首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
First results of a modelling study of atmospheric gravity waves (AGWs) are presented. A fully-coupled global thermosphere-ionosphere-plasmasphere model is used to examine the relative importance of Lorentz forcing and Joule heating in the generation of AGWs. It is found that Joule heating is the dominant component above 110km. The effects of the direction of the Lorentz forcing component on the subsequent propagation of the AGW are also addressed. It is found that enhancement of zonal E × B forcing results in AGWs at F-region altitudes of similar magnitudes travelling from the region of forcing in both poleward and equatorward directions, whilst enhancement of equatorward meridional E × B forcing results in AGWs travelling both poleward and equatorward, but with the magnitude of the poleward wave severely attenuated compared with the equatorward wave.  相似文献   

2.
The peculiarities of the distribution of medium-scale acoustic gravity waves (AGWs) in polar regions according to the data of measurements on board the Dynamics Explorer 2 satellite are studied. Over polar regions of both hemispheres at heights of 250–400 km, wave variations in neutral atmospheric parameters were systematically registered. These variations were identified as AGWs with horizontal wavelengths of 500–650 km. The relative amplitudes of polar AGWs in a neutral concentration reach 10%. Wave trains extend over the polar caps to thousands of kilometers and show a distinct spatial relationship with the auroral oval. A systematic direction is found in AGW propagation from the nighttime sector of the oval into the day-time sector, where wave activity is strictly limited. An assumption is formulated that this restriction is caused by dynamic interactions between AGWs and the zonal wind in the daytime sector of the auroral oval.  相似文献   

3.
4.
We consider data obtained when the parameters of the ionospheric Es and F2 layers and the vertical gradient of the electric potential in the surface atmosphere were simultaneously measured during the preparatory period of crustal earthquakes with M = 5.0–6.2 in the Kamchatka region. The appearance of anomalously high Es, accompanied by an increase in frequency parameters of the sporadic layer and the regular F2 layer, was detected on days when possible earthquake precursors, as determined earlier, occurred in atmospheric electric fields. The presumed earthquake precursors in the ionosphere are divided into two groups with different earthquake lead times ranging from several hours to two weeks. Empirical dependences are presented that connect the lead time of an earthquake (from the moment of the appropriate anomaly’s occurrence in the ionosphere or in the atmospheric electric field to the moment of the shock) and the epicentral distance to the observation point with the earthquake magnitude. These dependences are different for the two groups of presumed earthquake precursors, but they are close inside each group of possible precursors selected on the basis of quasistatic electric field measurements and revealed in ionospheric parameter variations.  相似文献   

5.
A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V × Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.  相似文献   

6.
本文在偶极子地磁模型和各种电离密度分布模型中,对中低纬非导管哨声波的传播特性进行了射线追踪研究。结果表明,地磁场位形及其引起的磁层等离子体的各向异性是决定哨声射线几何特征及速度结构的主要因素,而电离密度仅在一定程度上改变上述特征;电离层是形成哨声射线聚焦的主要原因;赤道异常和电离层显著地影响哨声波的到达纬度;哨声群时延和色散值主要决定于电离密度;中低纬非导管哨声近似符合Eckersley定律;电离层是决定波法线角能否满足透射条件的主要因素。  相似文献   

7.
利用2005年1月至2010年11月DEMETER卫星记录的NWC发射站的VLF电场功率谱数据,采用指数拟合的方法,分析了VLF电磁波在卫星高度激发的电场空间分布和衰减特征.研究结果表明:(1)VLF电场在发射站上空及其磁共轭区有着很强的对应关系,存在南、北2个强电场中心涡;(2)相对于发射站的位置,VLF电场中心点具有经度和纬度偏移,日侧地磁经度偏移均值大于夜侧,而地磁纬度偏移均值则小于夜侧;(3)日侧VLF电场强度呈现出周期性的年变化;(4)在VLF电场中心10°范围内,电场强度随距离快速衰减,衰减常数b在长达6年的时间内保持稳定.在以上研究结果基础上初步构建的卫星高度人工源电磁波空间分布特征,将为研究地表-电离层电磁波传播机理提供基础技术支撑.  相似文献   

