首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Demand for groundwater for drinking, agricultural and industrial purposes has increased due to uncertainty in the surface water supply. Agriculture is the main occupation of the rural people in Guntur district, Andhra Pradesh, India. Development of groundwater in the district is very less, indicating a lot of scope for further development of groundwater resources. However, assessment of groundwater conditions, particularly in a crystalline terrain, is a complex task because of variations in weathering and fracturing zones from place to place. Systematic studies for evaluation of groundwater potential zones have been carried out in a crystalline terrain of the district. Information on soils, geological formations and groundwater conditions is collected during the hydrogeological survey. Topographical and drainage conditions are derived from the Survey of India topographical maps. Geomorphological units and associated landform features inferred and delineated from the Indian remote sensing satellite imagery (IRS ID LISS III FCC) are moderately buried pediplain (BPM), shallow buried pediplain (BPS), valley fills (VF), structural hill (SH), residual hills (RH), lineaments and land use/land cover. A groundwater potential index (GPI) is computed for relative evaluation of groundwater potential zones in the study area by integrating all the related factors of occurrence and movement of groundwater resources. Accordingly, the landforms, BPM, BPS, VF, SH and RH, of the area are categorized as very good groundwater potential zone, good to moderate groundwater potential zone, moderate to poor groundwater potential zone, poor to very poor groundwater potential zone and very poor groundwater potential zone, respectively, for development and utilization of both groundwater and surface water resources for eliminating water scarcity. This study could help to improve the agrarian economy for better living conditions of the rural people. Taking the total weight-score of the GPI into account, a generalized classification of groundwater potential zones is evaluated for a quick assessment of the occurrence of groundwater resources on regional scale.  相似文献   

2.
Drought risk assessment using remote sensing and GIS techniques   总被引:1,自引:0,他引:1  
Beginning with a discussion of drought definitions, this review paper attempts to provide a review of fundamental concepts of drought, classification of droughts, drought indices, and the role of remote sensing and geographic information systems for drought evaluation. Owing to the rise in water demand and looming climate change, recent years have witnessed much focus on global drought scenarios. As a natural hazard, drought is best characterized by multiple climatological and hydrological parameters. An understanding of the relationships between these two sets of parameters is necessary to develop measures for mitigating the impacts of droughts. Droughts are recognized as an environmental disaster and have attracted the attention of environmentalists, ecologists, hydrologists, meteorologists, geologists, and agricultural scientists. Temperatures; high winds; low relative humidity; and timing and characteristics of rains, including distribution of rainy days during crop growing seasons, intensity, and duration of rain, and onset and termination, play a significant role in the occurrence of droughts. In contrast to aridity, which is a permanent feature of climate and is restricted to low rainfall areas, a drought is a temporary aberration. Often, there is confusion between a heat wave and a drought, and the distinction is emphasized between heat wave and drought, noting that a typical time scale associated with a heat wave is on the order of a week, while a drought may persist for months or even years. The combination of a heat wave and a drought has dire socio-economic consequences. Drought risk is a product of a region’s exposure to the natural hazard and its vulnerability to extended periods of water shortage. If nations and regions are to make progress in reducing the serious consequences of drought, they must improve their understanding of the hazard and the factors that influence vulnerability. It is critical for drought-prone regions to better understand their drought climatology (i.e., the probability of drought at different levels of intensity and duration) and establish comprehensive and integrated drought information system that incorporates climate, soil, and water supply factors such as precipitation, temperature, soil moisture, snow pack, reservoir and lake levels, ground water levels, and stream flow. All drought-prone nations should develop national drought policies and preparedness plans that place emphasis on risk management rather than following the traditional approach of crisis management, where the emphasis is on reactive, emergency response measures. Crisis management decreases self-reliance and increases dependence on government and donors.  相似文献   

