首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Since thin-walled hollow glass spherules exist in the lunar regolith and perhaps as a component of cosmic dust, laboratory simulations of impacts by and upon such spherules were done to determine identifying features of the resulting craters and perforations. The targets were soda-lime glass, stainless steel, and hollow glass beads. Craters were generated in the first two targets by the normal impact of thin-walled hollow glass spheres with masses and velocities between eight and 240 pg and 1.8 and 10 km/s, respectively. With increasing impact velocity, the crater morphology in glass progresses as follows: 1, a dent; 2, a narrow lip around the depression; and 3, spallation around the pit that may carry away all of part of the lip. The craters differ from those formed by solid spherical projectiles in that the central pit is an annular rather than a cup-shaped depression. The craters in steel display a typical outer lip and an additional concentric inner lip which is subdued to an annular mound as the impact velocity increases. In both targets, shattered remnants of the projectiles remain in the craters at low impact velocities. At higher velocities, melting of the projectile material occurs. The annular features distinguish these craters from craters generated by solid spheres or irregular projectiles', and the existence of such a crater morphology on a surface exposed to cosmic dust would indicate the presence of thin-walled hollow spherules. Contrary to common opinion, hollow spheres do not adequately simulate cratering by low density materials because of the mass distribution. Penetrations of thin-walled hollow glass beads by high velocity, solid, micrometer-size spheres are characterized by inward and outward flowing lips that show asymmetries dependent on the angle of impact. The morphology is sufficient to discriminate against other mechanisms that cause perforations in the one to 10 μm size range in hollow lunar spherules. The identifying lip may break away by fragmentation in the impact of larger size projectiles.  相似文献   

2.
Two ellipsoidal spherules approximately 0.5 mm in diameter were studied in detail using a scanning electron microscope. A variety of surface features were observed: vesicles, mounds, dimples, streaks, ridges, grooves, accretion phenomena, and high-speed impact craters. The diameters of 27 glass-lined pits formed by impact on one spherule range from less than 1m to approximately 50m. Intermediate-sized glass-lined pits surrounded by concentric fractures demonstrate the transition between larger craters that have both a pit and a spall zone and generally smaller craters that have only a pit. Assuming all craters showing evidence of impact-related melting or flow are the result of primary impacts, the differential mass spectrum of impacting meteoroids in the range 10–11 to 10–10 g is in good agreement with a spectrum based on satellite-borne particle-detecting experiments.  相似文献   

3.
Nathalia Alzate 《Icarus》2011,211(2):1274-1283
Central pit craters are common on Mars, Ganymede and Callisto, and thus are generally believed to require target volatiles in their formation. The purpose of this study is to identify the environmental conditions under which central pit craters form on Ganymede. We have conducted a study of 471 central pit craters with diameters between 5 and 150 km on Ganymede and compared the results to 1604 central pit craters on Mars (diameter range 5-160 km). Both floor and summit pits occur on Mars whereas floor pits dominate on Ganymede. Central peak craters are found in similar locations and diameter ranges as central pit craters on Mars and overlap in location and at diameters <60 km on Ganymede. Central pit craters show no regional variations on either Ganymede or Mars and are not concentrated on specific geologic units. Central pit craters show a range of preservation states, indicating that conditions favoring central pit formation have existed since crater-retaining surfaces have existed on Ganymede and Mars. Central pit craters on Ganymede are generally about three times larger than those on Mars, probably due to gravity scaling although target characteristics and resolution also may play a role. Central pits tend to be larger relative to their parent crater on Ganymede than on Mars, probably because of Ganymede’s purer ice crust. A transition to different characteristics occurs in Ganymede’s icy crust at depths of 4-7 km based on the larger pit-to-crater-diameter relationship for craters in the 70-130-km-diameter range and lack of central peaks in craters larger than 60-km-diameter. We use our results to constrain the proposed formation models for central pits on these two bodies. Our results are most consistent with the melt-drainage model for central pit formation.  相似文献   

