首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Initial errors and model errors are the source of prediction errors. In this study, the authors compute the conditional nonlinear optimal perturbation (CNOP)-type initial errors and nonlinear forcing singular vector (NFSV)- type tendency errors of the Zebiak-Cane model with respect to El Nifio events and analyze their combined effect on the prediction errors for E1 Nino events. The CNOP- type initial error (NFSV-type tendency error) represents the initial errors (model errors) that have the largest effect on prediction uncertainties for E1 Nifio events under the perfect model (perfect initial conditions) scenario. How- ever, when the CNOP-type initial errors and the NFSV- type tendency errors are simultaneously considered in the model, the prediction errors caused by them are not am- plified as the authors expected. Specifically, the predic- tion errors caused by the combined mode of CNOP-type initial errors and NFSV-type tendency errors are a little larger than those caused by the NFSV-type tendency er- rors. This fact emphasizes a need to investigate the opti- mal combined mode of initial errors and tendency errors that cause the largest prediction error for E1 Nifio events.  相似文献   

2.
With the Zebiak-Cane (ZC) model, the initial error that has the largest effect on ENSO prediction is explored by conditional nonlinear optimal perturbation (CNOP). The results demonstrate that CNOP-type errors cause the largest prediction error of ENSO in the ZC model. By analyzing the behavior of CNOPtype errors, we find that for the normal states and the relatively weak E1 Nifio events in the ZC model, the predictions tend to yield false alarms due to the uncertainties caused by CNOP. For the relatively strong E1 Nino events, the ZC model largely underestimates their intensities. Also, our results suggest that the error growth of E1 Nifio in the ZC model depends on the phases of both the annual cycle and ENSO. The condition during northern spring and summer is most favorable for the error growth. The ENSO prediction bestriding these two seasons may be the most difficult. A linear singular vector (LSV) approach is also used to estimate the error growth of ENSO, but it underestimates the prediction uncertainties of ENSO in the ZC model. This result indicates that the different initial errors cause different amplitudes of prediction errors though they have same magnitudes. CNOP yields the severest prediction uncertainty. That is to say, the prediction skill of ENSO is closely related to the types of initial error. This finding illustrates a theoretical basis of data assimilation. It is expected that a data assimilation method can filter the initial errors related to CNOP and improve the ENSO forecast skill.  相似文献   

3.
With the Zebiak-Cane (ZC) model, the initial error that has the largest effect on ENSO prediction is explored by conditional nonlinear optimal perturbation (CNOP). The results demonstrate that CNOP-type errors cause the largest prediction error of ENSO in the ZC model. By analyzing the behavior of CNOP- type errors, we find that for the normal states and the relatively weak EI Nino events in the ZC model, the predictions tend to yield false alarms due to the uncertainties caused by CNOP. For the relatively strong EI Nino events, the ZC model largely underestimates their intensities. Also, our results suggest that the error growth of EI Nino in the ZC model depends on the phases of both the annual cycle and ENSO. The condition during northern spring and summer is most favorable for the error growth. The ENSO prediction bestriding these two seasons may be the most difficult. A linear singular vector (LSV) approach is also used to estimate the error growth of ENSO, but it underestimates the prediction uncertainties of ENSO in the ZC model. This result indicates that the different initial errors cause different amplitudes of prediction errors though they have same magnitudes. CNOP yields the severest prediction uncertainty. That is to say, the prediction skill of ENSO is closely related to the types of initial error. This finding illustrates a theoretical basis of data assimilation. It is expected that a data assimilation method can filter the initial errors related to CNOP and improve the ENSO forecast skill.  相似文献   

4.
A reduced-gravity barotropic shallow-water model was used to simulate the Kuroshio path variations.The results show that the model was able to capture the essential features of these path variations.We used one simulation of the model as the reference state and investigated the effects of errors in model parameters on the prediction of the transition to the Kuroshio large meander (KLM) state using the conditional nonlinear optimal parameter perturbation (CNOP-P) method.Because of their relatively large uncertainties,three model parameters were considered:the interfacial friction coefficient,the wind-stress amplitude,and the lateral friction coefficient.We determined the CNOP-Ps optimized for each of these three parameters independently,and we optimized all three parameters simultaneously using the Spectral Projected Gradient 2 (SPG2) algorithm.Similarly,the impacts caused by errors in initial conditions were examined using the conditional nonlinear optimal initial perturbation (CNOP-I) method.Both the CNOP-I and CNOP-Ps can result in significant prediction errors of the KLM over a lead time of 240 days.But the prediction error caused by CNOP-I is greater than that caused by CNOP-P.The results of this study indicate not only that initial condition errors have greater effects on the prediction of the KLM than errors in model parameters but also that the latter cannot be ignored.Hence,to enhance the forecast skill of the KLM in this model,the initial conditions should first be improved,the model parameters should use the best possible estimates.  相似文献   

