首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yangbajing (YBJ) is located in the Tibetan Plateau, China. The characteristics of solar radiation and its relationship with clouds at YBJ from April 2009 to April 2010 were analyzed in this paper. The annual mean solar radiation was 478.4 W m 2 , and the annual mean transmittance was 0.713. The atmospheric mean trans- mittance of clear skies reaches 0.828 when the solar elevation angle (SEA) is greater than 10 degrees. Comparisons with numerical simulations show that the atmosphere of YBJ is clean. Impacts from atmospheric conditions on solar radiation are similar for clear skies during the year because the standard deviation of transmittance in clear skies was less than 0.05 when the SEA was greater than 10 degrees. It is important to understand the impact of clouds on solar radiation without considering other impact factors. In the last part of this article, the authors analyzed and established a statistical quantitative relationship between surface solar radiation and cloud fraction.  相似文献   

2.
The radiative energy exchange between arctic sea-ice and stratiform clouds is studied by means of aircraft measurements and a two-stream radiation transfer model. The data have been obtained by flights of two identically instrumented aircraft during the Radiation and Eddy Flux Experiments REFLEX I in autumn 1991 and REFLEX II in winter 1993 over the arctic marginal ice zone of Fram Strait. The instrumental equipment comprised Eppley pyranometers and pyrgeometers, which measure the solar and terrestrial upwelling and downwelling hemispheric radiation flux densities, and a line-scan-camera on one aircraft to monitor the surface structure of the sea-ice. An empirical parametrization of the albedo of partly ice-covered ocean surfaces is obtained from the data, which describes the albedo increasing linearly with the concentration of the snow-covered sea-ice and with the cosine of the sun zenith angle at sun elevations below 10°. Cloud optical parameters, such as single scattering albedo, asymmetry factor and shortwave and longwave height-dependent extinction coefficient are determined by adjusting modeled radiation flux densities to observations. We found significant influence of the multiple reflection of shortwave radiation between the ice surface and the cloud base on the radiation regime. Consistent with the data, a radiation transfer model shows that stratus clouds of 400 m thickness with common cloud parameters may double the global radiation at the surface of sea-ice compared to open water values. The total cloud-surface-albedo under these circumstances is 30% larger over sea-ice than over water. Parametrizations of the global and reflected radiation above and below stratus clouds are proposed on the basis of the measurements and modeling. The upwelling and downwelling longwave emission of stratus clouds with thicknesses of more than 500 m can be satisfactorily estimated by Stefan's law with an emissivity of nearly 1 and when the maximum air temperature within the cloud is used.  相似文献   

3.
黄土高原半干旱区夏季晴天陆面特征模拟与观测对比分析   总被引:1,自引:0,他引:1  
柳媛普  张强  王胜 《干旱气象》2013,(3):457-463
以甘肃定西为例,利用中尺度模式MM5模拟了黄土高原半干旱区夏季晴人的陆面特征,并与观测资料进行对比分析。结果表明,对气温、土壤热通量、辐射、感热通量的模拟结果与观测比较一致,而对比湿、地表温度、潜热通量的模拟结果与观测偏差稍大。夏季晴天,定西地区的地表温度日最高值出现时间较13最高气温出现时间早了3h,但两者日最低值出现时间相同;10cm深度处的土壤温度存在明显的日变化,而40、80cm深度处无明显的日变化;空气湿度较低,夜晚比湿的变化与露水的凝结量变化时间一致;土壤热通量呈典型的单峰型日变化特征,日最大值出现在13:00,与太阳短波辐射与地表反射辐射日最大值出现的时间相同;在半干旱区感热通量明显大于潜热通量,热通量以感热通量为主;边界层高度最高可达到2100m左右,比干旱区敦煌的低1000m左右。  相似文献   