4.
5.
Rays and secondary craters of Tycho   总被引:1,自引:0,他引:1  
The large, fresh crater Tycho in the nearside lunar highlands has an extensive system of bright rays covering approximately 560,000 km2, containing dense clusters of secondary craters. Examination of crater densities in several clusters shows that Tycho produced almost 106 secondary craters larger than 63 m diameter. This is a lower limit, because small crater densities are reduced, most likely by mass wasting. We estimate a crater erasure rate of 2-6 cm/Myr, varying with crater size, and consistent with previous results. This process has removed many small craters, and it is probable that the original number of secondary craters formed by Tycho was higher. Also, we can only identify distant secondaries of Tycho where they occur in bright rays. Craters on Mars and Europa also formed large numbers of secondaries, but under possibly ideal conditions for spallation as a mechanism to produce high-velocity ejecta fragments. The results from Tycho show that large numbers of such fragments can be produced even from impact into a heavily fragmented target on which spallation is expected to be less important.  相似文献   

6.
Using the images of Callisto's surface acquired at 15-km resolution by the Galileo spacecraft during its C21 orbit, we studied the morphology of craters with diameters of less than 1–2 km and knobs. By analogy with other regions of Callisto that have been studied, these craters and knobs are thought to be formed by the sublimation degradation of the rims of larger craters that are also present in the region under study. The small craters closely resemble similar-sized lunar craters and, by analogy with the latter, are also divided into morphological classes. The depths of 42 craters of different morphological classes are estimated using shadow lengths visible in the craters. The fractions of the craters of different classes in the subpopulation are determined as a function of the crater diameter. Evidence has been obtained that larger craters degrade at a slower rate than smaller ones. The mean thickness of the mantle of dark material (40 m) is estimated from the sizes of the craters ejecting the blocks of the basement ice material. The shape of the knob shadows shows that the knobs are heights of mostly conical form with slopes whose steepness is close to the angle of repose. Analysis has shown that the observed landforms and material units of the region under investigation have been formed during two successive stages of the geologic history of Callisto. Large craters, knobs, and the mantle of dark material were formed mostly at the end of the period of heavy meteorite bombardment. The leading processes of this period are impact cratering, the sublimation of Callisto's crustal ice with the accumulation of residual non-icy material, and downslope mass movement. The next stage, which continues until the present time, involved the formation of the subpopulation of small (<1–2 km) craters. This formation was accompanied by the impact reworking of the upper portion of the dark mantle. The key processes occurring at this stage are impact cratering and downslope mass movement. The mean intensity of resurfacing at this stage is much lower than at the preceding stage.  相似文献   

7.
Abstract– Hypervelocity (2.5–7.8 km s?1) impact experiments into sandstone were carried out to investigate the influence of projectile velocity and mass, target pore space saturation, target‐projectile density contrast, and target layer orientation on crater size and shape. Crater size increases with increasing projectile velocity and mass as well as with increasing target pore space saturation. Craters in water‐saturated porous targets are generally shallower and larger in volume and in diameter than craters from equivalent impacts into dry porous sandstone. Morphometric analyses of the resultant craters, 5–40 cm in diameter, reveal features that are characteristic of all of our experimental craters regardless of impact conditions (I) a large central depression within a fragile, light‐colored central part, and (II) an outer spallation zone with areas of incipient spallation. Two different mechanical processes, grain fragmentation and intergranular tensile fracturing, are recorded within these crater morphologies. Zone (I) approximates the shape of the transient crater formed by material compression, displacement, comminution, and excavation flow, whereas (II) is the result of intergranular tensile fracturing and spallation. The transient crater dimensions are reconstructed by fitting quadric parabolas to crater profiles from digital elevation models. The dimensions of this transient and of the final crater show the same trends: both increase in volume with increasing impact energy, and with increasing water saturation of the target pore space. The relative size of the transient crater (in percent of the final crater volume) decreases with increasing projectile mass and velocity, signifying a greater contribution of spallation on the final crater size when projectile mass and velocity are increased.  相似文献   