5.
Within a theoretical ENSO model, the authors investigated whether or not theerrors superimposed on model parameters could cause a significant ``springpredictability barrier' (SPB) for El Nino events. First, sensitivityexperiments were respectively performed to the air--sea coupling parameter,α and the thermocline effect coefficient μ. The results showed that theuncertainties superimposed on each of the two parameters did not exhibit anobvious season-dependent evolution; furthermore, the uncertainties caused avery small prediction error and consequently failed to yield a significantSPB. Subsequently, the conditional nonlinear optimal perturbation (CNOP)approach was used to study the effect of the optimal mode (CNOP-P) of theuncertainties of the two parameters on the SPB and to demonstrate that theCNOP-P errors neither presented a unified season-dependent evolution fordifferent El Nino events nor caused a large prediction error, andtherefore did not cause a significant SPB. The parameter errors played onlya trivial role in yielding a significant SPB. To further validate thisconclusion, the authors investigated the effect of the optimal combined mode(i.e. CNOP error) of initial and model errors on SPB. The resultsillustrated that the CNOP errors tended to have a significantseason-dependent evolution, with the largest error growth rate in thespring, and yielded a large prediction error, inducing a significant SPB.The inference, therefore, is that initial errors, rather than modelparameter errors, may be the dominant source of uncertainties that cause asignificant SPB for El Nino events. These results indicate that theability to forecast ENSO could be greatly increased by improving theinitialization of the forecast model.  相似文献   

6.
Xia LIU  Qiang WANG  Mu MU 《大气科学进展》2018,35(11):1362-1371
Based on the high-resolution Regional Ocean Modeling System(ROMS) and the conditional nonlinear optimal perturbation(CNOP) method, this study explored the effects of optimal initial errors on the prediction of the Kuroshio large meander(LM) path, and the growth mechanism of optimal initial errors was revealed. For each LM event, two types of initial error(denoted as CNOP1 and CNOP2) were obtained. Their large amplitudes were found located mainly in the upper 2500 m in the upstream region of the LM, i.e., southeast of Kyushu. Furthermore, we analyzed the patterns and nonlinear evolution of the two types of CNOP. We found CNOP1 tends to strengthen the LM path through southwestward extension. Conversely,CNOP2 has almost the opposite pattern to CNOP1, and it tends to weaken the LM path through northeastward contraction.The growth mechanism of optimal initial errors was clarified through eddy-energetics analysis. The results indicated that energy from the background field is transferred to the error field because of barotropic and baroclinic instabilities. Thus, it is inferred that both barotropic and baroclinic processes play important roles in the growth of CNOP-type optimal initial errors.  相似文献   

7.
With the Zebiak-Cane(ZC)model,the initial error that has the largest effect on ENSO prediction is explored by conditional nonlinear optimal perturbation(CNOP).The results demonstrate that CNOP-type errors cause the largest prediction error of ENSO in the ZC model.By analyzing the behavior of CNOP- type errors,we find that for the normal states and the relatively weak El Nino events in the ZC model,the predictions tend to yield false alarms due to the uncertainties caused by CNOP.For the relatively strong El Nino events,the ZC model largely underestimates their intensities.Also,our results suggest that the error growth of El Nino in the ZC model depends on the phases of both the annual cycle and ENSO.The condition during northern spring and summer is most favorable for the error growth.The ENSO prediction bestriding these two seasons may be the most diffcult.A linear singular vector(LSV)approach is also used to estimate the error growth of ENSO,but it underestimates the prediction uncertainties of ENSO in the ZC model.This result indicates that the different initial errors cause different amplitudes of prediction errors though they have same magnitudes.CNOP yields the severest prediction uncertainty.That is to say,the prediction skill of ENSO is closely related to the types of initial error.This finding illustrates a theoretical basis of data assimilation.It is expected that a data assimilation method can filter the initial errors related to CNOP and improve the ENSO forecast skill.  相似文献   

