首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The spatial variation of sea surface temperature anomalies(SSTA) in the North Pacific Ocean during winter is investigated using the EOF decomposition method.The first two main modes of SSTA are associated with Pacific Decadal Oscillation(PDO) mode and North Pacific Gyre Oscillation(NPGO) mode,respectively.Moreover,the first mode(PDO) is switched to the second mode(NPGO),a dominant mode after mid-1980.The mechanism of the modes’ transition is analyzed.As the two oceanic modes are forced by the Aleutian Low(AL) and North Pacific Oscillation(NPO) modes,the AR-1 model is further used to examine the possible effect and mechanism of AL and NPO in generating the PDO and NPGO.The results show that compared to the NPO,the AL plays a more important role in generating the NPGO mode since the 1970s.Likewise,both the AL and NPO affect the PDO mode since the 1980s.  相似文献   

2.
The response of the Pacific Decadal Oscillation (PDO) to global warming according to the Fast Ocean Atmosphere Model (FOAM) and global warming comparison experiments of 11 IPCC AR4 models is investigated. The results show that North Pacific ocean decadal variability, its dominant mode (i.e., PDO), and atmospheric decadal variability, have become weaker under global warming, but with PDO shifting to a higher frequency. The SST decadal variability reduction maximum is shown to be in the subpolar North Pacific Ocean and western North Pacific (PDO center). The atmospheric decadal variability reduction maximum is over the PDO center. It was also found that oceanic baroclinic Rossby waves play a key role in PDO dynamics, especially those in the subpolar ocean. As the frequency of ocean buoyancy increases under a warmer climate, oceanic baroclinic Rossby waves become faster, and the increase in their speed ratio in the high latitudes is much larger than in the low latitudes. The faster baroclinic Rossby waves can cause the PDO to shift to a higher frequency, and North Pacific decadal variability and PDO to become weaker.  相似文献   

3.
Early studies suggested that the Aleutian–Icelandic low seesaw(AIS) features multidecadal variation. In this study, the multidecadal modulation of the AIS and associated surface climate by the Atlantic Multidecadal Oscillation(AMO) during late winter(February–March) is explored with observational data. It is shown that, in the cold phase of the AMO(AMO|-),a clear AIS is established, while this is not the case in the warm phase of the AMO(AMO|+). The surface climate over Eurasia is significantly influenced by the AMO's modulation of the Aleutian low(AL). For example, the weak AL in AMO|-displays warmer surface temperatures over the entire Far East and along the Russian Arctic coast and into Northern Europe,but only over the Russian Far East in AMO|+. Similarly, precipitation decreases over central Europe with the weak AL in AMO|-, but decreases over northern Europe and increases over southern Europe in AMO|+.The mechanism underlying the influence of AMO|-on the AIS can be described as follows: AMO|-weakens the upward component of the Eliassen–Palm flux along the polar waveguide by reducing atmospheric blocking occurrence over the Euro–Atlantic sector, and hence drives an enhanced stratospheric polar vortex. With the intensified polar night jet, the wave trains originating over the central North Pacific can propagate horizontally through North America and extend into the North Atlantic, favoring an eastward-extended Pacific–North America–Atlantic pattern, and resulting in a significant AIS at the surface during late winter.  相似文献   

4.
The study of low-frequency oscillations is an important part of climate variability research. In view of insufficient efforts spent on multidecadal and ENSO-scale changes of the climate, the present paper undertakes study of > 30 year slowly-varying means, called climate base state (CBS), of northern winter AAC's in the past 100 years and more, with the CBS variability and its temporal evolution investigated, indicating that Aleutian low and Icelandic low (North Pacific high and North American high) experience maximum (minimum) variation in the CBS. The CBS exhibits two modes for its variation. The positive (negative) phase of mode Ⅰ presents a weak (strong) NAO (North Atlantic Oscillation), a weaker (stronger) NPO (North Pacific Oscillation), a robust (feeble) Siberian high and a quite weak (vigorous) Aleutian low whilst the positive (negative) phase of mode Ⅱ reveals a feeble (strong) Aleutian low and a weak (robust) Siberian high. Also, the research shows that the recent CBS of northern circulations is in a remarkably negative phase of mode Ⅰ and a noticeably positive phase of mode Ⅱ, viz., in the background of slowly-varying circulations of an exceptionally weak Siberian high, an extremely vigorous Aleutian low and an intense NAO. The background field is likely to persist for a matter of 30 years such that northern winter temperature is expected to be in such a warm situation for a long period to follow.  相似文献   