4.
本文利用淮南森林观测站2018年7月1日至2019年6月30日冠层辐射观测,分析了淮南栎树森林下垫面冠层内外辐射变化特征。结果表明:(1)从春季到夏季,栎树冠层之上向下的太阳短波辐射增加,到冬季逐渐减少。从早春开始,由于叶片生长增多,冠层中间和冠层之下向下的太阳短波辐射下降,从秋季到冬季树叶凋落,其向下的太阳辐射增加,与冠层之上的变化趋势相反;对于向上的短波辐射,无论冠层之上、冠层中间还是冠层之下,随季节的变化都与向下的短波辐射相似,只是数值小很多。(2)冠层之上、冠层中间和冠层之下向下的长波辐射,随时间的变化从春季逐渐开始增大至夏季达到最大,随后逐渐减小并在冬季达到最小;就空间变化而言,冠层中间和冠层之下向下的长波辐射值比冠层之上的辐射值高,使得冠层对长波辐射的振幅增大,晴空条件最高可达1.3倍。(3)淮南森林区冠层之上(距地面25 m)年平均反照率为0.14,比中国北方地区(35°N)温带季风气候区(混交林为主)反照率的整体水平低0.01,表明淮南的森林茂密、灌丛更多些。(4)冠层上部分和整层的短波辐射透射率主要受叶片的影响。夏季,冠层的短波透射率平均为0.1。到了冬天,叶子凋落,透射率增加并趋于一个平稳的波动。冠层的短波辐射吸收率在夏季最高,秋季逐渐降低,随着叶子凋落在冬季迅速减小,趋于一常值。  相似文献   

5.
A comparison study for the solar radiative flux above clouds is presented between the regional climate model system BALTEX integrated model system (BALTIMOS) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations. For MODIS, an algorithm has been developed to retrieve reflected shortwave fluxes over clouds. The study area is the Baltic Sea catchment area during an 11-month period from February to December 2002. The intercomparison focuses on the variations of the daily and seasonal cycle and the spatial distributions. We found good agreement between the observed and the simulated data with a bias of the temporal mean of 13.6 W/m2 and a bias of the spatial mean of 35.5 W/m2. For summer months, BALTIMOS overestimates the solar flux with up to 90 W/m2 (20%). This might be explained by the insufficient representation of cirrus clouds in the regional climate model.  相似文献   

6.
 A comprehensive dataset of direct observations is used to assess the representation of surface and atmospheric radiation budgets in general circulation models (GCMs). Based on combined measurements of surface and collocated top-of-the-atmosphere fluxes at more than 700 sites, a lack of absorption of solar radiation within the atmosphere is identified in the ECHAM3 GCM, indicating that the shortwave atmospheric absorption calculated in the current generation of GCMs, typically between 60 and 70 Wm-2, is too low by 10–20 Wm-2. The surface and atmospheric radiation budgets of a new version of the Max-Planck Institute GCM, the ECHAM4, differ considerably from other GCMs in both short- and longwave ranges. The amount of solar radiation absorbed in the atmosphere (90 Wm-2) is substantially larger than typically found in current GCMs, resulting in a lower absorption at the surface (147 Wm-2). It is shown that this revised disposition of solar energy within the climate system generally reduces the biases compared to the observational estimates of surface and atmospheric absorption. The enhanced shortwave absorption in the ECHAM4 atmosphere is due to an increase in both simulated clear-sky and cloud absorption compared to ECHAM3. The increased absorption in the cloud-free atmosphere is related to an enhanced absorption of water vapor, and is supported in stand-alone comparisons of the radiation scheme with synchronous observations. The increased cloud absorption, on the other hand, is shown to be predominantly spurious due to the coarse spectral resolution of the ECHAM4 radiation code, thus providing no physical explanation for the “anomalous cloud absorption” phenomenon. Quantitatively, however, an additional increase of atmospheric absorption due to clouds as in ECHAM4 is, at least at low latitudes, not in conflict with the observational estimates, though this does not rule out the possibility that other effects, such as highly absorbing aerosols, could equally contribute to close the gap between models and observations. At higher latitudes, however, the increased cloud absorption is not supported by the observational dataset. Overall, this study points out that not only the clouds, but also the cloud-free atmosphere might be responsible for the discrepancies between observational and simulated estimates of shortwave atmospheric absorption. The smaller absorption of solar radiation at the surface in ECHAM4 is compensated by an increased downward longwave flux (344 Wm-2), which is larger than in other GCMs. The enhanced downward longwave flux is supported by surface measurements and by a stand-alone validation of the radiation scheme for clear-sky conditions. The enhanced flux also ensures that a sufficient amount of energy is available at the surface to maintain a realistic intensity of the global hydrological cycle. In contrast, a one-handed revision of only the shortwave radiation budget to account for the increased shortwave absorption in GCM atmospheres may induce a global hydrological cycle that is too weak. Received: 26 February 1998 / Accepted: 18 May 1998  相似文献   