8.
YU Liang  MU Mu  Yanshan  YU 《大气科学进展》2014,31(3):647-656
ABSTRACT The impact of both initial and parameter errors on the spring predictability barrier (SPB) is investigated using the Zebiak Cane model (ZC model). Previous studies have shown that initial errors contribute more to the SPB than parameter errors in the ZC model. Although parameter errors themselves are less important, there is a possibility that nonlinear interactions can occur between the two types of errors, leading to larger prediction errors compared with those induced by initial errors alone. In this case, the impact of parameter errors cannot be overlooked. In the present paper, the optimal combination of these two types of errors [i.e., conditional nonlinear optimal perturbation (CNOP) errors] is calculated to investigate whether this optimal error combination may cause a more notable SPB phenomenon than that caused by initial errors alone. Using the CNOP approach, the CNOP errors and CNOP-I errors (optimal errors when only initial errors are considered) are calculated and then three aspects of error growth are compared: (1) the tendency of the seasonal error growth; (2) the prediction error of the sea surface temperature anomaly; and (3) the pattern of error growth. All three aspects show that the CNOP errors do not cause a more significant SPB than the CNOP-I errors. Therefore, this result suggests that we could improve the prediction of the E1 Nifio during spring by simply focusing on reducing the initial errors in this model.  相似文献   

9.
Limitations in the predictability of quantitative precipitation forecasting (QPF) that arise from initial errors of small amplitude and scale are investigated by means of real-case high-resolution (cloud-resolving) numerical weather prediction (NWP) integrations. The case considered is the hail and wind disaster that occurred in Sichuan on 8 April 2005. A total of three distinct perturbation methods are used. The results suggest that a tiny initial error in the temperature field can amplify and influence the weather in a large domain, changing the 12-h forecasted rainfall by as much as one-third of the original magnitude. Furthermore, the comparison of the perturbation methods indicates that all of the methods pinpoint the same region (the heavy rainfall areas in the control experiment) as suffering from limitations in predictability. This result reveals the important role of nonlinearity in severe convective events.  相似文献   

10.
ENSO强度的影响因子是一个具有争议性的问题.作者探讨了一种理想的赤道高频纬向风强迫对ENSO强度的影响.将该问题转化为一类关于模式参数扰动的非线性最优化问题;基于所用的理论ENSO模式,研究了赤道高频纬向风强迫在调制ENSO强度中的角色.结果表明,对于E1 Ni(n)o和La Ni(n)a事件,存在两类外强迫,一类促进E1 Ni(n)o事件的发展却抑制La Ni(n)a事件的发展,另一类则抑制E1 Ni(n)o而促进La Ni(n)a事件的发展.这两类外强迫的主要区别在于初始相位的不同.相位决定了外强迫对ENSO事件是促进的还是抑制的,而外强迫的振幅和周期则决定了外强迫影响ENSO强度的大小.这些外强迫主要是通过海洋波动对斜温层深度的调节来影响ENSO事件的强度的.  相似文献   

11.
奇异向量(singular vectors,SVs)和条件非线性最优扰动(conditional nonlinear optimal perturbation,CNOP)已广泛应用于研究大气—海洋系统的不稳定性以及与其相关的可预报性、集合预报和目标观测问题研究。本文首先回顾了SVs和CNOP的发展历史,并简单描述了它们的基本原理;然后针对二维正压准地转模式,使用不同的范数组合,分析了第一线性奇异向量(first singular vector,FSV)和CNOP之间的异同。结果表明,当优化时间较短时,度量SVs和CNOP大小的范数不同也将导致FSV和CNOP相差很大,而当度量SVs和CNOP大小的范数相同时,FSV和CNOP之间的差别则主要是由非线性物理过程作用的结果。因此,针对不同的物理问题,应该选取合适的度量范数研究FSV和CNOP以及其所引起的大气或海洋动力学的异同,从而揭示非线性物理过程的影响机理。  相似文献   

12.
GRAPES全球模式的模式误差估计   总被引:3,自引:3,他引:3  
现代数值天气模式考虑的物理过程和边界条件越来越复杂, 但是它描述的大气状态和真实的大气流体运动轨迹还有一定的差距, 存在模式误差。在以往的研究中, 模式误差往往被忽略, 在集合卡尔曼滤波同化系统中, 如果忽略模式误差会导致滤波发散现象。本文用不同分辨率的模式预报差异估计了GRAPES全球模式的模式误差, 研究发现模式误差随着分辨率降低而线性增加, 而且模式误差随着预报时效的增加呈现线性增长的趋势。  相似文献   

