首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Gondwana Research》2014,25(3):1090-1107
The Ediacaran and Cambrian periods were one of the most important periods for the evolution of life. The biodiversity drastically expanded in the period. However, the origins are still ambiguous because surface environmental changes through the time have not been well understood yet. We conducted in-situ analyses of the phosphorus contents of carbonate minerals with a laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS) to estimate the phosphorus contents of seawater from the Ediacaran to the early Cambrian. Carbonate rocks contain not only the carbonate minerals but also detrital and authigenic materials such as silicate and phosphate minerals. Therefore, the whole rock compositions of carbonate rocks are not directly related with seawater composition. To avoid the influence of the involvement of the phosphate minerals, we performed the microscopic observation, elemental mapping of Si, Ca, Mg, Fe, and P contents with an electron probe microanalyzer (EPMA), and investigation of time profiles of signal intensities of Ca, Sr, Mn, P, La and Ba with the LA-ICP-MS. Especially, samples with low Mn/Sr ratios and primary textures such as oolites are suitable to estimate the primary phosphorus contents of the carbonates.The chemostratigraphy of the phosphorus contents of carbonates from the drill core and outcrop samples displays that the phosphorus contents decrease from ca. 400 ppm in the Ediacaran through ca. 200 ppm around the terminal Ediacaran and the beginning of the Cambrian to ca. 50 ppm in the early Cambrian. Previous works on 87Sr/86Sr chemostratigraphy from the Ediacaran to the Cambrian sections suggested relatively high continental influx in the middle Ediacaran, and around the Precambrian–Cambrian (PC/C) boundary. The high phosphorus content in the Ediacaran was possibly due to the high continental flux. On the other hand, previous works on chemostratigraphy of carbon isotope values of carbonate carbon from the Ediacaran to the Cambrian sections showed some large negative anomalies in the Ediacaran and around the Precambrian–Cambrian (PC/C) boundary, and suggested that the negative anomalies were caused by remineralization and respiration of dissolved organic matter. The degradation of the organic matter also accounts for the high phosphorus contents in the Ediacaran. The high phosphorus content of seawater favors enhancement of primary productivity and formation of phosphorites. The high phosphorus contents in the seawater possibly led to the emergence of the large, and motile organism through the enhancement of primary productivity and the consequent increase of oxygen content of the seawater.  相似文献   

2.
埃迪卡拉纪是地球第二次大规模成磷时期,全球各大陆均有这次成磷事件的记录。目前对于该时期成磷事件的形成 尚未有广泛接受的地球化学模型解释。而磷酸盐的沉积受海水氧化还原条件的控制,因此通过该时期磷块岩沉积与海水氧 化还原条件演变之间关系的研究可为全球大规模成磷事件的沉积地球化学模型建立提供验证。文章通过对扬子板块埃迪卡 拉纪不同相区磷块岩中碳酸盐组分稀土元素分析,结果表明磷块岩形成时底层海水处于次氧化-接近氧化的不稳定状态, 氧化还原界面沿浅海-大陆架呈现动态变化的特征,为磷块岩的大规模形成提供最佳沉积地球化学条件。合适的海水化学 条件及丰富的磷质来源,大大增加了磷块岩沉积的空间和机会,导致了地质历史时期第二次全球规模成磷发生。  相似文献   

3.
晚埃迪卡拉纪全球海洋发生了大面积的缺氧,海洋化学结构呈现明显的非均质性,直接影响了埃迪卡拉型生物的演化与分布。四川盆地发育完整的晚埃迪卡拉系地层,以灯影组巨厚层碳酸盐岩沉积为代表。但是对于该套巨厚层碳酸盐岩沉积时的古海水氧化还原性质备受争议。为了解决这一问题,对川东北地区鹿池剖面的灯影组地层开展了系统的沉积学和稀土元素地球化学分析。该地区灯影组的岩石类型主要为泥微晶白云岩、黏连白云岩、叠层/层纹白云岩,以及溶蚀白云岩,沉积环境为开阔碳酸盐岩台地相。地球化学数据结果显示灯影组碳酸盐岩普遍具有较低的稀土总量(∑REE+Y值为0.4~3.3μg/g)、较低的Mn/Sr值(0.2~2.8)和较高的Fe含量(55.9~1 772.6μg/g)。灯影组的REE+Y配分曲线(经页岩标准化)可划分为四个阶段,且Ce异常指示该地区经历了弱氧化到弱还原再到缺氧状态,表明埃迪卡拉纪晚期海洋浅部水体也发生了缺氧现象。  相似文献   