7.
This paper documents a study to examine the sensitivity to cloud droplet effective radius and liquid water path and the alleviation the energy imbalance at the top of the atmosphere and at the surface in the latest version of the Grid-point Atmospheric Model of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP) (GAMIL1.1.0). Considerable negative biases in all flux components, and thus an energy imbalance, are found in GAMIL1.1.0. In order to alleviate the energy imbalance, two modifications, namely an increase in cloud droplet effective radius and a decrease in cloud liquid water path, have been made to the cloud properties used in GAMIL. With the increased cloud droplet effective radius, the single scattering albedo of clouds is reduced, and thus the reflection of solar radiation into space by clouds is reduced and the net solar radiation flux at the top of the atmosphere is increased. With the reduced cloud optical depth, the net surface shortwave radiation flux is increased, causing a net warming over the land surface. This results in an increase in both sensible and latent heat fluxes over the land regions, which is largely balanced by the increased terrestrial radiation fluxes. Consequently, the energy balance at the top of atmosphere and at the surface is achieved with energy flux components consistent with available satellite observations.  相似文献   

8.
已有研究表明辐射对热带气旋发生发展具有明显调制作用,高原涡与热带气旋有类似的暖心低压结构,辐射在高原涡发生发展过程中的作用也值得探讨。本文利用ERA-Interim再分析资料,通过中尺度数值模式WRF-ARW研究了辐射日变化对高原涡个例发展的影响机制。模拟结果表明,太阳短波辐射对高原涡的发生发展具有明显的调制作用。控制试验(CTL;即保留太阳辐射日变化)较好的再现了高原涡的发展过程。在去掉短波辐射过程的夜间试验(All_night)中,前期高原涡发展速度较快。而在白天(All_day)试验中,短波辐射过程抑制了高原涡的发展。诊断分析表明,夜间长波辐射冷却加强对流层温度递减率,减弱大气静力稳定度;同时,大气温度的降低使得夜间相对湿度增大,有利于对流层低层出现位势不稳定,进而促使高原涡的形成和发展。反之,太阳短波辐射有利于对流层高层增温,加强大气静力稳定度,从而抑制对流活动发展。夜间低层辐合更为强盛,有利于上升运动的加强并诱发高原涡形成;非平衡项结果显示,在高原涡环流中心区域存在正值区,而低涡四周为明显的负值区。从动力学和热力学特征来看,高原涡的发展与热带气旋具有一定的相似性。  相似文献   

9.
中国地区夏季平均加热率的时空分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
The latitude-altitude distributions of radiative fluxes and heating rates are investigated by utilizing CloudSat satellite data over China during summer. The Tibetan Plateau causes the downward shortwave fluxes of the lower atmosphere over central China to be smaller than the fluxes over southern and northern China by generating more clouds. The existence of a larger quantity of clouds over central China reflects a greater amount of solar radiation back into space. The vertical gradients of upward shortwave radiative fluxes in the atmosphere below 8 km are greater than those above 8 km. The latitudinal-altitude distributions of downward longwave radiative fluxes show a slantwise decreasing trend from low latitudes to high latitudes that gradually weaken in the downward direction. The upward longwave radiative fluxes also weaken in the upward direction but with larger gradients. The maximum heating rates by solar radiation and cooling rates by longwave infrared radiation are located over 28-40°N at 7-8 km mean sea level (MSL), and they are larger than the rates in the northern and southern regions. The heating and cooling rates match well both vertically and geographically.  相似文献   

10.
Summary An analytical method is developed for determining radiation transport in finite cylindrical clouds. The cylindrical form is taken as the idealized shape of cumulus clouds. In the shortwave part of the spectrum illumination by the direct solar beam is considered. In the infrared the cloud's emission as well as the radiation emitted by an underlying ground is taken into account. Numerical computations are carried out to illustrate the applicability of the technique developed in the present study. For a cloud in an absorbing midlatitude summer atmosphere results are shown for the shortwave region including spectral integration. Cloud transmission and albedo are presented as a function of solar zenith angle and as a function of the cloud's dimensions. The results are in agreement with published results from Monte Carlo calculations as far as a comparison is possible. Vertical profiles of the solar heating rate in the cylindrical cloud indicate the effect of the cloud's finite dimensions. Similarity as well as differences are found from comparison with results obtained for a cuboidal cloud from a finite analytical model that was tested successfully against Monte Carlo calculations.With 5 Figures  相似文献   