8.
The rayed crater Zunil and interpretations of small impact craters on Mars   总被引:1,自引:0,他引:1  
A 10-km diameter crater named Zunil in the Cerberus Plains of Mars created ∼107 secondary craters 10 to 200 m in diameter. Many of these secondary craters are concentrated in radial streaks that extend up to 1600 km from the primary crater, identical to lunar rays. Most of the larger Zunil secondaries are distinctive in both visible and thermal infrared imaging. MOC images of the secondary craters show sharp rims and bright ejecta and rays, but the craters are shallow and often noncircular, as expected for relatively low-velocity impacts. About 80% of the impact craters superimposed over the youngest surfaces in the Cerberus Plains, such as Athabasca Valles, have the distinctive characteristics of Zunil secondaries. We have not identified any other large (?10 km diameter) impact crater on Mars with such distinctive rays of young secondary craters, so the age of the crater may be less than a few Ma. Zunil formed in the apparently youngest (least cratered) large-scale lava plains on Mars, and may be an excellent example of how spallation of a competent surface layer can produce high-velocity ejecta (Melosh, 1984, Impact ejection, spallation, and the origin of meteorites, Icarus 59, 234-260). It could be the source crater for some of the basaltic shergottites, consistent with their crystallization and ejection ages, composition, and the fact that Zunil produced abundant high-velocity ejecta fragments. A 3D hydrodynamic simulation of the impact event produced 1010 rock fragments ?10 cm diameter, leading to up to 109 secondary craters ?10 m diameter. Nearly all of the simulated secondary craters larger than 50 m are within 800 km of the impact site but the more abundant smaller (10-50 m) craters extend out to 3500 km. If Zunil is representative of large impact events on Mars, then secondaries should be more abundant than primaries at diameters a factor of ∼1000 smaller than that of the largest primary crater that contributed secondaries. As a result, most small craters on Mars could be secondaries. Depth/diameter ratios of 1300 small craters (10-500 m diameter) in Isidis Planitia and Gusev crater have a mean value of 0.08; the freshest of these craters give a ratio of 0.11, identical to that of fresh secondary craters on the Moon (Pike and Wilhelms, 1978, Secondary-impact craters on the Moon: topographic form and geologic process, Lunar Planet. Sci. IX, 907-909) and significantly less than the value of ∼0.2 or more expected for fresh primary craters of this size range. Several observations suggest that the production functions of Hartmann and Neukum (2001, Cratering chronology and the evolution of Mars, Space Sci. Rev. 96, 165-194) predict too many primary craters smaller than a few hundred meters in diameter. Fewer small, high-velocity impacts may explain why there appears to be little impact regolith over Amazonian terrains. Martian terrains dated by small craters could be older than reported in recent publications.  相似文献   

9.
I.D.S. Grey 《Icarus》2004,168(2):467-474
Research on the impact cratering process on icy bodies has been largely based on the most abundant ice, water. However little is known about the influence of other relatively abundant ices such as ammonia. Accordingly, data are presented studying the influence on cratering in ammonia rich ice using spherical 1 mm diameter stainless steel projectiles at velocities of 4.8±0.5 km s−1. The ice target composition ranged from pure water ice, to solutions containing 50% ammonia and 50% water by weight. Results for crater depth, diameter, volume and depth/diameter ratio are given. The results showed that the presence of ammonia in the ice had a very strong influence on crater diameter and morphology. It was found that with only a 10% concentration of ammonia, crater diameter significantly decreased, and then at greater concentrations became independent of ammonia content. Crater depth was independent of the presence of ammonia in the ice, and the crater volume appeared to decrease as ammonia concentration increased. Between ammonia concentrations of 10 and 20% crater morphology visibly changed from wide shallow craters with a deeper central pit to craters with a smoothly increasing depth from the crater rim to centre. Thus, a small amount of ammonia within a water ice surface may have a major effect on crater morphology.  相似文献   