4.
The theoreticalP-T grid for stability relations of the phases cordierite (Cd), sapphirine (Sa), hypersthene (Hy), garnet (Ga), spinel (Sp), sillimanite (Si), and quartz (Qz) of Hensen (1971), has proved useful in the interpretation of metamorphic mineral assemblages formed at low oxygen fugacity. Both experimental data and evidence from natural rocks indicate that at high oxygen fugacity compatability relations change as a result of the enlargement of the stability field of spinel, which causes a topological inversion and the stabilisation of the invariant points [Sa], [Ga], and [Cd]. This implies the stable existence of the univariant equilibria (for buffered conditions): Sp+Qz=Ga+Hy+Si+O2 (Sa, Cd), Cd+Sp+Qz=Hy+Si+O2 (Sa, Ga) and Sa+Sp+Qz=Hy+Si+O2 (Ga, Cd) and the divariant reaction: Sp+Qz=Hy+Si+O2 (Sa, Ga, Cd). These redox equilibria are restricted to conditions of high oxygen fugacity. The proposed theoreticalP-T grids, for both low and high oxygen fugacity, satisfactorily explain all experimental data and metamorphic mineral assemblages so far found in granulites.  相似文献   

5.
Supriya Roy 《Earth》2006,77(4):273-305
The concentration of manganese in solution and its precipitation in inorganic systems are primarily redox-controlled, guided by several Earth processes most of which were tectonically induced. The Early Archean atmosphere-hydrosphere system was extremely O2-deficient. Thus, the very high mantle heat flux producing superplumes, severe outgassing and high-temperature hydrothermal activity introduced substantial Mn2+ in anoxic oceans but prevented its precipitation. During the Late Archean, centered at ca. 2.75 Ga, the introduction of Photosystem II and decrease of the oxygen sinks led to a limited buildup of surface O2-content locally, initiating modest deposition of manganese in shallow basin-margin oxygenated niches (e.g., deposits in India and Brazil). Rapid burial of organic matter, decline of reduced gases from a progressively oxygenated mantle and a net increase in photosynthetic oxygen marked the Archean-Proterozoic transition. Concurrently, a massive drawdown of atmospheric CO2 owing to increased weathering rates on the tectonically expanded freeboard of the assembled supercontinents caused Paleoproterozoic glaciations (2.45-2.22 Ga). The spectacular sedimentary manganese deposits (at ca. 2.4 Ga) of Transvaal Supergroup, South Africa, were formed by oxidation of hydrothermally derived Mn2+ transferred from a stratified ocean to the continental shelf by transgression. Episodes of increased burial rate of organic matter during ca. 2.4 and 2.06 Ga are correlatable to ocean stratification and further rise of oxygen in the atmosphere. Black shale-hosted Mn carbonate deposits in the Birimian sequence (ca. 2.3-2.0 Ga), West Africa, its equivalents in South America and those in the Francevillian sequence (ca. 2.2-2.1 Ga), Gabon are correlatable to this period. Tectonically forced doming-up, attenuation and substantial increase in freeboard areas prompted increased silicate weathering and atmospheric CO2 drawdown causing glaciation on the Neoproterozoic Rodinia supercontinent. Tectonic rifting and mantle outgassing led to deglaciation. Dissolved Mn2+ and Fe2+ concentrated earlier in highly saline stagnant seawater below the ice cover were exported to shallow shelves by transgression during deglaciation. During the Sturtian glacial-interglacial event (ca. 750-700 Ma), interstratified Mn oxide and BIF deposits of Damara sequence, Namibia, was formed. The Varangian (≡ Marinoan; ca. 600 Ma) cryogenic event produced Mn oxide and BIF deposits at Urucum, Jacadigo Group, Brazil. The Datangpo interglacial sequence, South China (Liantuo-Nantuo ≡ Varangian event) contains black shale-hosted Mn carbonate deposits. The Early Paleozoic witnessed several glacioeustatic sea level changes producing small Mn carbonate deposits of Tiantaishan (Early Cambrian) and Taojiang (Mid-Ordovician) in black shale sequences, China, and the major Mn oxide-carbonate deposits of Karadzhal-type, Central Kazakhstan (Late Devonian). The Mesozoic period of intense plate movements and volcanism produced greenhouse climate and stratified oceans. During the Early Jurassic OAE, organic-rich sediments host many Mn carbonate deposits in Europe (e.g., Úrkút, Hungary) in black shale sequences. The Late Jurassic giant Mn Carbonate deposit at Molango, Mexico, was also genetically related to sea level change. Mn carbonates were always derived from Mn oxyhydroxides during early diagenesis. Large Mn oxide deposits of Cretaceous age at Groote Eylandt, Australia and Imini-Tasdremt, Morocco, were also formed during transgression-regression in greenhouse climate. The Early Oligocene giant Mn oxide-carbonate deposit of Chiatura (Georgia) and Nikopol (Ukraine) were developed in a similar situation. Thereafter, manganese sedimentation was entirely shifted to the deep seafloor and since ca. 15 Ma B.P. was climatically controlled (glaciation-deglaciation) assisted by oxygenated polar bottom currents (AABW, NADW). The changes in climate and the sea level were mainly tectonically forced.  相似文献   