8.
The problem of radio wave propagation allowing for 3D localized lower ionosphere irregularity appears in accordance with the necessity of the theoretical interpretation of VLF remote sensing data. The various processes in the Earth's crust and in space (earthquakes, magnetic storms, sporadic E-layers, lightning induced electron precipitations, rocket launches, artificial ionosphere heating, nuclear explosions, etc.) may cause different power and size ionospheric disturbances. This paper presents a further development of the numerical–analytical method for 3D problem solving. We consider a vector problem of VLF vertical electric dipole field in a plane Earth-ionosphere waveguide with a localized anisotropic ionosphere irregularity. The possibility of lowering (elevating) of the local region of the upper waveguide wall is taken into account. The field components on the boundary surfaces obey the Leontovich impedance conditions. The problem is reduced to a system of 2D integral equations taking into account the depolarization of the field scattered by the irregularity. Using asymptotic (kr⪢1) integration along the direction perpendicular to the propagation path, we transform this system to a system of 1D integral equations. The system is solved in the diagonal approximation, combining direct inversion of the Volterra integral operator and the subsequent iterations. The proposed method is useful for study of both small-scale and large-scale irregularities. We obtained estimates of the TE field components that originate entirely from field scattering by a 3D irregularity.  相似文献   

9.
The paper is dedicated to studying the dynamics of the auroral ionosphere at the level of the sporadic Es layer during magnetospheric disturbances. A new approach to this problem, proposed in the paper, uses the geomagnetic PC index, which is calculated using the magnetic data in the polar caps of the northern and southern hemispheres and manifests the geoefficiency of the interplanetary electric field. It is shown that variations in the sporadic electron concentration in the auroral Es layer could be related to changes in the PC index with a high degree of statistical reliability. However, the character of precipitations of sporadic particles into the ionosphere under high (PC > 2 mV/m) and low (PC < 2 mV/m) magnetic activity differs substantially. During strong magnetic disturbances and under intensified electric fields in the interplanetary environment, the intensity of particle precipitation from the magnetosphere into the E region of the high-latitude ionosphere is governed by the values of the PC magnetic index. During weak magnetic disturbances, short-time pulses of an increase in the PC values, caused by the variability in electric field in the magnetosphere, are the main factor in the occurrence of sporadic ionization in the Es layer.  相似文献   

10.
The propagation of atmospheric gravity waves (AGWs) is studied in the context of geometrical optics in the nonisothermal, viscous, and thermal-conductive atmosphere of Earth in the presence of wind shifts. Parametric diagrams are plotted, determining the regions of allowed frequencies and horizontal phase velocities of AGWs depending on the altitude. It is shown that a part of the spectrum of AGWs propagates in stationary air in an altitude range from the Earth’s surface through the ionospheric F1 layer. AGW from nearearth sources attenuate below 250 km, while waves generated at altitudes of about 300 km and higher do not reach the Earth’s surface because of the inner reflection from the thermosphere base. The pattern changes under strong thermospheric winds. AGW dissipation decreases with an adverse wind shift and, hence, a part of the wave spectrum penetrated from the lower atmosphere to the altitudes of F2 layer.  相似文献   

11.
利用2005—2010年DEMETER卫星记录NWC发射站的19.8kHz电场功率谱数据,采用统计和线性拟合等方法,研究了NWC站发射的电磁波在顶部电离层及磁共轭区激发的电场效应及其在不同方位的衰减特性。结果发现:(1)在NWC发射站上空,卫星记录电场呈椭圆状扩散分布,电场最强中心点位置相对地面人工源位置有一定偏移;(2)研究区上空电场北部衰减梯度最小,东部衰减梯度最大;(3)在其磁共轭区,南部电场衰减梯度最小,北部衰减梯度最大。综合分析认为人工源(NWC)发射的VLF电磁波传播到电离层高度后,受地磁场影响,电磁波主要沿磁力线方向传播,空间电场最强中心点位置相对发射站的位置发生偏移,向磁赤道方向倾斜,而且偏于磁赤道方向的电场衰减梯度最小。  相似文献   