10.
A Fabry-Pérot spectrophotometer is used to derive values of the intensity ratio H/[Nii] at 98 points in the seven bright diffuse nebulae M8, M20, M16, M17, NGC7000, M42, IC434. The fraction of nitrogen in the singly ionized state is estimated in the different objects, and is found to be sufficiently constant within any one nebula so that the above intensity ratio may be used to derive accurate electron temperature distributions. The position of the peak of the nebular line, its excess non-thermal width, its shape and relative intensity are used to derive kinematical models of these objects.It is found that values of H/[Nii]1 are representative of the bright central cores of these nebulae. Temperatures between 7000K and 12000K were derived in the different objects. Although some of this apparent variation is due to the different conditions of excitation in the various nebulae, it is shown that a convincing progression of temperature in M8, M16, M17 is supported by radio recombination line results. The temperature variation within any one object was generally significantly less than 1500K.No evidence was found for velocities of mass motion at more than twice the speed of sound. Relative radial velocities of generally less than 15 km sec–1 characterized the velocity fields of M8, M20, M16, M42. The velocities in M17 were measured as about 20 km sec–1. Motions in NGC 7000 and IC 434 were much lower (5 km sec–1) although here the number of points taken was too small to construct meaningful kinematical models.It is concluded that the internal motions of radiatively ionizedHii regions of Pop. I will not significantly affect the results of existing surveys for determining the rotation of the galaxy with radial velocities deduced from nebular emission lines.  相似文献   

11.
In addition to modes of formation offered by previous investigators, terrestrial drainage craters formed over lava tubes in Oregon are presented as analogs to lunar drainage craters. Craters associated with lava tubes result from: (1) drainage of surface material through roof fractures; (2) plastic collapse of the partially cooled lava tube roof; and (3) drainage of surface material into roof collapses. The former two categories result in shallow, often elongate craters; the latter category forms classic dimple shaped craters. Elongate dimple craters formed over volcanic fissures in southern Idaho are also discussed and presented in support of one mode of formation proposed by previous investigators for lunar drainage craters.Movement of surface material toward the orifice is initiated on Earth largely by wind and water; in lunar conditions, initial movement is attributed to micro- and macro-meteoritic bombardment, seismic disturbances generated by internal and external processes, and by thermal creep.Nat. Res. Council Postdoctoral Resident Research Associate.  相似文献   

12.
The fine structure of the nucleus of the Seyfert galaxy NGC 1275 was investigated in 2005–2010 at a wavelength of 2 cm with a resolution as high as 50 μas. The structure consists of two parallel identical systems, eastern and western, spaced 0.5 pc apart in the plane of the sky. Each of them contains an ejector and a bipolar outflow. There are extended regions, lobes, at the extension of the bipolar outflows in the ?10° and 170° directions at distances of 5 pc northward and 6.5 pc southward of the active zone. The observed difference between the jet and counterjet sizes by a factor of ~3 and between the distances to the lobes by a factor of 0.8 is determined by the difference between their velocities and by the change of sign of the outflow acceleration in the period of silence. The high-velocity bipolar outflows are surrounded by three pairs of low-velocity components. The diameters of the low-velocity coaxial outflows and the third component are Ø1 ≈ 0.3 pc, Ø2 ≈ 0.8 pc, and Ø3 ≈ 1.4 pc at the detection limit. The outer low-velocity components of the outflows encompass both high-velocity outflows. The velocities of the outflows and their brightness temperatures increase exponentially as the center of the high-velocity outflows is approached. The brightness temperatures of the high-velocity outflows at the ejector exit are T b > 1012 K. The spectral line velocities in the nuclear region differ by ~600 km s?1 due to the velocity difference between the two systems. In the case of Keplerian motion, the revolution period is ~5 × 103 yr, and the mass of the central massive bodies, black holes, is M ≈ 107M. The fine structure suggests a vortical nature of the formation. In the case under consideration, two parallel vortices spaced ~0.5 pc apart and shifted by ~0.5 pc relative to each other were formed. The surrounding material inflows onto the disk of each system, is transferred in a spiral to the center, and is ejected in the ?10° and 170° directions as an excess angular momentum is accumulated. The interaction with the surrounding medium accelerates and collimates the rotating outflows. The residual material falls to the forming central massive body, a black hole, whose gravitational field stabilizes and accelerates the system formation process.  相似文献   