11.
The role of clouds in photodissociation is examined by both modelling and observations. It is emphasized that the photodissociation rate is proportional to the actinic flux rather than to the irradiance. The actinic flux concerns the energy that is incident on a molecule, irrespective of the direction of incidence. The irradiance concerns the energy that is incident on a plane.As far as the modelling aspect is concerned, a multi-layer delta-Eddington model is used to calculate irradiances, actinic fluxes, and photodissociation rates of nitrogen dioxide J(NO2) as a function of height in inhomogeneous atmospheres. For the considered wavelength interval [290–420 nm], Rayleigh scattering, ozone absorption, and Mie scattering and absorption by cloud drops and aerosols should be taken into account.Further, a three-layer model is used to calculate the actinic flux above and below a cloud, relative to the incident flux, in terms of cloud albedo, zenith angle, and the albedo of the underlying and overlying atmosphere. Cloud albedo is mainly determined by cloud optical thickness. An expression for the incloud actinic flux is given as a function of in-cloud optical thickness. The three-layer model seems to be a useful model for the estimation of photodissociation rates in dispersion models.It is stressed that both models in their present form cannot handle partial cloudiness.It is shown that if no clouds are present, the actinic flux depends primarily on solar zenith angle. Further, the incident flux at the top of the atmosphere diminishes downward into the atmosphere due to the increasing effect of scattering. Therefore, the actinic flux usually increases with height, although above clouds the actinic flux sometimes decreases with height due to a large contribution of the upward scattered light.For cloudy atmospheres, another important parameter with respect to the actinic flux is added: cloud optical thickness. Cloud optical thickness determines cloud albedo. It can be shown that incloud characteristics and cloud height are less important while describing the effect of a cloud on the actinic flux (outside the cloud). The in-cloud values of the actinic flux can exceed the values outside the cloud.Finally, using the photostationary state relationship, a comparison is performed between model results and ground-based measurements as well as in-cloud air craft measurements.  相似文献   

12.
Summary Strong stable layers are a common occurrence during western Colorado's winter. Analysis of radiosonde observations indicate wintertime boundary layer heights are near 500 m. The terrain in this region consists of mountains that rise approximately 1500–2000 m above the ground to the east, providing an effective blocking barrier. An experiment is described to observe upwelling and downwelling, longwave and shortwave radiative fluxes at two sites in western Colorado during January and February 1992, for combinations of clear, cloudy, snow covered, and bare ground periods. Analysis of the observations and the surface energy budget for typical Bowen ratios provides a better understanding of the role of radiation in maintaining and destroying stable layers.During the day, the surface received a net gain of energy from radiation, while at night there was a net loss. Over snow, the 24-hour net radiative flux was small and either positive or negative. Over bare soil, the 24-hour net radiative flux was positive but still small. There is little difference in the net radiative flux between clear and cloudy days; the reduction of the incident solar flux by clouds is nearly compensated by the hindering of the longwave cooling. The cumulative effects of the 24-hour net radiative flux were negative over snow early in the experiment. The 24-hour values shifted to near zero as the snow albedo decreased and were positive for bare ground.If the daytime net radiative flux is partitioned into sensible and latent heat flux using typical Bowen ratios, the daytime sensible heat available for destroying boundary layers is small for the low solar angles of the winter season. With a Bowen ratio of 0.5, the daytime sensible heat flux available is only 0.3 to 1.2 MJ m–2 over a snow surface and 1.4 to 2.3 MJ m–2 over soil. These heat fluxes will not build a deep enough boundary layer to break a typical wintertime inversion. The 24-hour sensible heat flux was negative at both sites for the entire experiment with this Bowen ratio.The radiation observations and the use of typical Bowen ratios lead to the conclusion that the net radiation will sustain or strengthen a stable atmosphere in the winter season in western Colorado. Analysis of the radiosonde observations confirm this result as the boundary layer depths were less than 500 m early in the experiment and grew to only 700 m later in the experiment.With 12 Figures  相似文献   