6.
The redox state of Precambrian shallow seas has been linked with material cycle and evolution of the photosynthesis-based ecosystem. Iron is a redox-sensitive element and exists as a soluble Fe(II) species or insoluble Fe(III) species on Earth’s surface. Previous studies have shown that the iron isotopic ratio of marine sedimentary minerals is useful for understanding the ocean redox state, although the redox state of the Archean shallow sea is poorly known. This is partly because the conventional bulk isotope analytical technique has often been used, wherein the iron isotopic record may be dampened by the presence of isotopically different iron-bearing minerals within the same sample. Here we report a microscale iron isotopic ratio of individual pyrite grains in shallow marine stromatolitic carbonates over geological time using a newly developed, near-infrared femtosecond laser ablation multicollector ICP-MS technique (NIR-fs-LA-MC-ICP-MS).We have determined that the grain-scale iron isotopic distribution of pyrite from coeval samples shows a bimodal (2.7 and 2.3 Ga) or unimodal pattern (2.9, 2.6, and 0.7 Ga). In particular, pyrite from the 2.7 Ga Fortescue Group shows a unique bimodal distribution with highly positive (+1.0‰ defined as Type 1) and negative δ56Fe values (−1.8‰ defined as Type 2). Type 1 and 2 pyrites occasionally occur within different siliceous layers in the same rock specimen. Layer-scale iron isotopic heterogeneity indicates that the iron isotopic ratios of the two types of pyrite are not homogenized by diagenesis after deposition. Some cubic pyrites have a core with a positive δ56Fe value (1‰) and a rim with a crustal δ56Fe value (0‰). The observed isotopic zoning suggests that the positive δ56Fe value is a primary signature at the time of stromatolite formation, while secondary pyrite precipitated during diagenesis.The positive δ56Fe value of Type 1 and the large iron isotopic difference between Type 1 and 2 (2.8‰.) suggest partial Fe(II) oxidation in the 2.7-Ga shallow sea, i.e., pyritization of 56Fe-enriched ferric oxyhydroxide (Type 1) and 56Fe depleted Fe2+aq in seawater (Type 2). Type 2 pyrite was probably not produced by microbial iron redox cycling during diagenesis because this scenario requires a higher abundance of pyrite with δ56Fe of 0‰ than of −1.8‰. Consequently, the degree of Fe(II) oxidation in the 2.7-Ga shallow sea can be estimated by a Fe2+aq steady-state model. The model calculation shows that half the Fe2+aq influx was oxidized in the seawater. This implies that O2 produced by photosynthesis would have been completely consumed by oxidation of the Fe2+aq influx. Grain-scale iron isotopic distribution of pyrite could be a useful index for reconstructing the redox state of the Archean shallow sea.  相似文献   