3.
The sustainable development and management of groundwater resource needs quantitative assessment, based on scientific principle and recent techniques. In the present study, groundwater potential zone is being determined using remote sensing, Geographical Information System (GIS) and Multi-Criteria Decision Analysis (MCDA) techniques using various thematic layers viz. geomorphology, geology, drainage density, slope, rainfall, soil texture, groundwater depth, soil depth, lineament and land use/ land cover. The Analytic Hierarchy Approach (AHP) is used to determine the weights of various themes for identifying the groundwater potential zone based on weights assignment and normalization with respect to the relative contribution of the different themes to groundwater occurrence. Finally, obtained groundwater potential zones were classified into five categories, viz. low, medium, medium-high, high and very high potential zone. The result depicts the groundwater potential zone in the study area and found to be helpful in better development and management planning of groundwater resource.  相似文献   

4.
The main goal of this study is to investigate the application of the probabilistic-based frequency ratio (FR) model in groundwater potential mapping at Langat basin in Malaysia using geographical information system. So far, the approach of probabilistic frequency ratio model has not yet been used to delineate groundwater potential in Malaysia. Moreover, this study includes the analysis of the spatial relationships between groundwater yield and various hydrological conditioning factors such as elevation, slope, curvature, river, lineament, geology, soil, and land use for this region. Eight groundwater-related factors were collected and extracted from topographic data, geological data, satellite imagery, and published maps. About 68 groundwater data with high potential yield values of ≥11 m3/h were randomly selected using statistical software of SPSS. Then, the groundwater data were randomly split into a training dataset 70 % (48 borehole data) for training the model and the remaining 30 % (20 borehole data) was used for validation purpose. Finally, the frequency ratio coefficients of the hydrological factors were used to generate the groundwater potential map. The validation dataset which was not used during the FR modeling process was used to validate the groundwater potential map using the prediction rate method. The validation results showed that the area under the curve for frequency model is 84.78 %. As far as the performance of the FR approach is concerned, the results appeared to be quite satisfactory, i.e., the zones determined on the map being zones of relative groundwater potential. This information could be used by government agencies as well as private sectors as a guide for groundwater exploration and assessment in Malaysia.  相似文献   

5.
Groundwater vulnerability and risk mapping is a relatively new scientific approach for facilitating planning and decision making processes in order to protect this valuable resource. Pan European methodology for aquifers vulnerability has recently been developed by assessing all the existing relevant techniques and emphasizing on karstic environments. In the particular study, state-of-the-art methods and tools have been implemented such as remote sensing, isotopic investigations and GIS to map the groundwater vulnerability and pollution risk in a geologically complex area of W. Greece. The updated land use map has been developed from a Landsat 7+TM image elaborated with image analysis software, while the detailed hydrogeologic properties of the area have been recorded with an intensive isotopic study. The local groundwater vulnerability map has been produced following the aforementioned Pan European method, in a GIS environment while the risk map, which was the final product of the study, has been developed after combining the vulnerability and the land use maps. The results indicated that the areas comprised of highly tectonized calcareous formations represented high vulnerability and risk zones while forested areas away from the karstic aquifer illustrated moderate to low vulnerability. Moreover, human activities increase the pollution risk in lowland areas consisting of sedimentary deposits that have been classified as moderate vulnerability. The particular methodology operated efficiently in this study and due to its accuracy and relatively easy implementation can be used as a decision support tool for local authorities.  相似文献   

6.
Since last decade, the value per barrel of potable groundwater has outpaced the value of a barrel of oil in many areas of the world. Hence, proper assessment of groundwater potential and management practices are the needs of the day. Establishing relationship between remote sensing data and hydrologic phenomenon can maximize the efficiency of water resources development projects. Present study focuses on groundwater potential assessment in Salem district, Tamil Nadu to investigate groundwater resource potential. At the same, all thematic layers important from ground water occurrence and movement point of view were digitized and integrated in the GIS environment. The weights of different parameters/themes were computed using weighed index overlay analysis (WIOA), analytic hierarchy process (AHP) and fuzzy logic technique. Through this integrated GIS analysis, groundwater prospect map of the study area was prepared qualitatively. Field verification at observation wells was used to verify identified potential zones and depth of water measured at observation wells. Generated map from weighed overlay using AHP performed very well in predicting the groundwater surface and hence this methodology proves to be a promising tool for future.  相似文献   