5.
Wavelet analyses are applied to the Pacific Decadal Oscillation index and North Pacific index for the period 1900-2000, which identifies two dominant interdecadal components, the bidecadal (15-25-yr) and pentadecadal (50-70-yr) modes. Joint propagating patterns of sea surface temperature (SST) and sea level pressure (SLP) anomalies in the North Pacific for the two modes are revealed by using the techniques of multi-channel singular spectrum analysis (MSSA) and linear regression analysis with the global sea surface temperature (GISST) data and the northern hemispheric SLP data for the common period 1903-1998. Significant differences in spatio-temporal structures are found between the two modes.For the bidecadal mode, SST anomalies originating from the Gulf of Alaska appear to slowly spread southwestward, inducing a reversal of early SST anomalies in the central North Pacific. Due to further westward spreading, the SST variation of the central North Pacific leads that of the Kuroshio-Oyashio Extension (KOE) region by approximately 4 to 5 years. Concomitantly, SLP anomalies spread over most parts of the North Pacific during the mature phase and then change into an NPO(North Pacific Oscillation)-like pattern during the transition phase. For the pentadecadal mode, SST anomalies develop in the southeast tropical Pacific and propagate along the North American coast to the mid-latitudes; meanwhile,SST anomalies with the same polarity in the western tropical Pacific expand northward to Kuroshio and its extension region; both merge into the central North Pacific reversing the sign of early SST anomalies there.Accompanying SLP anomalies are characterized by an NPO-like pattern during the mature phase while they are dominant over the North Pacific during the transitional phase. The bidecadal and pentadecadal modes have different propagating Patterns, suggesting that the two interdecadal modes may arise from different physical mechanisms.  相似文献   

6.
A new winter Aleutian Low (AL) intensity index was defined in this paper. A centurial-long time series of this index was constructed using the sea level pressure (SLP) data of nearly 100 years. The features of interannual and decadal variability of the winter AL intensity since 1900 were analyzed by applying the wavelet analysis. The relationship between the winter AL intensity and atmospheric circulation was examined. The cross-wavelet analysis technique was used to further reveal the relationship between the AL intensity and sea surface temperature (SST) in the equatorial eastern Pacific (EEP) and tropical Indian Ocean (TIO) in winter. The results indicate that: 1) On the interannual timescale, the winter AL intensity displays 3–7-yr oscillations, while on the decadal timescale, 8–10-yr and 16–22-yr oscillations are more obvious. 2) Of the linkage to atmospheric circulation, both AO (Arctic Oscillation) and PNA (Pacific North America pattern) are closely associated with winter AL intensity on the interannual timescale, but only PNA contributes to the variation of winter AL intensity on the decadal timescale. 3) As to the ocean impact, winter EEP SST is a major factor affecting the winter AL intensity on the interannual timescale, especially on the 3–7-yr periods. However, on the decadal timescale, though both the TIO and EEP SSTs are associated with the AL intensity in winter, the TIO SST impact is more significant  相似文献   