13.
Values of downward and upward flux densities of solar and terrestrial radiation were continuously recorded between 1 December 2001 and 30 November 2002 using a four-components radiometer at S. Pietro Capofiume (SPC) in northern Italy (44°39′N, 11°37′E, alt. 11 m a.m.s.l.), which is characterized by a weakly-reflective surface. The aim of the study was to investigate the effects of clouds on surface radiation balance (SRB); the cloud fraction (N) has been retrieved through the inverted form of the parameterization proposed by Kasten and Czeplak [Solar Energy 24 (1980) 177] and cloud types estimated following the methodology of Duchon and O'Malley [J. Appl. Meteorol. 38 (1999) 132]. The cloud radiative forcing (CRF) was evaluated through the Bintanja and Van den Broeke [Int. J. Climatol. 16 (1996) 1281] formula and then associated with cloud type. Experimental results showed that during the measuring period the net shortwave (Sw) balance always decreased with increasing N, whereas the net longwave (Lw) balance increased in all seasons. The net radiation available at the surface decreased with increasing N in all seasons except in winter, where no significant dependency was detected.The analysis of the cloud radiative forcing indicates that all seasons were characterized by a net cooling of the surface except winter, where clouds seem to have no effects on the surface warming or cooling. Taking into account the dependence on solar radiation cycle, an intercomparison between the retrieved cloud types seems to indicate that the effect of stratus was a slight cooling whereas that of cumulus clouds was a stronger cooling of the surface. On the contrary, cirrus clouds seem to have slight warming effect on the surface.The annual trends of mean monthly values of shortwave and longwave radiation balances confirmed that the measurement site is characterized by a temperate climate. Moreover, in spite of the cooling effect of clouds, a monthly radiative energy surplus is available all year long for surface–atmosphere energy exchanges. The analysis is also instrumental for the detection of SRB variations.  相似文献   

14.
气候模式中云的次网格结构对全球辐射影响的研究   总被引:3,自引:0,他引:3  
荆现文  张华  郭品文 《气象学报》2009,67(6):1058-1068
利用一种用于大尺度天气、气候模式的随机云产生器(SCG)和独立气柱近似(ICA)辐射算法,研究了次网格云的水平结构以及垂直重叠结构对全球辐射场的影响.比较了水平非均匀云(IHCLD)和水平均匀云(HCLD)的辐射场差异以及云的最大.随机重叠(MRO)和一般重叠(GenO)的辐射场差异.结果显示,与HCLD相比,IHCLD一方面可增加地面净短波辐射通量,纬向平均最大值(约1W/m~2)和次大值(约0.6 W/m~2)分别位于高纬度低云密集地区和对流旺盛的热带地区;另一方面可增加大气顶的净长波辐射通量,纬向平均最大值(0.3 W/m~2)出现在热带地区.不同的重叠结构对短波和长波辐射收支也有很大的影响.MRO和GenO的短波辐射通量差异在热带辐合带最大.达到30-40W/m~2,在高纬度低云带的纬向平均也可达到5W/m~2左右;长波辐射通量差异具有相似的地区分布,但量值相对较小.不同重叠结构可以造成大气上下层的辐射加热率差异,影响大气热力层结.云的水平和垂直结构对有云区域辐射收支的影响将改变大气热力、动力状况以及水汽条件,从而影响模拟的气候系统的演变.文中采用单向云-辐射计算,排除了与气候系统其他过程复杂的相互作用,从而使其结果具有一定的普适性,可为不同大尺度模式进行次网格云辐射参数化提供参考.  相似文献   