7.
The remotely sensed data provides synoptic viewing and repetitive coverage for thematic mapping of natural resources. In the present study hydrogeomorphological mapping has been carried out in Kakund watershed, Eastern Rajasthan for delineating groundwater potential zones. IRS-1D LISS III Geocoded FCC data in conjunction with Survey of India toposheet (1:50000 scale) and field inputs were used for thematic mapping. Geomorphic units identified through visual interpretation of FCC include: alluvial plain, plateau, valley fills, intermontane valleys, burried pediment, residual hills, and linear ridges. In addition, lineaments were mapped since they act as conduit for groundwater recharge. Majority of the lineaments trends NE-SW and a few along NW-SE directions and are confined to the southern and southeastern parts of the watershed. Based on hydrogeomorphological, geological and lineament mapping the Kakund watershed has qualitatively been categorized into four groundwater potential zones, viz. good to very good, moderate to good, poor to moderate and very poor to poor. The study reveals that only 10.97% of the area has good to very good, 35.41% area with moderate to good, 49.04 % of the area has poor to moderatel, while remaining 4.57% has poor to very poor groundwater potential.  相似文献   

8.
This study estimates fire risk in Swaziland using geographic information system (GIS) and remote sensing data. Fire locations were identified in the study area from remotely sensed Moderate Resolution Imaging Spectroradiometer (MODIS) active fire and burned area data for the period between April 2000 to December 2008 and January 2001 and December 2008, respectively. A total of thirteen biophysical and socio-economic explanatory variables were analyzed and processed using a Bayesian network (BN) and GIS to generate the fire risk maps. The interdependence of each of the factors was probabilistically determined using the expectation-maximization (EM) learning algorithm. The final probabilistic outputs were then used to classify the country into five fire risk zones for mitigation and management. Accuracy assessments and comparison of the fire risk maps indicate that the risk maps derived from the active fire and burned area data were 93.14 and 96.64% accurate, respectively, demonstrating sufficient agreement between the risk maps and the existing data. High fire risk areas are observed in the Highveld particularly plantation forests and grasslands and within the Lowveld sugarcane plantations. Land tenure and land cover are the dominant determinants of fire risk, the implications of which are discussed for fire management in Swaziland. Limitations of the data used and the modeling approach are also discussed including suggestions for improvements and future research.  相似文献   

9.
Groundwater is a valuable natural resource for drinking, domestic, livestock use, and irrigation, especially in arid and semi-arid regions like the Garmiyan belt in Kurdistan region. The Awaspi watershed is located 50 km east of Kirkuk city, south Kurdistan, Iraq; and covers an area of 2146 km2. The paper presents result of a study aimed at: (1) mapping and preparing thematic layers of factors that control groundwater recharge areas, and (2) determination of sites suitable for groundwater recharge. We used available data such as geological map, groundwater depth map, digital elevation model (DEM), Landsat 8 imagery, and tropical rainfall measuring mission (TRMM) data for this study. These data, supplemented by slope features, lithology, land use land cover, rainfall, groundwater depth, drainage density, landform, lineament density, elevation and topographic position index, were utilized to create thematic maps to identify suitable areas of groundwater recharge, using GIS and remote sensing techniques. Analytic hierarchy process (AHP) was applied to weight, rank, and reclassify these maps in the ArcGIS 10.3 environment, to determine the suitable sites for groundwater recharge within the Awaspi watershed. Fifty-five percent of the total area of the watershed was found to be suitable for groundwater recharge; whereas 45% of the area was determined to have poor suitability for groundwater recharge, but can be used for surface water harvesting.  相似文献   