13.
The depths of 109 impact craters 2–16 km in diameter, located on the ridged plains materials of Hesperia Planum, Mars, have been measured from their shadow lengths using digital Viking Orbiter images (orbit numbers 417S–419S) and the PICS computer software. On the basis of their pristine morphology (very fresh lobate ejecta blankets, well preserved rim crests, and lack of superposed impact craters), 57 of these craters have been selected for detailed analysis of their spatial distribution and geometry. We find that south of 30°S, craters <6.0 km in diameter are markedly shallower than similar-sized craters equatorward of this latitude. No comparable relationship is observed for morphologically fresh craters >6.0 km diameter. We also find that two populations exist for older craters <6.0 km diameter. When craters that lack ejecta blankets are grouped on the basis of depth/diameter ratio, the deeper craters also typically lie equatorward of 30° S. We interpret the spatial variation in crater depth/diameter ratios as most likely due to a poleward increase in volatiles within the top 400 m of the surface at the times these craters were formed.  相似文献   

14.
By correlating the 1:25,000,000 geologic map of Mars of Scott and Carr (1977) with 4- to 10-km-diameter crater density data from Mariner 9 images, the average crater density for 23 of the equatorial geologic-geomorphic units on Mars was computed. The correlation of these two data sets was accomplished by digitizing both the crater density data and geologic map at the same scale and by comparing them in a computer. This technique assigns the crater density value found in the corresponding location on the geologic data set to a discrete computer file assigned each of the 23 geologic units. By averaging the crater density values accumulated in each file, an “average” crater density for each geologic unit was obtained. Condit believes these average crater density values are accurate indicators of the relative age of the geologic units considered. The statistical validity of these average values is strongest for the geologic units of the largest areal extent. The relative ages as obtained from the average crater density values for the seven largest geologic units, from youngest to oldest, are: Tharsis volcanic material, 21 ± 4 craters/106km2; smooth plains material, 57 ± 14 craters/106km2; rolling plains material, 66 ± 16 craters/106km2; plains materials, 80 ± 17 craters/106km2; ridged plains material, 128 ± 25 craters/106km2; hilly and cratered material, 137 ± 38 craters/106km2; and cratered plateau material, 138 ± 27 craters/106km2.  相似文献   

15.
The heating of post-flare loops in the Kopp-Pneuman (1976) model is here reconsidered. In that kinematic model the loops are heated by gas-dynamic shocks to at most 3–4 × 106 K. However, in a full dynamic model they would be replaced by slow magnetohydrodynamic shocks, which may provide more heating due to the additional release of magnetic energy. It is shown from a local compressible analysis that such shock waves can account for the observed temperatures of 5 × 106–107 K and also for the observed upward loop speeds of 1–50 km s-1. The above values are obtained when the ambient plasma beta is 0.01 and the shocks propagate at highly sub-Alfvénic velocities. However, if the velocity of shock propagation approaches the Alfvén speed, then temperatures of 108 K are produced. This may explain the extremely high temperatures that have been observed with the Solar Maximum Mission, when it is realised that the post-flare loop phenomenon may well be occurring very early on in the flare.A full dynamic model would require a sophisticated numerical computation, and so a simple global analytic model is developed here instead. It is incompressible and includes a strong solar-wind inflow along the reconnecting field lines. As the upflow increases, the loops become more compressed and the Alfvén waves approach one another.  相似文献   

16.
The anomalously high number of craters with diameter less than 2.8 km, the igneous nature of rocks from the Apollo landing sites, and the possibility of outgassing magmas in the lunar crust, suggest that fluidization may be a viable mechanism for producing many of the smaller lunar craters, Fluidization craters were formed in the laboratory by blowing gas through various thicknesses of particulate material. Gas pressure, regolith thickness, and the duration of gas streaming were controlled over practical experimental limits and compared with the resultant crater morphology. Low to moderate fluidization pressures on coarsely crushed limestone (Mø = 0.40, So = =0.50) with low cohesion (ø - 43°) produced bowl shaped, basin shaped, and flat bottomed craters. Bowl shaped craters change into basin shaped and/or flat bottomed craters with long durations of gas streaming. Cone, funnel, and flat-funnel shaped craters are indicative of high fluidization pressures. Craters formed in finely crushed limestone (Mø - 1.55, So - 0.85) that is electrostatically charged by the streaming gas, are flat bottomed. Terraced craters develop from slumping during and after the discontinuation of gas flow. Central mounds inn terraced craters result from slumping into a confined space. In particulate material, fluidization craters have high circularity and axial symmetry, similar to those produced by impact. The use of an impact model and crater morphology (normal, flat bottomed, and concentric) for estimating lunar regolith depth is questioned because similar craters can be produced by fluidizationn processes in a thicker regolith.On leave at the Earth Physics Branch, Dept. of Energy, Mines and Resources, Ottawa, Canada.  相似文献   