7.
Evidence for glaciation during the mid-late Neoproterozoic is widespread on Earth, reflecting three or more ice ages between 730 Ma and 580 Ma. Of these, the late Neoproterozoic Marinoan glaciation of approximately 635 Ma stands out because of its ubiquitous association with a characteristic, microcrystalline cap dolostone that drapes glacially influenced rock units worldwide. The Marinoan glaciation is also peculiar in that evidence for low altitude glaciation at equatorial latitudes is compelling. Three models have been proposed linking abrupt deglaciation with this global carbonate precipitation event: (i) overturn of an anoxic deep ocean; (ii) catastrophically accelerated rates of chemical weathering because of supergreenhouse conditions following global glaciation (Snowball Earth Hypothesis); and (iii) massive release of carbonate alkalinity from destabilized methane clathrates. All three models invoke extreme alkalinity fluxes into seawater during deglaciation but none explains how such alkalinity excess from point sources could be distributed homogeneously around the globe. In addition, none explains the consistent sequence of precipitation events observed within cap carbonate successions, specifically: (i) the global blanketing of carbonate powder in shallow marine environments during deglaciation; (ii) widespread and disruptive precipitation of dolomite cement; followed by (iii) localized barite precipitation and seafloor cementation by aragonite. The conceptual model presented here proposes that low latitude deglaciation was so massive and abrupt that the resultant meltwater plume could extend worldwide, physically separating the surface and deep ocean reservoirs for ≥103 years. It is proposed that cap dolostones formed primarily by microbially mediated precipitation of carbonate whitings during algal blooms within this low salinity plumeworld rather than by abiotic precipitation from normal salinity seawater. Many of the disruption features that are characteristic of cap dolostones can be explained by microbially mediated, early diagenetic dolomitization and cementation. The re-initiation of whole ocean circulation degassed CO2 into the atmosphere in areas of upwelling, triggering localized, abiotic CaCO3 precipitation in the form of aragonite fans that overlie cap dolostones in NW Canada and Namibia. The highly oxygenated shallow marine environments of the glacial and post-glacial Neoproterozoic world provided consistently favourable conditions for the evolutionary development of animals and other oxygenophiles.  相似文献   

8.
Acidification of surface seawater owing to anthropogenic activities has raised serious concerns on its consequences for marine calcifying organisms and ecosystems. To acquire knowledge concerning the future consequences of ocean acidification (OA), researchers have relied on incubation experiments with organisms exposed to future seawater conditions, numerical models, evidence from the geological record, and recently, observations from aquatic environments exposed to naturally high CO2 and low pH, e.g., owing to volcanic CO2 vents, upwelling, and groundwater input. In the present study, we briefly evaluate the distribution of dissolved CO2–carbonic acid parameters at (1) two locations in the Pacific and the Atlantic Ocean as a function of depth, (2) a mangrove environment in Bermuda, (3) a seasonally stratified body of water in a semi-enclosed sound in Bermuda, and (4) in temporarily isolated tide pools in Southern California. We demonstrate that current in situ conditions of seawater pCO2, pH, and CaCO3 saturation state (Ω) in these environments are similar or even exceed the anticipated changes to these parameters in the open ocean over the next century as a result of OA. The observed differences between the Pacific and Atlantic Oceans with respect to seawater CO2–carbonic acid chemistry, preservation of CaCO3 minerals, and the occurrence and distribution of deep-sea marine calcifiers, support the hypothesized negative effects of OA on the production and preservation of CaCO3 in surface seawater. Clues provided from shallow near-shore environments in Bermuda and Southern California support these predictions, but also highlight that many marine calcifiers already experience relatively high seawater pCO2 and low pH conditions.  相似文献   

9.
Geologists investigate the evolution of the atmosphere, crust, and mantle through time by direct study of the rock record. However, the Hadean eon (>3.85 Ga) has been traditionally viewed as inaccessible due to the absence of preserved rocks. The discovery of >4.0 Ga detrital zircons from Western Australia in the 1980s — coupled with the development of new micro-analytical capabilities — made possible new avenues of early Earth research. The prevailing view that emerged is that the early Earth may have contained a stable hydrosphere, water-saturated or (near watersaturated) granitic magmas, and volcanic emanations dominated by neutral gas species (e.g., CO2, H2O, and SO2). The Hadean Earth may have been capable of supporting life ~200 Ma after accretion and perhaps earlier. Many of these models are formulated — or have been subsequently supported — by laboratory experiments of zircon. Important petrological variables such as temperature, pressure, oxygen fugacity, and component activities (e.g., SiO2/TiO2-activities) can be controlled. These experiments are fundamental for extrapolation to ‘deep time’ because they provide a means to understand primary chemistry preserved in ancient zircons. This review paper specifically focuses on zircon experimental studies (oxygen isotope fractionations, Ti-thermometry, and redox sensitive element incorporation into zircon), which have influenced our view of the very early Earth.  相似文献   