7.
The tropical storm day(TSD)is a combined measure of genesis and lifespan.It reflects tropical cyclone(TC)overall activity,yet its variability has rarely been studied,especially globally.Here we show that the global total TSDs exhibit pronounced interannual(3-6 years)and decadal(10 years)variations over the past five-to-six decades without a significant trend.The leading modes of the interannual and decadal variability of global TSD feature similar patterns in the western Pacific and Atlantic,but different patterns in the Eastern Pacific and the Southern Indian Ocean.The interannual and decadal leading modes are primarily linked to El Ni?o-Southern Oscillation(ENSO)and Pacific Decadal Oscillation(PDO),respectively.The TSDs-ENSO relationship has been steady during the entire 55-year period,but the TSDs-PDO relationship has experienced a breakdown in the 1980 s.We find that the decadal variation of TSD in the Pacific is associated with the PDO sea surface temperature(SST)anomalies in the tropical eastern Pacific(PDO-E),while that in the Atlantic and the Indian Ocean is associated with the PDO SST anomalies in the western Pacific(PDO-W).However,the PDO-E and PDO-W SST anomalies are poorly coupled in the 1980 s,and this"destructive PDO"pattern results in a breakdown of the TSDs-PDO relationship.The results here have an important implication for seasonal to decadal predictions of global TSD.  相似文献   

8.
This study presents the spatial and temporal structures of the decadal variability of the Pacific from an extended control run of a coupled global climate model (GCM).The GCM used was version-g2.0 of the Flexible Global Ocean Atmosphere Land System (FGOALS-g2.0) developed at LASG/IAP.The GCM FGOALS-g2.0 re-produces similar spatial-temporal structures of sea surface temperature (SST) as observed in the Pacific decadal os-cillation (PDO) with a significant period of approximately 14 years.Correspondingly,the PDO signals were closely related to the decadal change both in the upper-ocean temperature anomalies and in the atmospheric circulation.The present results suggest that warm SST anomalies along the equator relax the trade winds,causing the SSTs to warm even more in the eastern equatorial Pacific,which is a positive feedback.Meanwhile,warm SST anomalies along the equator force characteristic off-equa-torial wind stress curl anomalies,inducing much more poleward transport of heat,which is a negative feedback.The upper-ocean meridional heat transport,which is asso-ciated with the PDO phase transition,links the equatorial to the off-equatorial Pacific Ocean,acting as a major mechanism responsible for the tropical Pacific decadal variations.Therefore,the positive and negative feedbacks working together eventually result in the decadal oscilla-tion in the Pacific.  相似文献   

9.
The first leading modes of the interannual variations in low-level circulation over the North and South Pacific are the Northern Oscillation (NO) and Southern Oscillation (SO),which are oscillations in sea level pressure anomalies (SLPAs)between the eastern and western Pacific Ocean.The second leading modes are the North Pacific Oscillation (NPO) and the Antarctic Oscillation (AAO),which reflect oscillations between the subtropics and the high and middle latitudes.The transition chains of these four oscillations were investigated using the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis data.The general pattern of the transition chain between the NO and NPO was from the negative phase of the NO (NO-) to the positive phase of the NPO (NPO+),then from NO+ to NPO-to NO-.The whole transition chain took about 4-6 years.The general pattern and period of the transition between the SO and AAO were similar to those between the NO and NPO.In addition,the transition chains between the NO and NPO,and the SO and AAO,were almost simultaneous.The transition chains of the four oscillations were found to be closely connected,with the eastward propagations of SLPAs occurring along both sides of the Equator.  相似文献   

10.
The relationship between the variability of the surface elevation of the Greenland Ice Sheet (GIS) in winter and sea level pressure is identified through analysis of data from satellite-borne radar altimeters, together with meteorological data fields during 1993-2005. We found that both the North Pacific Oscillation (NPO) and the North Atlantic Oscillation (NAO), the two major teleconnection patterns of the atmospheric surface pressure fields in the Northern Hemisphere, significantly influence the GIS winter elevation change. Further, it is suggested that the NPO may affect the GIS accumulation by influencing the NAO, particularly by changing the intensity and location of the Icelandic Low.  相似文献   