17.
We examine hypotheses for the formation of light-toned layered deposits in Juventae Chasma using a combination of data from Mars Global Surveyor's Mars Orbiter Camera (MOC), Mars Orbiter Laser Altimeter (MOLA), and Thermal Emission Spectrometer (TES), as well as Mars Odyssey's Thermal Emission Imaging System (THEMIS). We divide Juventae Chasma into geomorphic units of (i) chasm wall rock, (ii) heavily cratered hummocky terrain, (iii) a mobile and largely crater-free sand sheet on the chasm floor, (iv) light-toned layered outcrop (LLO) material, and (v) chaotic terrain. Using surface temperatures derived from THEMIS infrared data and slopes from MOLA, we derive maps of thermal inertia, which are consistent with the geomorphic units that we identify. LLO thermal inertias range from ∼400 to 850 J m−2 K−1 s−1/2. Light-toned layered outcrops are distributed over a remarkably wide elevation range () from the chasm floor to the adjacent plateau surface. Geomorphic features, the absence of small craters, and high thermal inertia show that the LLOs are composed of sedimentary rock that is eroding relatively rapidly in the present epoch. We also present evidence for exhumation of LLO material from the west wall of the chasm, within chaotic and hummocky terrains, and within a small depression in the adjacent plateau. The data imply that at least some of the LLO material was deposited long before the adjacent Hesperian plateau basalts, and that Juventae Chasma underwent, and may still be undergoing, enlargement along its west wall due to wall rock collapse, chaotic terrain evolution, and exposure and removal of LLO material. The new data allow us to reassess possible origins of the LLOs. Gypsum, one of the minerals reported elsewhere as found in Juventae Chasma LLO material, forms only at low temperatures () and thus excludes a volcanic origin. Instead, the data are consistent with either multiple occurrences of lacustrine or airfall deposition over an extended period of time prior to emplacement of Hesperian lava flows on the plateau above the chasm.  相似文献   

18.
This paper discusses formation of pathological cases of crater morphology due to interaction of craters with molten lavas. Terrestrial observations of such a process are discussed. In lunar maria, a number of small impact craters (D < 10 km) may have been covered by thin layers of fluid lavas, or formed in molten lava. Some specific lunar examples are discussed, including unusual shallow rings resembling experimental craters deformed by isostatic filling.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.  相似文献   

19.
Forni  O.  Thomas  P. G.  Masson  Ph. 《Earth, Moon, and Planets》1986,34(2):177-188
The distribution analysis of the ganymedean pedestal craters shows a very good correlation between them and the grooved terrains. These craters seem to be the earliest post-grooved impacts. The presence of tectonized pedestal craters is also noted. This type of crater is the only one lying on the grooved terrains and being affected by the grooves. Assuming that a lowering of the terrain's viscosity is the determining factor for the presence of pedestal craters, we conclude that at the time of their formation, the grooved terrains have a lower viscosity than the other terrains. Moreover, using the density ratio between non-pedestal craters and pedestal craters, a relative low viscosity state's duration time is calculated. Based on the density ratio between pedestal craters and tectonized pedestal craters, a grooved terrains formation's time is also calculated. These two times are of the order of 107 yr and 106 yr respectively. This period of low viscosity may be partly due to internal heating.  相似文献   

20.
The presence of central peak craters and the absence of central pit craters on Triton implies a surface rigidity similar to the Saturnian and Uranian satellites and stronger than that of the Jupiter satellites Ganymede and Callisto. Tectonically degraded terrain may exist at the antipode of the large impact structure on 1989N1. Dome craters on Triton may represent a form of solid state volcanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号