10.
ABSTRACT

Mesoproterozoic red beds near ancient coasts have not aroused extensive interest. A new geochemical study of the alternating red and grey dolostones from the Yangzhuang Formation provides a better understanding of the redox conditions of nearshore sedimentary environments. In this contribution, whole-rock samples are characterized by positive correlations of rare earth elements (REE) vs. Th and FeT vs. Th and flat-type REE distribution patterns, indicating massive terrigenous input, which is considered to be inherited from felsic rocks. Relatively high (Femag+Feox)/FeT and Fe3+/Fe2+ ratios in red beds indicate more oxidized conditions in supratidal environments compared with the lower oxygen contents in intertidal environments. Under these two distinct chemical sedimentary conditions, acetic acid-leached red and grey samples both have HREE-depleted distributions, suggesting significant freshwater invasion. Moreover, limited terrigenous redox-sensitive elements (RSEs) can reach the coast where the red beds are deposited, whereas relatively high RSE enrichment factors originating from shallow oceans are recorded in grey beds. In the Mesoproterozoic, limited oxidative weathering, shallow seawater desalination, and low organic production occurred near the coast. Meanwhile, a prolonged period of low Mo and U availability preserved in carbonate minerals confirmed that marine oxygen levels failed to satisfy the deposition of offshore red beds. During the regression, potentially exposed sediments connected to atmospheric oxygen guaranteed the oxidation of iron and the formation of red beds, and these events were coupled with negative δ13Ccarb shifts in the Yanliao rift zone.  相似文献   

11.
海相碳酸盐的沉淀方式被认为与水体氧化还原条件密切相关,即太古宙至古元古代缺氧的铁化海水中碳酸盐沉淀抑制剂Fe2+和Mn2+强力抑制灰泥在水柱中成核,但允许文石直接在海底生长,从而导致大量文石以海底沉淀方式产出,而新元古代适度的氧化海水则有利于灰泥以水柱沉淀方式形成。然而,碳酸盐沉淀方式的长期变化还可能受控于其他因素,其与海水氧化还原条件之间的关系还需要通过大量具体实例来验证。针对上述科学问题,笔者选择碳酸盐沉淀方式尚处于过渡时期的华北中元古界碳酸盐岩为研究对象,开展碳酸盐沉淀方式及与之对应的氧化还原条件研究。结果表明,华北高于庄组三段(约1.56 Ga)、雾迷山组四段下部(约1.48 Ga)和铁岭组二段(约1.44 Ga)发育大量灰泥水柱沉淀,其Ⅰ/(Ca+Mg)值较高(普遍大于0.5 μmol/mol)、Ce负异常(低至0.8),指示适度氧化的条件;而高于庄组四段下部(约1.55 Ga)和雾迷山组二段中部(约1.50 Ga)则发育大量纤维状文石海底沉淀,其Ⅰ/(Ca+Mg)值约为0,指示次氧化至缺氧的环境。因此,本研究首次用大量实例证实了前寒武纪海水氧化还原条件对碳酸盐沉淀方式的重要调控作用,并且后者可作为海水氧化还原条件分析的重要指标,适用于高效开展长序列、多剖面的低氧背景下前寒武纪碳酸盐岩地层的氧化还原条件分析。  相似文献   

12.
A study was conducted to bring out the relationship and behavior of different Saturation Index (SI) of carbonate minerals in layered coastal aquifers. Carbonates present in groundwater aids in different nature of the water like hardness, partial pressure of carbon-di-oxide (pCO2), pH and saturation index of different carbonate minerals at various temperatures. The SI of the carbonates helps us to define the thermodynamic stability of water and to find out the geochemical behavior of water. 98 groundwater samples were collected from specific aquifers (alluvium, upper Cuddalore, lower Cuddalore and Cretaceous) during Pre-Monsoon (May 2007) and Post-Monsoon (January 2008) seasons. The physicochemical parameters such as pH, EC, Ca, Mg, Na, K, Cl, HCO3, SO4 and PO4 were analyzed. Geochemical model, WATEQ4F was used to calculate the SI of different minerals. The SI was studied in relation to mHCO3 concentration, pCO2 and correlation between SI of different minerals.  相似文献   