11.
本文利用常规天气图、物理量场等资料,从大尺度环流形势及影响系统、动力、热力条件等方面,对2009年7月8日山西省北中部区域性暴雨进行了诊断分析。结果表明:500hPa西风槽前部西南暖湿气流与东北冷涡后部下滑的冷空气相互作用,700hPa低涡切变线是造成本次大暴雨的主要影响系统;深厚的湿层和强烈的水汽辐合为暴雨的产生提供了充足的水汽条件;低涡东移和切变线的生成,地面低压向山西发展,为暴雨的形成提供了动力条件;低层850hPa的高能舌轴前的能量锋区为暴雨的形成提供了热力条件。  相似文献   

12.
30—60天大气振荡的全球特征   总被引:14,自引:6,他引:14       下载免费PDF全文
李崇银 《大气科学》1991,15(3):66-76
利用ECMWF格点资料,分析研究了大气季节内(30—60天)振荡的全球特征。30—60天振荡动能的分布表明高纬度地区要比赤道地区大得多。说明那里有较突出的30—60天振荡。中高纬度地区的30—60天振荡与热带有明显不同,垂直结构为正压模态,以纬向2—4波为主,多为向酉传播。30—60天振荡存在明显的低频遥相关,北半球主要为欧亚—太平洋(EAP)型和PNA型,南半球主要有澳洲—南非(ASA)型和环南美(RSA)型,并且在全球范围构成南北半球相互衔接的低频波列,即EAP-ASA波列和PNA-RSA波列。南北半球30—60天大气振荡有明显的相互影响,本文研究了南北半球30—60天振荡相互影响的3种主要过程。  相似文献   

13.
杨福全 《气象学报》2001,59(1):41-48
文中利用 PSU/NCAR中尺度模式 MM4对 1 993年 6月初发生在中国东部沿海地区的一次爆发性气旋进行了数值试验。结果表明 :初夏季节在中国东部沿海气旋爆发性发展必须具备下面两个条件 :(1 )高空南北支急流中分别存在发展的低槽系统 ,北部低槽伴有冷空气 ,南部低槽伴随有强暖湿空气 ,两低槽在中国东部沿海合并后形成一个深槽 ,引起地面气旋爆发性发展 ;(2 )东部沿海对流层低层形成一个强水汽通道 ,这个水汽通道将携带的大量和能量的暖湿空气向气旋爆发地区输送  相似文献   

14.
采用NCEP/NCAR逐日再分析资料,利用31点数字滤波器提取了58个冬季(1951/1952-2008/2009年)的500 hPa高度场低频分量,通过经验正交函数分析方法定义了6种低频环流型.从逐年低频环流型的差异和低频环流型系数两个角度分析低频环流型的年际变化特征;给出了58个冬季的主要低频环流型并分析了逐年低频...  相似文献   

15.
中国东南部5—8月持续性强降水和环流异常的准双周振荡   总被引:10,自引:5,他引:5  
利用1979—2009年夏季(5—8月)中国站点逐日降水资料、NCEP/NCAR大气再分析资料以及向外长波辐射(OLR)资料,分析了中国东南部夏季持续性强降水的低频特征及其伴随的低频大气环流形势,利用超前滞后合成的方法对该低频信号的来源和传播特征进行了研究。结果表明:中国东南部夏季降水存在明显的准双周低频振荡,低频降水事件(持续性强降水)在6月10日前后和7月1日前后发生的次数较多,持续5d的低频降水事件降水量占总低频降水事件的比例最大。在低频降水事件发生时期,中国东南部在低层是很强的低频气旋式环流,而在中国南海至西太平洋一带则是强大的低频反气旋,同时低频的水汽从孟加拉湾北部以及中国南海、菲律宾海一带输送到长江以南地区强烈辐合上升;此时在高层一个低频反气旋控制中国东北部地区,该低频反气旋与其西侧的低频反气旋以及位于中国东南沿海的低频气旋相互配合,使得长江以南地区高层强烈地辐散,加强了低层的上升运动。在超前低频降水7d左右时,大气低层在150°E洋面附近开始出现低频反气旋,逐渐加强并向西移动到达中国东南沿海,而在中国南海一带的低频气旋则向西北移动到长江以南地区,与此同时,副热带高压有一个明显的西伸过程,高低层相互配合最终导致低频降水的发生。  相似文献   