12.
Scientific attention has recently been focused on the coupling of the earth’s upper atmosphere and ionosphere. In the present work, we review the advances in this field, emphasizing the studies and contributions of Chinese scholars. This work first introduces new developments in the observation instruments of the upper atmosphere. Two kinds of instruments are involved: optical instruments (lidars, FP interferometers and all-sky airglow imagers) and radio instruments (MST radars and all-sky meteor radars). Based on the data from these instruments and satellites, the researches on climatology and wave disturbances in the upper atmosphere are then introduced. The studies on both the sporadic sodium layer and sporadic E-layer are presented as the main works concerning the coupling of the upper atmosphere and the low ionosphere. We then review the investigations on the ionospheric longitudinal structure and the causative atmospheric non-migrating tide as the main progress of the coupling between the atmosphere and the ionospheric F2-region. Regarding the ionosphere-thermosphere coupling, we introduce studies on the equatorial thermospheric anomaly, as well as the influence of the thermospheric winds and gravity waves to the ionospheric F2-region. Chinese scholars have made much advancement on the coupling of the ionosphere and upper atmosphere, including the observation instruments, data precession, and modeling, as well as the mechanism analysis.  相似文献   

13.
The South Ural meteoroid (February 15, 2013; near the city of Chelyabinsk) is undoubtedly the best documented meteoroid in history. Its passage through the atmosphere has been recorded on videos and photographs, visually by observers, with ground-based infrasound microphones and seismographs, and by satellites in orbit. In this work, the results are presented of an analysis of the transionospheric GPS sounding data collected in the vicinity of the South Ural meteoroid site, which show a weak ionospheric effect. The ionospheric disturbances are found to be asymmetric about the explosion epicenter. The received signals are compared, both in shape and amplitude, with the reported ionospheric effects of ground level explosions with radio diagnostics. It is shown that the confident registration of ionospheric effects as acoustic gravity waves (AGWs) by means of vertical sounding and GPS technologies for ground explosions in the range of 0.26–0.6 kt casts doubt on the existing TNT equivalent estimates (up to 500 kt) for the Chelyabinsk event. The absence of effects in the magnetic field and in the ionosphere far zone at distances of 1500–2000 km from the superbolide explosion epicenter also raises a question about the possibility of an overestimated TNT equivalent. An alternative explanation is to consider the superposition of a cylindrical ballistic wave (due to the hypersonic motion of the meteoroid) with spherical shock waves caused by the multiple time points of fragmentation (multiple explosions) of the superbolide as a resulting source of the AGW impact on ionospheric layers.  相似文献   

14.
基于CM4模型的中国大陆地区地磁场时空分布特征分析   总被引:1,自引:1,他引:0  
本文利用第四代地磁场综合模型(Comprehensive Model 4,CM4),计算了1982-2001年中国大陆地区同一经度链和同一纬度链上地磁台站的磁层源磁场及其感应场、电离层源磁场及其感应场的地磁北向分量X、东向分量Y、垂直分量Z的模型值,分析了各场源磁场随时间和空间的变化特征。结果表明:在时间上,经度链和纬度链台站的磁层源磁场及其感应场均呈现出11年和27天周期性变化。电离层源磁场及其感应场具有明显的季节变化,不同年份相同季节变化形态一致但幅度不同。在空间分布上,经度链和纬度链台站磁层源磁场及其感应场的年变化幅度呈现出不同变化特征,电离层源磁场及其感应场在经度链上变化特征不同,而纬度链台站的数值基本一致。日变化分析显示,磁静日和磁扰日期间,模型数据与台站实测数据变化一致性较好,相关性较高。  相似文献   

15.
The morphology of ELF hiss events observed at low-latitude ground station Varanasi (L = 1.07, geomagnetic latitude 14°55′N) are reported, which consist of two types: (1) events which propagated in ducted mode along the geomagnetic field line corresponding to observing station Varanasi and (2) events which propagated in ducted mode along higher L-values (L = 4–6), after reaching the lower edge of ionosphere excite the Earth-ionosphere wave guide and propagate towards equator to be received at Varanasi. To understand the generation mechanism of ELF hiss, incoherent Cerenkov radiated power from the low latitude and middle latitude plasmasphere are evaluated. Considering this estimated power as an input for wave amplification through wave-particle interaction, the growth rate and amplification factor is evaluated which is too small to explain the observed wave intensity. It is suggested that some non-linear mechanism is responsible for the generation of ELF hiss.  相似文献   