13.
The onset of pelagic sedimentation attending the radiation of pelagic calcifiers during the Mesozoic was an important divide in Earth history, shifting the locus of significant carbonate sedimentation from the shallow shelf environments of the Paleozoic to the deep sea. This shift would have impacted the CO2 cycle, given that decarbonation of subducted pelagic carbonate is an important return flux of CO2 to the atmosphere. Coupled with the fact that the mean residence time of continental platform and basin sedimentary carbonate exceeds that of the oceanic crust, it thus becomes unclear whether carbon cycling would have operated on a substantially different footing prior to the pelagic transition. Here, we examine this uncertainty with sensitivity analyses of the timing of this transition using a coupled model of the Phanerozoic atmosphere, ocean, and shallow lithosphere. For purposes of comparison, we establish an age of 250 Ma (i.e., after the Permo-Triassic extinctions) as the earliest opportunity for deposition of extensive biogenic pelagic carbonate on the deep seafloor, an age that predates known occurrences of pelagic calcifiers (and intact seafloor). Although an approximate boundary, we do show that attempts to shift this datum either significantly earlier or later in time produce model results that are inconsistent with observed trends in the mass–age distribution of the rock record and with accepted trends in seawater composition as constrained by proxy data. Significantly, we also conclude that regardless of the timing of the onset of biogenic pelagic carbonate sedimentation, a carbon sink involving seawater-derived dissolved inorganic carbon played a critical role in carbon cycling, particularly in the Paleozoic. This CaCO3 sink may have been wholly abiogenic, involving calcium derived either directly from seawater (thus manifest as a direct seafloor deposit), or alternatively from basalt–seawater reactions (represented by precipitation of CaCO3 in veins and fissures within the basalt). Despite the uncertainty in the source and magnitude of this abiogenic CaCO3 flux, it is likely a basic and permanent feature of global carbon cycling. Subduction of this CaCO3 would have acted as a basic return circuit for atmospheric CO2 even in the absence of biogenically derived pelagic carbonate sedimentation. Lastly, model calculations of the ratio of dissolved calcium to carbonate ion (Ca2+/CO3 2?) show this quantity underwent significant secular evolution over the Phanerozoic. As there is increasing recognition of this ratio’s role in CaCO3 growth and dissolution reactions, this evolution, together with progressive increases in nutrient availability and saturation state, may have created a tipping point ultimately conducive to the appearance of pelagic calcifiers in the Mesozoic.  相似文献   

14.
万斌  关成国  周传明  孟凡巍  庞科  唐卿  饶馨 《岩石学报》2013,29(12):4373-4386
我国华南扬子地台不同地区(湖北宜昌、安徽休宁)埃迪卡拉系底部的盖帽碳酸盐岩中均保存有浅色粘土岩层。岩石薄片和扫描电镜观察,以及X射线衍射分析表明,这些粘土岩层以伊利石和伊/蒙混层矿物为主,同时含有港湾状熔蚀石英、高温透长石及岩浆锆石等斑晶矿物。X荧光光谱仪和ICP-MS等离子质谱仪等地球化学元素分析表明,这些粘土岩层具有相似的元素组成和配分模式,以高K2O、低TiO2,富含Nb、Ta、Zr、Hf、Th、Y等亲石元素为特征,Al2O3/TiO2、Zr/Hf 和Ti/Th 值均指示了酸性火山灰的性质,同时稀土元素配分模式与花岗岩较为相似。岩石学和地球化学特征表明,这些浅色粘土岩层是火山喷发事件形成的钾质斑脱岩。通过两处剖面的对比,可以将安徽休宁地区的钾质斑脱岩年龄限制在大约635Ma左右。岩浆判别图指示了这些钾质斑脱岩的原始岩浆为高钾亚碱性流纹英安岩;依据微量元素特征和构造环境判别图,初步认为原始岩浆形成于大陆弧环境。这些钾质斑脱岩在区域上的分布,表明我国扬子地台埃迪卡拉纪早期发生了广泛的火山活动,“雪球地球”事件的结束可能是导致这期以钾质斑脱岩为代表的火山喷发事件的诱因。  相似文献   

15.
由于广泛而强烈的岩浆作用,我国东部的松辽、渤海湾、莺歌海以及西部的塔里木等盆地中都有富CO2深部流体的活动。富CO2深部流体与碳酸盐岩相互作用可用Duan and Li(2008)所建立的CO2-H2O-CaCO3-NaCl体系的热力学模型来进行模拟计算。计算结果表明,富CO2深部流体在自深部向浅部运移过程中对CaCO3的溶解度会逐渐增加,到达一定深度后溶解度达到最大值,再向浅部溶解度开始逐渐降低; 也就是深部流体具有深部溶蚀碳酸盐岩-浅部沉淀碳酸盐矿物的规律。与浅部地层中的流体发生混合会使流体的CO2含量和盐度降低,会导致CaCO3的沉淀充填; 深部流体进入开启性断裂/裂缝体系中时,由于压力的降低,也会发生CaCO3的沉淀充填。深部流体的CO2含量、盐度、温度和压力的变化影响着实际的溶蚀-充填过程。塔中地区钻井也揭示了深部下奥陶统碳酸盐岩中发育有丰富的溶蚀孔隙,而在相对浅部的奥陶系灰岩和志留系砂岩中见有大量方解石的充填,这是富CO2流体深部溶蚀-浅部充填的一个较好的实例。基于理论和实际分析,本文认为在岩浆火山作用广泛发育的塔里木等盆地中下古生界深部优质碳酸盐岩储层存在的可能性。  相似文献   