13.
The Advanced Regional Eta-coordinate Model (AREM) is used to explore the predictability of a heavy rainfall event along the Meiyu front in China during 3-4 July 2003.Based on the sensitivity of precipitation prediction to initial data sources and initial uncertainties in different variables,the evolution of error growth and the associated mechanism are described and discussed in detail in this paper.The results indicate that the smaller-amplitude initial error presents a faster growth rate and its growth is characterized by a transition from localized growth to widespread expansion error.Such modality of the error growth is closely related to the evolvement of the precipitation episode,and consequcntly remarkable forecast divergence is found near the rainband,indicating that the rainfall area is a sensitive region for error growth.The initial error in the rainband contributes significantly to the forecast divergence,and its amplification and propagation are largely determined by the initial moisture distribution.The moisture condition also affects the error growth on smaller scales and the subsequent upscale error cascade.In addition,the error growth defined by an energy norm reveals that large error energy collocates well with the strong latent heating,implying that the occurrence of precipitation and error growth share the same energy source-the latent heat.This may impose an intrinsic predictability limit on the prediction of heavy precipitation.  相似文献   

14.
Effect of Stochastic MJO Forcing on ENSO Predictability   总被引:2,自引:0,他引:2  
Within the frame of the Zebiak-Cane model,the impact of the uncertainties of the Madden-Julian Oscillation(MJO) on ENSO predictability was studied using a parameterized stochastic representation of intraseasonal forcing.The results show that the uncertainties of MJO have little effect on the maximum prediction error for ENSO events caused by conditional nonlinear optimal perturbation(CNOP);compared to CNOP-type initial error,the model error caused by the uncertainties of MJO led to a smaller prediction uncertainty of ENSO,and its influence over the ENSO predictability was not significant.This result suggests that the initial error might be the main error source that produces uncertainty in ENSO prediction,which could provide a theoretical foundation for the data assimilation of the ENSO forecast.  相似文献   

15.
In this study, the relationship between the limit of predictability and initial error was investigated using two simple chaotic systems:the Lorenz model, which possesses a single characteristic time scale, and the coupled Lorenz model, which possesses two different characteristic time scales. The limit of predictability is defined here as the time at which the error reaches 95% of its saturation level; nonlinear behaviors of the error growth are therefore involved in the definition of the limit of predictability. Our results show that the logarithmic function performs well in describing the relationship between the limit of predictability and initial error in both models, although the coefficients in the logarithmic function were not constant across the examined range of initial errors. Compared with the Lorenz model, in the coupled Lorenz model-in which the slow dynamics and the fast dynamics interact with each other-there is a more complex relationship between the limit of predictability and initial error. The limit of predictability of the Lorenz model is unbounded as the initial error becomes infinitesimally small; therefore, the limit of predictability of the Lorenz model may be extended by reducing the amplitude of the initial error. In contrast, if there exists a fixed initial error in the fast dynamics of the coupled Lorenz model, the slow dynamics has an intrinsic finite limit of predictability that cannot be extended by reducing the amplitude of the initial error in the slow dynamics, and vice versa. The findings reported here reveal the possible existence of an intrinsic finite limit of predictability in a coupled system that possesses many scales of time or motion.  相似文献   

16.
穆穆  段晚锁  徐辉  王波 《大气科学进展》2006,23(6):992-1002
Considering the limitation of the linear theory of singular vector (SV), the authors and their collaborators proposed conditional nonlinear optimal perturbation (CNOP) and then applied it in the predictability study and the sensitivity analysis of weather and climate system. To celebrate the 20th anniversary of Chinese National Committee for World Climate Research Programme (WCRP), this paper is devoted to reviewing the main results of these studies. First, CNOP represents the initial perturbation that has largest nonlinear evolution at prediction time, which is different from linear singular vector (LSV) for the large magnitude of initial perturbation or/and the long optimization time interval. Second, CNOP, rather than linear singular vector (LSV), represents the initial anomaly that evolves into ENSO events most probably. It is also the CNOP that induces the most prominent seasonal variation of error growth for ENSO predictability; furthermore, CNOP was applied to investigate the decadal variability of ENSO asymmetry. It is demonstrated that the changing nonlinearity causes the change of ENSO asymmetry. Third, in the studies of the sensitivity and stability of ocean’s thermohaline circulation (THC), the nonlinear asymmetric response of THC to finite amplitude of initial perturbations was revealed by CNOP. Through this approach the passive mechanism of decadal variation of THC was demonstrated; Also the authors studies the instability and sensitivity analysis of grassland ecosystem by using CNOP and show the mechanism of the transitions between the grassland and desert states. Finally, a detailed discussion on the results obtained by CNOP suggests the applicability of CNOP in predictability studies and sensitivity analysis.  相似文献   