16.
Summary Drawing on [6], the height profiles of local complex polarization and local polarization characteristics of electromagnetic waves in several models of the Earth's ionosphere are analysed. The profiles were obtained with the aid of a computer program for modelling propagating [5]. The analysis was carried out a) for a flxed given configuration of the external magnetic field of the EarthB 0 at a number of discrete frequencies f<5 Hz, b) for chosen model of the ionosphere at a fixed given frequency f=1 Hz and in connection with a change of the dip of the lines of force and of the magnitude of the external (homogeneous) magnetic field|B 0|, c) for various models at f=1 Hz and a varying configuration of the external magnetic field, reflecting the change in geomagnetic latitude. The results of the analysis will serve as an aid to the interpretation of the results of solving the problem of wave propagation through the ionosphere.  相似文献   

17.
According to measurements on the Dynamic Explorer 2 satellite, features of the propagation of acoustic gravity waves (AGWs) in the multicomponent upper atmosphere have been investigated. In the altitude range 250–400 km in wave concentration variations of some atmospheric gases, amplitude and phase differences have been observed. Using the approach proposed in this paper, in different gases, AGW variations have been divided into components associated with elastic compression, adiabatic expansion, and the vertical background distribution. The amplitude and phase differences observed in different gases are explained on the basis of analyzing these components. It is shown how to use this effect in order to determine the wave propagation, the vertical displacement of the volume element, the wave frequency, and the spatial distribution of the wave energy density.  相似文献   

18.
The most important models of coupling in the lithosphere-atmosphere-ionosphere system are considered. In some of these models, it is assumed that atmospheric acoustic and acoustic gravity waves (AGWs), which propagate through the atmosphere and reach ionospheric altitudes (resulting in the generation of electric field disturbances and modulation of charged particle density), are generated in the near-Earth atmosphere over the earthquake preparation region. In other models it is assumed that ionospheric disturbances originate owing to the modification of electric fields and currents due to electric processes in the lithosphere or near-Earth atmosphere. It seems impossible to stress on only one model and reject the remaining models because the characteristic spatial scales of effects observed in the ionosphere before earthquakes vary from 200–300 km to several thousand kilometers, and the characteristic times vary from several minutes to several days. We can assume that there are several physical mechanisms by which the lithosphere-ionosphere coupling is actually implemented.  相似文献   

19.
Summary This article is a continuation of the methodological series of the author's papers[2–4] related to the problem of numerical modelling of ionospheric filtration of signals in the Pc1 range of micropulation frequencies. A matrix method of treating the total wave field within the ionospheric transition layer is presented in connection with the total wave fields determined at both boundaries of the ionospheric transition layer. The computation is based on the method of thin layers (homogeneous) in a finely stratified, inhomogeneous and anisotropic (magneto-active) ionosphere. The results can be used in constructing automated computation algorithms which add considerably to the applications of the method in question[2–4].  相似文献   

20.
The singularities of the wave disturbance spectra of the nonequilibrium atmosphere in the range of acoustic gravity waves (AGWs) have been analyzed. Using the dispersion ratio for AGWs in the nonequilibrium atmosphere, it has been established that the spectra in the daytime and nighttime hours are different and this difference, caused by a nonequilibrium spectrum sensitivity to atmospheric temperature, can reach several percent in certain atmospheric regions. For the spectrum of the equilibrium model of the atmosphere, the difference between the daytime and nighttime spectra makes up several fractions of percent. As a result of the spectral treatment of variations in pressure and intensity of cosmic rays (CRs), it has been found out that the daytime AGW spectrum is higher-frequency than the nighttime spectrum. A comparison of the theoretical calculations of the AGW spectrum with observations has made it possible to distinguish the effect of nonequilibrium in the AGW spectral composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号