10.
Birbhum district in West Bengal, India, is one of the most severely affected districts by fluoride-contaminated groundwater. Fluoride content as high as 20.4 mg/L has been reported. Several cases of fluoride-related disorder such as dental fluorosis and skeletal fluorosis have been reported to be endemic in the district. Proper management of groundwater is very crucial. This contribution has been carried out for delineating potential fluoride-contaminated zones (PFCZ) in Birbhum district with the implementation of weighted overlay analysis in GIS environment. Twelve different potentially influential environmental parameters are integrated and evaluated. The final output map was categorised into two subclasses, i.e. ‘low’ and ‘high’, where the low region represents fluoride concentration of 1.5 mg/L and below and the high region represents fluoride concentration above 1.5 mg/L. The outcome reveals that approximately 24.35% of the study area falls under PFCZ, whereas about 75.65% of the study area falls under the safe zone with respect to potential fluoride contamination. On validation of the PFCZ, the reported fluoride contamination data in groundwater shows an overall 87.50% accuracy in prediction via superimposition method and 89.06 and 85.85% success and prediction rates, respectively, when validated with success and prediction rates.  相似文献   

11.
Fire in forested areas can be regarded as an environmental disaster which is triggered by either natural forces or anthropogenic activities. Fires are one of the major hazards in forested and grassland areas in the north of Iran. Control of fire is difficult, but it is feasible to map fire risk by geospatial technologies and thereby minimize the frequency of fire occurrences and damages caused by fire. The fire risk models provide a suitable concept to understand characterization of fire risk. Some models are map based, and they combine effectively different forest fire–causing variables with remote sensing data in a GIS environment for identifying and mapping forest fire risk. In this study, Structural Fire Index, Fire Risk Index, and a new index called Hybrid Fire Index were used to delineate fire risk in northeastern Iran that is subjected to frequent forest fire. Vegetation moisture, slope, aspect, elevation, distance from roads, and vicinity to settlements were used as the factors influencing accidental fire starts. These indices were set up by assigning subjective weight values to the classes of the layers based on their sensitivity ratio to fire. Hot spots data derived from MODIS satellite sensor were used to validate the indices. Assessment of the indices with receiver operating characteristic (ROC) curves shows that 76.7 % accuracy of the HFI outperformed the other two indices. According to the Hybrid Fire Index, 57.5 % of the study area is located under high-risk zone, 33 % in medium-risk zone, and the remaining 9.5 % area is located in low-risk zone.  相似文献   

12.
The susceptibility of slopes in open pit coal mines to various modes of failure (i.e., plane, wedge, circular and toppling failure) could be envisaged by virtue of processing and analysis of pertinent satellite data. The aim of the present study was to integrate thematic maps generated using remote sensing image processing techniques, in order to finally produce slope failure hazard zonation maps in and around Singrauli coalfield, India. The various failure-inducing factors, variables and parameters can be extracted from different satellite data and imageries. The data acquired by different sensors such as TM, ETM+, etc., of LANDSAT series and CARTOSAT of ISRO Bhuvan was used in this study. All these data were subsequently used to create different thematic maps such as slope map, lithological map, land use/land cover map, principal component analysis map, digital elevation model (DEM), etc. An advanced analysis for extraction of lineament attributes was also undertaken.  相似文献   

13.
夏季黑河流域蒸散发量卫星遥感估算研究   总被引:8,自引:0,他引:8       下载免费PDF全文
依据空气动力学方法和蒸散发量时间尺度扩展方案,利用MODIS资料和气象资料,计算中国西北内陆河黑河流域复杂地形下,2004年夏季7月蒸散发量空间分布及总量。利用Landsat-5TM资料对比分析发现,估算地表水热传输过程时,采用高分辨率遥感资料的估算结果受下垫面非均匀性影响程度,明显小于采用中分辨率资料。通过"金塔实验"湍流观测资料验证表明,利用高分辨率资料估算日蒸散发量的相对误差在10%以内。对月蒸散发量计算分析表明,黑河流域海拔2000m以上祁连山区,7月平均蒸散发量是海拔2000m以下山前地区的2.2倍,而山前平原区绿洲(NDVI>0.10区域)平均蒸散发量又是荒漠戈壁地区的12.3倍。因此,流域中下游绿洲地区特别是农业灌溉区是夏季主要水资源消耗区。  相似文献   