16.
Phosphate deposits of the Ediacaran Doushantuo Formation accumulated in the central Guizhou Province are the typical phosphate-rich sediments during the Neoproterozoic Phosphogenic Episodes,which occurred after the “Snowball Earth”period and Neoproterozoic Oxygenation Event. However,the mechanisms of phosphate enrichment in seawater have always been hotly debated,and the research for correlations between phosphogenesis and transition of Ediacaran palaeo-ocean environments is still unsubstantial. This study focused on the sedimentological,petrological,mineralogical and geochemical analyses on the Doushantuo pristine phosphorite in Weng'an,Zunyi and Danzhai area. Documented by spherulitic phosphorites in the Lower Phosphorite beds from Weng'an area that contain abundant autogenetic Fe-bearing minerals such as pyrite and glauconite and show weak Ce negative anomaly,Fe-redox pumping in low-oxygen environments are the important phosphogenesis mechanism but only limited in coastal waters in the Early Doushantuo Period. Phosphorite in the Upper Phosphorite beds deposited within organic-rich beds and contain massive biological fossils suggests that phosphogenesis might have been triggered by degradation of organic matter and biological action in the Late Doushantuo Period,and distribution of phosphatic sediments extended to the deeper shelf to slope setting. Obvious Ce negative anomaly implies the increase of oxygen content in seawater. The transition of phosphogenesis mechanisms and the expansion of phosphorite deposits are the sedimentary response of ocean oxygenation,and the associated evolution of metazoans also changed the redox conditions of the deep seawater. These sedimentary and geochemistry data reflect the closed coupling relation between Doushantuo phosphorite in Guizhou Province and the Neoproterozoic Oxygenation Event.  相似文献   

17.
An in situ test in the Opalinus Clay formation, termed porewater chemistry (PC) experiment, was carried out for a period of 5 years. It was based on the concept of diffusive equilibration whereby a traced water with a composition close to that expected in the formation was continuously circulated and monitored in a packed-off borehole. The main original focus was to obtain reliable data on the pH/pCO2 conditions of the porewater, but because of unexpected microbiologically-induced redox reactions, the objective was extended to elucidate the biogeochemical processes occurring in the borehole and to understand their impact on pH/pCO2 and porewater chemistry in the low permeability clay formation.The behaviour of the conservative tracers 2H and Br could be explained by diffusive dilution in the clay and moreover the results showed that diffusive equilibration between the borehole water and the formation occurred within about 3 year’s time. However, the composition and pH/pCO2 conditions differed considerably from those of the in situ porewater. Thus, pH was lower and pCO2 was higher than indicated by complementary laboratory investigations. The noted differences are explained by microbiologically-induced redox reactions occurring in the borehole and in the interfacial wall area which were caused by an organic source released from the equipment material. The degradation of this source was accompanied by sulfate reduction and - to a lesser extent - by methane generation, which induced a high rate of acetogenic reactions corresponding to very high acetate concentrations for the first 600 days. Concomitantly with the anaerobic degradation of an organic source, carbonate dissolution occurred and these processes resulted in high pCO2 and alkalinities as well as drop in pH. Afterwards, the microbial regime changed and, in parallel to ongoing sulfate reduction, acetate was consumed, leading to a strong decrease in TOC which reached background levels after about 1200 days. In spite of the depletion of this organic perturbation in the circuit water, sulfate reduction and methanogenesis continued to occur at a constant rate leading to near-to-constant concentrations of sulfate and bicarbonate as well as pH/pCO2 conditions until the end of the experiment. The main sink for sulphur was iron sulfide, which precipitated as FeS (am) and FeS2.The chemical and isotopic composition was affected by the complex interplay of diffusion, carbon degradation rates, mineral equilibria and dissolution rates, iron sulfide precipitation rates, and clay exchange reactions. The 13C signals measured for different carbon species showed significant variations which could only be partly explained. The main cations, such as Na, Ca and Mg remained remarkably constant during the experiment, thus indicating the strong buffering of the formation via cation and proton exchange as well as carbonate dissolution/precipitation reactions.  相似文献   

18.
Recent improvements in both Infra-red spectroscopy and equilibrator techniqueshave allowed to determine, for the first time, pCO2using simultaneously and continuously both the direct and indirect methods in an estuary where pCO2 values range from 500 to 8500 atm and salinity from 0 to 30. Our results show that both methods are in excellent agreement in the wholeestuary (r2 = 0.999, n = 1075, p < 0.0001). Thus, the NBS (US National Bureau of Standards) scale, although inadequate for seawater samples, is appropriate for estuarine waters and can be applied with confidence to calculate pCO2.  相似文献   

