首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A self-similar solution to the problem of the implosion of a cylindrical shock wave in the presence of a magnetic field has been investigated. A strong shock wave in a cylindrically-symmetric flow travels to the axis of symmetry through a gas of uniform initial density 0 and zero-pressure. A comparative study has been made between the results obtained in ordinary gasdynamics and magnetogasdynamics with transverse and axial components of the magnetic field. The value of similarity exponent has been assigned from that found in the paper of Whitham (1958).  相似文献   

2.
A comparative study has been made between the effects of transverse and axial components of the magnetic field on the self-similar flow variables of the field behind the cylindrical shock waves propagating into a non-uniform atmosphere at rest. The total energy of the wave is constant.  相似文献   

3.
Similarity solutions describing the flow of a perfect gas behind cylindrical shock waves with radiation heat flux are investigated. The total energy of the expanding wave has been supposed to remain constant. The solution, however, is only applicable to a gaseous medium where the undisturbed pressure falls as the inverse square of the distance from the line of explosion.  相似文献   

4.
Strong cylindrical magnetogasdynamic shock waves in rotating interplanetary medium has been studied and an analytic solution for their propagation has been obtained. Using characteristic method and considering the effect of Coriolis force, we have shown that magnetic field has significant effect on the velocity of the shock wave.  相似文献   

5.
Using the C.C.W. method, propagation of diverging cylindrical shock wave in a self-gravitating and rotating gas under the influence of a constant axial magnetic field has been studied for two cases of weak and strong shocks. Medium ahead of the shock is supposed to be homogeneous. Analytical relations for shock velocity and shock strength along with the expressions for the pressure, density, and particle velocity just behind the shock wave have been also obtained for both cases.  相似文献   

6.
The problem of the detailed structure of magnetogasdynamic shock waves is investigated. It is assumed that the flow takes place under normal magnetic fieldH 0 and the conductivity of the medium is considered infinite. An approximate analytical solution of the nonlinear differential equations describing the phenomena is obtained. The suggested analytical results in this paper are in good agreement with the previous numerical computations for the thickness and the velocity distribution inside the transition region. In addition, the enthalpy distribution inside the shock front is predicted.  相似文献   

7.
Magnetogasdynamic shock waves propagating in a medium of increasing density are discussed. The shock travels in a dense atmosphere. We have used the Runge-Kutta method to obtain a numerical solution of the problem. The distribution of flow variables behind the shock are shown by graphs.  相似文献   

8.
The C.C.W. method has been used to investigate the propagation of converging and diverging cylindrical shock waves in a non-uniform medium under the influence of a magnetic field of constant strength. A comparison has also been made between the two types of cylindrical shock waves, simultaneously for both weak and strong cases of the magnetic field. Density distribution is assumed to be o = r , where is the density at the axis of symmetry and a constant. The analytical expressions for shock velocity and shock strength as well as the pressure, the density, and the particle velocity just behind the shock front have been derived for both the cases.  相似文献   

9.
The propagation of radiative-magnetogasdynamic cylindrical shock waves in an exponentially increasing medium is investigated. The shock wave moves with variable velocity and the total energy of the wave is also variable. The transformations in terms of , as given in the text, is necessarily a non-similarity one.  相似文献   

10.
An analytic expression for the velocity of magnetogasdynamic shock wave, propagating in rotating inter stellar atmosphere has been obtained by using the method of characteristics and considering the effect of coriolis force. It has been shown that in the outer convective layer of the star Coriolis force and magnetic field both have significant effect on the shock velocity.  相似文献   

11.
The self-similar motion of a gas heated by an instantaneous isotropic point source of monochromatic radiation has been studied under the influence of magnetic field, within the framework of a homothermal model.  相似文献   

12.
In this paper propagation of magnetogasdynamic spherical shock waves is considered in an exponentially increasing medium. The shock wave moves with variable velocity and the total energy of the wave is variable. It is shown that the magnetic field changes the flow velocity, density and pressure.  相似文献   

13.
The present paper deals with a self-similar power-driven isothermal expansion headed by magnetohydrodynamic cylindrical shock surface in a non-homogeneous medium. It has been found that the region, behind the discontinuity surface, widens when interaction of magnetic field with other gasdynamic variables is perceived.Calculation has been performed for different Alfvén Mach numbers.  相似文献   

14.
By use of the approximate method of Whitham (1958) the effect of magnetic field is investigated on a point explosion in a medium exihibiting exponential decrease of density and temperature. It has been found that the shock velocity and shock Mach number first decrease, but after a certain distance they start increasing.  相似文献   

15.
The propagation of plane magnetogasdynamic shock waves in an optically-thin grey atmosphere of non-uniform density has been discussed by the use of the similarity method, by use of Planck's diffusion approximation. The distribution of pressure, density, magnetic field, velocity, temperature, and radiation flux have been illustrated through graphs. The numerical integration has been done on a DEC-1090 computer under a RKGS programme.  相似文献   

16.
The Chisnell-Chester-Whitham method has been used to investigate the propagation of diverging plane and cylindrical shock waves through an ideal gas in presence of a magnetic field having only constant axial and variable azimuthal components, simultaneously for both weak and strong cases. Assuming an initial density distribution 0=r w , where is the density at the plane/axis of symmetry andw is a constant, the analytical expressions for shock velocity and shock strength have been obtained. The expressions for the pressure, the density, and the particle velocity immediately behind the shock have also been derived for both cases.  相似文献   

17.
In this paper self-similar solutions have been investigated for the propagation of axisymmetric radiative gasdynamic shocks caused by an explosion into an inhomogeneous ideal gas permeated by a current free azimuthal magnetic field. The effects of radiation flux and magnetic field together have been seen in the region of interest on the other flow variables. The total energy of the flow between the inner expanding surface and the shock is taken to be dependent on shock radius obeying a power law. The radiative pressure and energy have been neglected.  相似文献   

18.
The magnetohydrodynamic model of shock waves has been discussed in an atmosphere with gravitation and radiation. The disturbance is headed by a strong shock of increasing density. The medium ahead of the shock is assumed to be inhomogeneous and at rest. Variation of magnetic field radiation flux, and other flow variables are given in tabular form.  相似文献   

19.
Using a well-known similarity method, different aspects of cylindrical shock waves in magnetogasdynamics are investigated. Weak and strong shocks have been discussed in strong magnetic field. Combined effects of both the components of magnetic field on flow variables are studied.  相似文献   

20.
In this paper a self-similar motion in a medium of infinite electrical conductivity has been investigated in spherical symmetry under the influence of an idealized magnetic field and a comparison has been made of the state of flow variables with and without magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号