15.
Summary The concept of effective cloud cover, elaborated on the basis of an assumption that changes in the net radiation at the top of the atmosphere are mainly caused by changing cloudiness, has been used to deduce solar surface radiation from satellite data. It has been shown that the method permits a calculation of solar surface absorption distributions that agree well with the results obtained by other authors and that the existing disagreement can be to a great extent ascribed to the differences in the data sets and analysis periods. The method allows use of early satellite measurements to get longer time series of the surface radiation budget. In this study, it has been applied to the Nimbus-7 ERB WFOV data for 1979–1986.The net solar flux at the TOA (top of the atmosphere) can be partitioned into absorption at the surface and within the atmosphere. The geographical distributions of all the three quantities as well as the zonal averages of the surface absorption for January and July have been described. Special objectives of the present study are to estimate the interannual standard deviation for the 8-year period and to analyse the shortwave cloud-radiative forcing distributions at the surface and especially within the atmosphere.The standard deviation of the TOA and the surface solar absorption shows a temporal asymmetry, being much larger in January than in July. Noticeable is the disappearance of the wintertime strong variability over the central Pacific in July. As can be expected, the strong variability areas coincide with the strong variability areas of the cloud amount, showing the values up to 27 Wm–2 at the surface.According to our estimate, the shortwave cloud forcing at the surface is everywhere stronger than that at the TOA, so that the cloud forcing of the atmosphere is negative. This means that in the belt of 58.5° N–58.5° S a cloudy atmosphere absorbs more solar energy than a cloud-free atmosphere. Our mean annual value of the atmospheric cloud forcing for this belt is –11 Wm–2 which is somewhat stronger than that obtained by other investigators. It must be stressed that this value is within the uncertainty limits.Shortwave cloud forcing of the atmosphere is the strongest in the lower latitude areas of heavy cloudiness above the continents and negligible in the midlatitudes in winter. This gives evidence that the value of the shortwave cloud forcing of the atmosphere is modified by a combination of cloud absorption and cloud albedo.With 4 Figures  相似文献   

16.
Measurements carried out in Northern Finland on radiation and turbulent fluxes over a sparse, sub-arctic boreal forest with snow covered ground were analysed. The measurements represent late winter conditions characterised by low solar elevation angles. During the experiment (12–24 March 1997) day and night were about equally long. At low solar elevation angles the forest shades most of the snow surface. Therefore an important part of the radiation never reaches the snow surface but is absorbed by the forest. The sensible heat flux above the forest was fairly large, reaching more than 100 W m-2. The measurements of sensible heat flux within and above the forest revealed that the sensible heat flux from the snow surface is negligible and the sensible heat flux above the forest stems from warming of the trees. A simple model for the surface energy balance of a sparse forest is presented. The model treats the diffuse and direct shortwave (solar) radiation separately. It introduces a factor that accounts for the shading of the ground at low solar elevation angles, and a parameter that deals with the partial transparency of the forest.Input to the model are the direct and diffuse incoming shortwave radiation.Measurements of the global radiation (direct plus diffuse incoming shortwaveradiation) above the forest revealed a considerable attenuation of the globalradiation at low solar elevation. A relation for the atmospheric turbidity asfunction of the solar elevation angle is suggested. The global radiation wassimulated for a three month period. For conditions with a cloud cover of lessthan 7 oktas good agreement between model predictions and measurementswere found. For cloud cover 7 and 8 oktas a considerable spread can beobserved. To apply the proposed energy balance model, the global radiationmust be separated into its diffuse and direct components. We propose a simpleempirical relationship between diffuse shortwave and global radiation asfunction of cloud cover.  相似文献   

17.
The role of clouds in photodissociation is examined by both modeling and observations. It is emphasized that the photodissociation rate is proportional to the actinic flux rather than to the irradiance. (The actinic flux concerns the energy that is incident on a molecule, irrespective of the direction of incidence. The irradiance concerns the energy that is incident on a plane.) A 3-layer model is used to calculate the actinic flux above and below a cloud, relative to the incident flux, in terms of cloud albedo, zenith angle and the albedo of the underlying and overlying atmosphere. Cloud albedo is mainly determined by cloud optical thickness. An expression for the in-cloud actinic flux is given as a function of in-cloud optical thickness. The 3-layer model seems to be an useful model for estimation of photodissociation rates in dispersion models. Further, a multi-layer delta-Eddington model is used to calculate irradiances, actinic fluxes and photodissociation rates of nitrogen dioxide J(NO2) as a function of height in inhomogeneous atmospheres. For the considered wavelength interval [290–420 nm], Rayleigh scattering, ozone absorption and Mie scattering and absorption by cloud drops and aerosols should be taken into account. It is stressed that both models are one-dimensional and as such are unable to deal with partial cloudiness. It is shown that if no clouds are present, the actinic flux depends primarily on the solar zenith angle. The actinic flux usually increases with height. For cloudy atmospheres, another important parameter with respect to the actinic flux is added: cloud optical thickness, which determines cloud albedo. It can be shown that in-cloud characteristics and cloud height are less important in describing the effect of a cloud on the actinic flux (outside the cloud). The in-cloud values of the actinic flux can exceed the values outside the cloud. Finally, using the photostationary state relationship, good agreement is found between model results and aircraft measurements.  相似文献   