19.
Evaluation of major ion chemistry and solute acquisition process controlling water chemical composition were studied by collecting a total of fifty-one groundwater samples in shallow (<25 m) and deep aquifer (>25 m) in the Varanasi area. Hydrochemical facies, Mg-HCO3 dominated in the largest part of shallow groundwater followed by Na-HCO3 and Ca-HCO3 whereas Ca-HCO3 is dominated in deep groundwater followed by Mg-HCO3 and Na-HCO3. High As concentration (>50 μg/l) is found in some of the villages situated in northeastern parts (i.e. adjacent to the concave part of the meandering Ganga river) of the Varanasi area. Arsenic contamination is confined mostly in tube wells (hand pump) within the Holocene newer alluvium deposits, whereas older alluvial aquifers are having arsenic free groundwater. Geochemical modeling using WATEQ4F enabled prediction of saturation state of minerals and indicated dissolution and precipitation reactions occurring in groundwater. Majority of shallow and deep groundwater samples of the study area are oversaturated with carbonate bearing minerals and under-saturated with respect to sulfur and amorphous silica bearing minerals. Sluggish hydraulic conductivity in shallow aquifer results in higher mineralization of groundwater than in deep aquifer. But the major processes in deep aquifer are leakage of shallow aquifer followed by dominant ion-exchange and weathering of silicate minerals.  相似文献   

20.
Early Archean (3.46 Ga) hydrothermally altered basaltic rocks exposed near Marble Bar, eastern Pilbara Craton, have been studied in order to reveal geological and geochemical natures of seafloor hydrothermal carbonatization and to estimate the CO2 flux sunk into the altered oceanic crust by the carbonatization. The basaltic rocks are divided into basalt and dolerite, and the basalt is further subdivided into type I, having original igneous rock textures, and type II, lacking these textures due to strong hydrothermal alteration. Primary clinopyroxene phenocrysts are preserved in some part of the dolerite samples, and the alteration mineral assemblage of dolerite (chlorite + epidote + albite + quartz ± actinolite) indicates that the alteration condition was typical greenschist facies. In other samples, all primary minerals were completely replaced by secondary minerals, and the alteration mineral assemblage of the type I and type II basalts (chlorite + K-mica + quartz + carbonate minerals ± albite) is characterized by the presence of K-mica and carbonate minerals and the absence of Ca-Al silicate minerals such as epidote and actinolite, suggesting the alteration condition of high CO2 fugacity. The difference of the alteration mineral assemblages between basalt and dolerite is probably attributed to the difference of water/rock ratio that, in turn, depends on their porosity.Carbonate minerals in the carbonatized basalt include calcite, ankerite, and siderite, but calcite is quite dominant. The δ13C values of the carbonate minerals are −0.3 ± 1.2‰ and mostly within the range of marine carbonate, indicating that the carbonate minerals were formed by seafloor hydrothermal alteration and that carbonate carbon in the altered basalt was derived from seawater. Whole-rock chemical composition of the basaltic rocks is essentially similar to that of modern mid-ocean ridge basalt (MORB) except for highly mobile elements such as K2O, Rb, Sr, and Ba. Compared to the least altered dolerite, all altered basalt samples are enriched in K2O, Rb, and Ba, and are depleted in Na2O, reflecting the presence of K-mica replacing primary plagioclase. In addition, noticeable CO2 enrichment is recognized in the basalt due to the ubiquitous presence of carbonate minerals, but there was essentially neither gain nor loss of CaO. This suggests that the CO2 in the hydrothermal fluid (seawater) was trapped by using Ca originally contained in the basalt. The CaO/CO2 ratios of the basalt are generally the same as that of pure calcite, indicating that Ca in the basalt was almost completely converted to calcite during the carbonatization, although Mg and Fe were mainly redistributed into noncarbonate minerals such as chlorite.The carbon flux into the Early Archean oceanic crust by the seafloor hydrothermal carbonatization is estimated to be 3.8 × 1013 mol/yr, based on the average carbon content of altered oceanic crust of 1.4 × 10-3 mol/g, the alteration depth of 500 m, and the spreading rate of 1.8 × 1011 cm2/yr. This flux is equivalent to or greater than the present-day total carbon flux. It is most likely that the seafloor hydrothermal carbonatization played an important role as a sink of atmospheric and oceanic CO2 in the Early Archean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号