14.
This study aims to assess the potential of several ancillary input data for the improvement of unsupervised land cover change detection in arid environments. The study area is located in Central Iraq where desertification has been observed. We develop a new scheme based on known robust indices. We employ Landsat (multispectral scanner, thematic mapper, and enhanced thematic mapper) satellite data acquired in 1976, 1990, and 2002. We use the Normalized Deferential Vegetation Index, Normalized Differential Water Index (NDWI), Salinity Index (SI), and Eolian Mapping Index. Two new equations were applied for the SI and the NDWI indices. Validation was performed using ground truth data collected in 16 days. We show that such an approach allows a robust and low-cost alternative for preliminary and large-scale assessments. This study shows that desertification has increased in the study area since 1990.  相似文献   

15.
This paper presents landslide hazard analysis at Cameron area, Malaysia, using a geographic information system (GIS) and remote sensing data. Landslide locations were identified from interpretation of aerial photographs and field surveys. Topographical and geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. The factors chosen that influence landslide occurrence are topographic slope, topographic aspect, topographic curvature, and distance to rivers, all from the topographic database; lithology and distance to faults were taken from the geologic database; land cover from TM satellite image; the vegetation index value was taken from Landsat images; and precipitation distribution from meteorological data. Landslide hazard area was analyzed and mapped using the landslide occurrence factors by frequency ratio and bivariate logistic regression models. The results of the analysis were verified using the landslide location data and compared with the probabilistic models. The validation results showed that the frequency ratio model (accuracy is 89.25%) is better in prediction of landslide than bivariate logistic regression (accuracy is 85.73%) model.  相似文献   

16.
Groundwater is one of the most valuable natural resources, which is an immensely important and dependable source of water supply in all climatic regions over the world. Groundwater is in demand in areas where surface water supply is inadequate and nonsexist in the Chhatna Block, Bankura district and is located on the eastern slope of Chotonagpur Plateau, which is mapped on 73 I/15, 73 I/16 and 73 M/3, and falls between latitude 23°10′23°30′N and longitude 86°47′87°02′E. It represents plain land and gentle slope, which is responsible for infiltration and groundwater recharge. The groundwater in this region is confined within the fracture zones and weathered residuum. The present investigation is, therefore, undertaken to delineate potential zones for groundwater development with the help of a remote-sensing study. IRS–LISS-III data along with other data sets, e.g., existing toposheets and field observation data, have been utilized to extract information on the hydrogeomorphic features which include valley fills, buried pediment moderate, buried pediment shallow and structural hills, lineament density contour and slope map of this hard rock terrain. The target of this study is to delineate the groundwater potential zones in Chhatna block, Bankura District, West Bengal. Satellite imagery, along with other data sets, has been utilized to extract information on the groundwater controlling features of this study area. Three features (hydrogeomorphology, slope, and lineaments) that influence groundwater occurrences were analyzed and integrated. All the information layers have been integrated through GIS analysis and the groundwater potential zones have been delineated. The weighted index overlay method has been followed to delineate groundwater potential zones. The results indicate that good to excellent groundwater potential zones are available in almost the entire block. The results show that there is good agreement between the predicted groundwater potential map and the existing groundwater borehole databases. The area is characterized by hard rock terrain—still due to the presence of planation surface along valley fills; it became the prospective zone. The area has been categorized into four distinct zones: excellent, good, fair and poor. Excellent groundwater potential zones constitute 30–35 % of the total block area; good groundwater potential zones occupy a majority of the block, covering approximately 55–60 % and the fair potential zones occupy about 10–15 % of the total block. Poor potential zones occupy a very insignificant portion (less than 1 %).  相似文献   