17.
史珍  丁瑞强  李建平 《大气科学》2012,36(3):458-470
根据非线性局部Lyapunov指数的方法, 以Logistic映射和Lorenz系统的试验数据序列为例, 研究了在初始误差存在的情况下, 随机误差对混沌系统可预报性的影响。结果表明: 初始误差和随机误差对可预报期限影响所起的作用大小主要取决于两者的相对大小。当初始误差远大于随机误差时, 系统的可预报期限主要由初始误差决定, 可以不考虑随机误差对预报模式可预报性的影响; 反之, 当随机误差远大于初始误差时, 系统的可预报期限主要由随机误差决定; 当初始误差和随机误差量级相当时, 两者都对系统的可预报期限起重要作用。在后两种情况下, 在考虑初始误差对可预报性影响的同时还必须考虑随机误差的作用。此外, 我们在已知系统精确的控制方程和误差演化方程的条件下, 研究了随机误差对可预报性的影响, 理论所得结果与试验数据所得结果相似。这表明在随机误差较小的情况下, 对系统可预报期限的估计相对准确, 但在随机误差较大的情况下, 可预报期限的估计误差也较大。本文利用三种不同的滤波方法对序列进行了试验, 结果表明, Lanczos高通滤波得到的高频序列与原始加入的噪声序列无论是在强度上还是在演变趋势上都表现得相当一致, 其能有效地去除高频噪音继而提高对系统的可预报期限的估计, 这对实际气象观测资料如何有效地去除噪音具有一定的启发意义。  相似文献   

18.
Optimal precursor perturbations of El Nino in the Zebiak-Cane model were explored for three different cost functions. For the different characteristics of the eastern-Pacific (EP) El Nino and the central-Pacific (CP) El Nino, three cost functions were defined as the sea surface temperature anomaly (SSTA) evolutions at prediction time in the whole tropical Pacific, the Nino3 area, and the Nino4 area. For all three cost functions, there were two optimal precursors that developed into El Nino events, called Precursor Ⅰ and Precursor Ⅱ. For Precursor Ⅰ, the SSTA component consisted of an east-west (positive-negative) dipole spanning the entire tropical Pacific basin and the thermocline depth anomaly pattern exhibited a tendency of deepening for the whole of the equatorial Pacific. Precursor Ⅰ can develop into an EP-El Nino event, with the warmest SSTA occurring in the eastern tropical Pacific or into a mixed El Nino event that has features between EP-El Nino and CP-El Nino events. For Precursor Ⅱ, the thermocline deepened anomalously in the eastern equatorial Pacific and the amplitude of deepening was obviously larger than that of shoaling in the central and western equatorial Pacific. Precursor Ⅱ developed into a mixed El Nino event. Both the thermocline depth and wind anomaly played important roles in the development of Precursor Ⅰ and Precursor Ⅱ.  相似文献   

19.
初始扰动对一次华南暴雨预报的影响的研究   总被引:1,自引:1,他引:1  
朱本璐  林万涛  张云 《大气科学》2009,33(6):1333-1347
本文选取了2006年华南前汛期的一次暴雨过程, 采用AREMv2.3中尺度数值模式进行数值模拟, 分别在模式初始场的物理量场 (温度场、 风场、 湿度场) 上加扰动, 分析不同物理量场上的扰动对降水预报的影响, 以及物理量预报误差和扰动能量的增长情况。同时, 通过本个例讨论误差增长与湿对流的关系, 扰动振幅对误差增长的影响和华南区域的中尺度降水的可预报性问题。数值试验结果表明: 初始时刻不同物理量场加实际振幅的正态分布的随机扰动时, 对降水的影响是不同的。对于24小时降水预报, 温度场对降水的影响最大。误差的增长与湿对流不稳定有着密切的关系。小尺度小振幅误差增长很快, 而且是非线性增长。这意味着短期的较小尺度降水的可预报性很小。与大振幅扰动相比, 小振幅扰动造成的误差较小。但是小振幅扰动的迅速发展, 很快就会对降水预报造成较大的影响。因此, 只能有限地提高预报质量, 而且由于扰动非线性增长很快, 在预报时间的提前上, 不会有太大的改善。  相似文献   

20.
The AREMv2.3 mesoscale numerical model is used to explore storm processes in South China during the pre-rainy season in 2006 by imposing perturbations on the initial fields of physical variables (temperature, humidity, and wind fields). Sensitivity experiments are performed to examine the impacts of initial uncertainties on precipitation, on the error growth, and on the predictability of mesoscale precipitation in South China. The primary conclusion is that inherent initial condition uncertainties can signi...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号