16.
乔全明  罗坚 《气象科学》1995,15(2):55-64
本文用1971-1991年中央气象台历史天气图资料,统计研究了东部大陆夏季区域性暴雨发生次数,结果得出;中国东部大陆夏季有两个季风暴雨带,其发生次数有30-60天和8-11天两种显著振荡周期,但对各分区来说,只存在8-11天一个显著周期,长江中,下游与华南相似,有两个季风暴雨期,江南是一个暴雨的间断区。  相似文献   

17.
本文对郴州市2008年1月中旬至2月上旬出现的历史罕见雨雪冰冻天气灾害的特点,天气、气候成因和地形作用等方面进行了深入细致剖析.结果表明:中低层的逆温和强盛的西南暖湿气流、冷暖空气在长江中下游地区稳定对峙是产生重度冰雪天气的必要条件,郴州特殊地形增加了冰冻强度和持续时间.这些分析结论对今后开展冰雪天气预报预警业务和科研工作都有重要参考作用.  相似文献   

18.
RoleofTriadKineticEnergyInteractionsforMaintenanceofUpperTroposphericLowFrequencyWavesduringSummerMonsoon1988D.R.Chakrabortya...  相似文献   

19.
中国东北龙卷研究:环境特征分析   总被引:28,自引:5,他引:23       下载免费PDF全文
东北地区是中国龙卷相对多发区之一。为了了解中国东北龙卷发生的环境特征,基于常规观测资料、卫星观测资料、地面加密观测资料和模式分析资料分析了近十年发生在东北的13个龙卷个例的环境特征及龙卷环境形成的物理过程。结果表明,东北龙卷发生的环境具有如下特点:(1)龙卷多发生在东北冷涡背景下,直接影响系统为冷涡南侧次天气尺度短波槽,且常出现在槽区或前倾槽后;(2)较之夏季江淮流域和华南龙卷,东北龙卷环境温度直减率较大,700—500 hPa温差为20—22℃,850—500 hPa温差为30—33℃;(3)低层水汽含量及湿层厚度比江淮及华南龙卷显著偏低,地面露点温度可低至13℃,湿层厚度常在1.5 km以下,850 hPa露点温度多在8℃以下;(4)龙卷环境中常出现强低空急流(850—925 hPa风速16—20 m/s)和对流层中层急流(500 hPa风速20—25 m/s),且对流层中层急流通常与干下沉气流相伴。因此,低层(0—1 km)和深层(0—6 km)风垂直切变均强,低层风垂直切变约12.0×10-3s-1,深层风垂直切变大于4.0×10-3s-1。产生龙卷的对流风暴一般由边界层辐合线所触发,辐合线两侧温差不明显而露点差异明显,常表现为干线。也就是说,东北地区龙卷风暴主要由干线及其伴随的强边界层辐合触发。龙卷通常发生在傍晚前后,而从早晨的环境条件通常看不到龙卷可能发生的迹象,龙卷发生前几小时环境参数变化显著。有利于龙卷的环境条件形成过程中500 hPa急流和强低空急流的存在至关重要:随着500 hPa西北急流的增强,在中空西北急流的平流下温度直减率大值区东移,叠加到低层湿区之上;低空急流对暖湿空气的输送使低层显著增湿且温度直减率增大。傍晚发生的龙卷通常处于08时探空显示的低空湿舌西北侧100 km左右的干区中,傍晚龙卷发生时则位于当时的湿舌边缘。  相似文献   

20.
本文用各种气象观测资料对2002年9月16日发生在中山的特大暴雨进行了分析.结果表明,这次暴雨发生的主要原因是地面低压环流系统受到西风槽、切变线和低层弱冷空气侵入的影响而在中山附近加强引起的,同时这次特大暴雨降水具有明显的中尺度特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号