17.
Remote sensing, evaluation of digital elevation models (DEM), geographic information systems (GIS) and fieldwork techniques were combined to study the groundwater conditions in Eritrea. Remote sensing data were interpreted to produce lithological and lineament maps. DEM was used for lineament and geomorphologic mapping. Field studies permitted the study of structures and correlated them with lineament interpretations. Hydrogeological setting of springs and wells were investigated in the field, from well logs and pumping test data. All thematic layers were integrated and analysed in a GIS. Results show that groundwater occurrence is controlled by lithology, structures and landforms. Highest yields occur in basaltic rocks and are due to primary and secondary porosities. High yielding wells and springs are often related to large lineaments, lineament intersections and corresponding structural features. In metamorphic and igneous intrusive rocks with rugged landforms, groundwater occurs mainly in drainage channels with valley fill deposits. Zones of very good groundwater potential are characteristic for basaltic layers overlying lateritized crystalline rocks, flat topography with dense lineaments and structurally controlled drainage channels with valley fill deposits. The overall results demonstrate that the use of remote sensing and GIS provide potentially powerful tools to study groundwater resources and design a suitable exploration plan.The online version of the original article can be found at  相似文献   

18.
Remote sensing, evaluation of digital elevation models (DEM), geographic information systems (GIS) and fieldwork techniques were combined to study the groundwater conditions in Eritrea. Remote sensing data were interpreted to produce lithological and lineament maps. DEM was used for lineament and geomorphologic mapping. Field studies permitted the study of structures and correlated them with lineament interpretations. Hydrogeological setting of springs and wells were investigated in the field, from well logs and pumping test data. All thematic layers were integrated and analysed in a GIS. Results show that groundwater occurrence is controlled by lithology, structures and landforms. Highest yields occur in basaltic rocks and are due to primary and secondary porosities. High yielding wells and springs are often related to large lineaments, lineament intersections and corresponding structural features. In metamorphic and igneous intrusive rocks with rugged landforms, groundwater occurs mainly in drainage channels with valley fill deposits. Zones of very good groundwater potential are characteristic for basaltic layers overlying lateritized crystalline rocks, flat topography with dense lineaments and structurally controlled drainage channels with valley fill deposits. The overall results demonstrate that the use of remote sensing and GIS provide potentially powerful tools to study groundwater resources and design a suitable exploration plan.An erratum to this article can be found at  相似文献   

19.
Remote sensing is the most practical method available to managers of flood-prone areas for quantifying and mapping flood impacts. This study explored large inundation areas in the Maghna River Basin, around the northeastern Bangladesh, as determined from passive sensor LANDSAT data and the cloud-penetrating capabilities of the active sensors of the remote imaging microwave RADARSAT. This study also used passive sensor LANDSAT wet and dry images for the year 2000. Spatial resolution was 30 m by 30 m for comparisons of the inundation area with RADARSAT images. RADARSAT images with spatial resolution of 50 m by 50 m were used for frequency analysis of floods from 2000 to 2004. Time series images for 2004 were also used. RADARSAT remote sensing data, GIS data, and ground data were used for the purpose of flood monitoring, mapping and assessing. A supervised classification technique was used for this processing. They were processed for creating a maximum water extent map and for estimating inundation areas. The results of this study indicated that the maximum extent of the inundation area as estimated using RADARSAT satellite imaging was about 29, 900.72 km2 in 2004, which corresponded well with the heavy rainfall around northeast region, as seen at the Bhairab Bazar station and with the highest water level of the Ganges–Brahmaputra–Meghna (GBM) Rivers. A composite of 5 years of RADARSAT inundation maps from 2000 to 2004, GIS data, and damage data, was used to create unique flood hazard maps. Using the damage data for 2004 and the GIS data, a set of damage maps was also created. These maps are expected to be useful for future planning and flood disaster management. Thus, it has been demonstrated that RADARSAT imaging data acquired over the Bangladesh have the ability to precisely assess and clarify inundation areas allowing for successful flood monitoring, mapping and disaster management.  相似文献   

20.
利用被动微波探测青海湖湖冰物候变化特征   总被引:1,自引:2,他引:1  
湖冰物候是气候变化的敏感因子,不仅能反映区域气候变化特征,还可以反映区域气候与湖泊相互作用.利用长时间序列(1978—2018年)被动微波遥感18 GHz和19 GHz亮度温度数据、MODIS数据(2000—2018年)、实测湖冰厚度数据(1983—2018年)和气温、风速、降水(雪)数据(1961—2018年),分析...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号