaky confined aquifer system near open tidal water under the assumption that the groundwater head in the confined aquifer fluctuates in response to sea tide whereas that of the overlying unconfined aquifer remains constant. The analytical solution presented here is an extension of the solution by Sun for two‐dimensional groundwater flow in a confined aquifer and the solution by Jiao and Tang for one‐dimensional groundwater flow in a leaky confined aquifer. The analytical solution is compared with a two‐dimensional finite difference solution. On the basis of the analytical solution, the groundwater head distribution in a leaky confined aquifer in response to tidal boundaries is examined and the influence of leakage on groundwater fluctuation is discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
Coastal fresh water aquifers are an increasingly desirable resource. In a karstic aquifer, sea water intrusion occurs as a salt water wedge, like in porous media. However, preferential flow conduits may alter the spatial and temporal distribution of the salt water. This is typically the case when the outlet of the aquifer is a brackish spring. This paper shows that salinity and flow rate variations at a spring, where salinity is inversely proportional to discharge, can help to understand the hydrodynamic functioning of the aquifer and to locate the fresh water-sea water mixing zone deep inside the aquifer. The volume of water-filled conduit between the sea water intrusion zone and the spring outlet is calculated by the integral over time of the flow rate during the time lag between the flow rate increase and the salinity decrease as measured at the spring. In the example of the spring at Almyros of Heraklio (Crete, Greece), this time lag is variable, depending on the discharge, but the volume of water-filled conduit appears to be constant, which shows that the processes of salt water intrusion and mixing in the conduit are constant throughout the year. The distance between the spring and the zone where sea water enters the conduit is estimated and provides an indication of the position where only fresh water is present in the conduit.  相似文献   

18.
This research reconstructed the Late Quaternary salinity history of the Pearl River estuary, China, from diatom records of four sedimentary cores. The reconstruction was produced through the application of a diatom–salinity transfer function developed based on 77 modern surface sediment samples collected across the estuary from shallow marine environment to deltaic distributaries. The statistical analysis indicates that the majority of sediment samples from the cores has good modern analogues, thus the reconstructions are reliable. The reconstructed salinity history shows the older estuarine sequence formed during the last interglacial was deposited under similar salinity conditions to the younger estuarine sequence, which was formed during the present interglacial. Further analysis into the younger estuarine sequence reveals the interplays between sea level, monsoon‐driven freshwater discharge, and deltaic shoreline movement, key factors that have influenced water salinity in the estuary. In particular, a core from the delta plain shows the effects of sea‐level change and deltaic progradation, while cores from the mouth region of the estuary reveal changes of monsoon‐driven freshwater discharge. This study demonstrates the advantages of quantitative salinity reconstructions to improve the quality of reconstruction and allow direct comparison with other quantitative records and the instrumentally observed values of salinity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
This work presents results from two complementary and interconnected approaches to study water temperature and salinity patterns in an estuarine tidal channel. This channel is one of the four main branches of the Ria de Aveiro, a shallow lagoon located in the Northwest coast of the Iberian Peninsula. Longitudinal and cross-sectional fields of water temperature and salinity were determined by spatial interpolation of field measurements. A numerical model (Mohid) was used in a 2D depth-integrated mode in order to compute water temperature and salinity patterns. The main purpose of this work was to determine the horizontal patterns of water temperature and salinity in the study area, evaluating the effects of the main forcing factors. The field results were depth-integrated and compared to numerical model results. These results obtained using extreme tidal and river runoff forcing, are also presented. The field results reveal that, when the river flow is weak, the tidal intrusion is the main forcing mechanism, generating saline and thermal fronts which migrate with the neap/spring tidal cycle. When the river flow increases, the influence of the freshwater extends almost as far as the mouth of the lagoon and vertical stratification is established. Results of numerical modelling reveal that the implemented model reproduces quite well the observed horizontal patterns. The model was also used to study the hydrology of the study area under extreme forcing conditions. When the model is forced with a low river flow (1 m3 s−1) the results confirm that the hydrology is tidally dominated. When the model is forced with a high river flow (1,000 m3 s−1) the hydrology is dominated by freshwater, as would be expected in such an area.  相似文献   

20.
The increase of salt intrusion in recent years in the Modaomen Estuary, one of the estuaries of the Pearl River Delta in China, has threatened the freshwater supply in the surrounding regions, especially the cities of Zhongshan, Zhuhai in Guangdong Province and Macau. A numerical modeling system using nested grids was developed to investigate the salt transport mechanisms and the response of salt intrusion to changes in river discharge and tidal mixing. The steady shear transport induced by estuarine circulation reaches maximum and minimum, respectively, during neap and spring tides, while the tidal oscillatory transport shows an opposite pattern. The net transport is landward during neap tides and seaward during spring tides. The salt intrusion length responding to constant river discharges generally follows a power law of ?0.49. The dependence of salt intrusion on tidal velocity is less than that predicted by theoretical models for exchange flow dominated estuaries. The response of salt intrusion to change in tidal velocity depends largely on river discharge. When river flow increases, the impact of tidal velocity increases and the phase lag of response time decreases. The asymmetries of salt intrusion responding to increasing and decreasing river discharge (tidal velocity) are observed in the estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号