18.
1/f noise in the UV solar spectral irradiance   总被引:1,自引:1,他引:0  
The investigation of the intrinsic properties of the solar spectral irradiance as a function of the ultraviolet (UV) wavelength is attempted by exploiting rare observations performed at the Villard St. Pancrace station of the Lille University of Sciences and Technology ranging from 278 to 400 nm with a step of 0.05 nm every half an hour from nearly sunrise to sunset. To achieve this goal, the modern method of the detrended fluctuation analysis was applied on the solar spectral irradiance values versus wavelength. This analysis revealed that the solar incident flux at the top of the atmosphere and the solar spectral irradiance at the ground during two overcast sky days fluctuate with the UV wavelength exhibiting persistent long-range power-law behavior. More interestingly, the exponent of the power-law relationship between the fluctuations of the solar spectral irradiance versus UV wavelength at both the top of the atmosphere and the ground is consistently close to unity (of 1/f-type) throughout the day. This 1/f behavior has been detected in many complex dynamical systems, but despite much effort to derive a theory for its widespread occurrence in nature, it remains unexplained so far. According to the above-mentioned findings we speculate that the 1/f property of the incident solar UV flux at the top of the atmosphere could probably drive both the 1/f behavior depicted in the atmospheric components and the solar UV irradiance at the Earth's surface. The latter could influence the UV-sensitive biological ecosystems, giving rise to a 1/f-type variability in the biosphere, which has already been proven by recent observational data. We finally propose that Wien approximation could be multiplied by a 1/f function of wavelength (e.g., of the type of the fractional Brownian motion) in order to reproduce the aforementioned 1/f feature of the solar UV flux.  相似文献   

19.
使用RegCM4.6区域气候模式,选取Emanuel和Mix(Grell+Emanuel)两种积云对流参数化方案,以2016年为例,分别对中国地区云短波辐射强迫及其涉及的物理量进行数值模拟,揭示其时空分布特征,并探究两种积云对流参数方案模拟效果的差异及其原因。结果表明:从季节平均来看,全国地表云短波辐射强迫均为负值,云对地表为冷却效应,冬季最小,春夏季较大。塔里木盆地四季均为辐射强迫低值区,夏季冷却效应最弱,辐射强迫绝对值低于40 W·m-2;全天空地表净短波辐射分布也呈显著季节差异,除夏季外均呈由南向北逐渐递减的分布趋势;晴空地表净短波辐射在横断山脉处和塔里木盆地处均比较低,其中春季最为明显;两个方案所得的季节空间分布特征大致相同,但在数值上存在差异。春季时全国大部分地区全天空地表净短波辐射通量差异最大,在55 W·m-2左右,晴空地表净短波辐射通量在青藏高原处差异在60W·m-2左右。  相似文献   

20.
利用毫米波云雷达、微波辐射计联合反演方法,对2015年11月11日安徽寿县的一次层状云过程的云参数进行了反演,将所得云参数加入到SBDART辐射传输模式中,进行辐射通量计算,并将计算的地面辐射通量与观测的地面辐射通量进行了对比分析。研究表明:1)利用毫米波雷达和微波辐射计数据联合反演的云参数比较可靠;2)利用SBDART模式并结合反演的云参数,可以准确实时地计算地面及其他高度层的长短波辐射通量;3)在反演的云参数中,光学厚度对地面各种辐射通量的影响是最大的,云层的光学厚度越大,到达地面的太阳短波辐射越小,地面反射短波辐射也越小。另外云底温度越高,云体向下发射的红外长波辐射越大。地面向上的长波辐射是地面温度的普朗克函数,随地面温度而变;4)云对地面的短波辐射强迫为负值,对地面有降温的作用。云对地面的长波辐射强迫是一个正值,对地面有一个增温的作用;5)云对地面的净辐射强迫随时间变化很大,它的正负与太阳高度角和云参数有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号