首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an analytical solution for the vertical vibration of a large-diameter pipe pile considering the radial inhomogeneity of both the outer and inner soil caused by the construction disturbance effect. The radial inhomogeneity of the soil is simulated by gradually varying the soil parameters in the radial direction. The complex impedance at the pile head is obtained by introducing the variable separation method and impedance function transfer method. The proposed solution is compared with existing solutions to verify its reliability. Parametric studies are conducted to investigate the vertical vibration characteristics of the pile.  相似文献   

2.
Most analytical or semi‐analytical solutions of the problem of load‐settlement response of axially loaded piles are based on the assumption of zero radial displacement. These solutions also are only applicable to piles embedded in either a homogeneous or a Gibson soil deposit. In reality, soil deposits consist of multiple soil layers with different properties, and displacements in the radial direction within the soil deposit are not zero when the pile is loaded axially. In this paper, we present a load‐settlement analysis applicable to a pile with circular cross section installed in multilayered elastic soil that accounts for both vertical and radial soil displacements. The analysis follows from the solution of the differential equations governing the displacements of the pile–soil system obtained using variational principles. The input parameters needed for the analysis are the pile geometry and the elastic constants of the soil and pile. We compare the results from the present analysis with those of an analytical solution that considers only vertical soil displacements. The analysis presented in this paper also provides useful insights into the displacement and strain fields around axially loaded piles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a new method to derive the analytical solution for the vertical impedance of an end‐bearing pile in viscoelastic soil. The soil is assumed as a homogeneous and isotropic layer, and the pile is considered as a one‐dimensional Euler rod. Considering both the vertical and radial displacements of soil and soil–pile coupled vibration, the governing equations of the soil and pile are established. The volumetric strain of soil is obtained by transformation on the equations of soil and variable separation method. Then the vertical and radial displacements of soil are obtained accordingly. The displacement response and impedance function of pile are derived based on the continuity assumption of the displacement and stress between the pile and soil. The solution is verified by being compared with an existing solution obtained by introducing potential functions. Furthermore, a comparison with two other simplified solutions is conducted. Numerical examples are presented to analyze the vibration characteristics of the pile. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
杨冬英  丁海平 《岩土力学》2014,35(Z1):311-318
根据桩端土应力扩散的规律,建立了桩端扩散虚土桩模型。基于该模型对非均质土中桩-土纵向耦合振动进行研究。利用复刚度传递多圈层平面应变模型,得到桩与虚土桩桩侧土的剪切复刚度。结合边界条件、初始条件和连续条件,对扩散虚土桩和实体桩动力方程从底层往顶层逐层进行求解,得到桩顶动力响应的频域解析解和时域半解析解。通过对桩端扩散虚土桩扩散角、扩散层厚度、桩侧土非均质性和桩长的影响进行计算分析,得到基于扩散虚土桩法桩-土纵向振动响应特性。研究结论可为桩基础动力设计和动态检测提供理论依据。  相似文献   

5.
This investigation is concerned with the mathematical analysis of a viscoelastic prestressed pipe pile embedded in multilayered soil under vertical dynamic excitation. The pile surrounding soil is governed by the plane strain model, and the soil plug is assumed to be an additional mass connected to the pipe pile shaft by applying the distributed Voigt model. Meanwhile, the prestressed pipe pile is assumed to be a vertical, viscoelastic, and hollow cylinder governed by the one‐dimensional wave equation. Then, analytical solutions of the dynamic response of the pipe pile in the frequency domain are derived by means of the Laplace transform and impedance function transfer method. Subsequently, the corresponding quasi‐analytical solution in the time domain for the case of the prestressed pipe pile undergoing a vertical semi‐sinusoidal exciting force applied at the pile top is obtained by employing the inverse Fourier transform. Utilizing these solutions, selected results for the velocity admittance curve and the reflected wave curve are presented for different heights of the soil plug to examine the influence of weld properties on the vertical dynamic response of prestressed pipe pile. The reasonableness of the theoretical model is verified by comparing the calculated results based on the presented solutions with measured results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
This study theoretically investigates the dynamic response of an end‐bearing pile embedded in saturated soil considering the transverse inertial effect of the pile. The saturated soil surrounding the pile is described by Biot poroelastic theory, and the pile is represented by a Rayleigh‐Love rod because both the vertical and radial displacements at the soil‐pile interface are considered. The potential function decomposition method and variable separation method are introduced to solve the governing equations of the soil, in which the vertical and radial displacement components are coupled. The governing equation of the pile is solved using the continuity conditions at the pile‐soil interface. Next, the velocity admittance in the frequency domain and the velocity response in the time domain at the pile top are presented based on the Laplace transform and inverse Fourier transform, respectively. Subsequently, the reduced solution is compared with a 1‐dimensional model solution to verify the validity, and the influences of the slenderness ratio of the pile on the transverse inertial effect of the pile are analyzed. Moreover, Poisson ratio, the slenderness ratio of the pile, and the pile‐soil modulus ratio are studied. Finally, the theoretical and measured curves in the engineering project are compared, and the results demonstrate the good application prospects of the solution presented in this article.  相似文献   

7.
This paper presents an analytical solution for wave propagation in a square pile due to transient point load. The differential equation of dynamic equilibrium is established considering propagation of waves in both vertical and transverse directions. The soil resistance is simulated by Voigt model. The three-dimensional analytical solution is deduced by using Fourier transform and the separation of variable method. The arithmetical results of the proposed solution show that the velocity responses along the radial direction at the pile top are highly non-uniform. In addition, Young’s modulus and the pile side length exert undisputable influences on the velocity responses.  相似文献   

8.
The dynamic response of an end bearing pile embedded in a linear visco‐elastic soil layer with hysteretic type damping is theoretically investigated when the pile is subjected to a time‐harmonic vertical loading at the pile top. The soil is modeled as a three‐dimensional axisymmetric continuum in which both its radial and vertical displacements are taken into account. The pile is assumed to be vertical, elastic and of uniform circular cross section. By using two potential functions to decompose the displacements of the soil layer and utilizing the separation of variables technique, the dynamic equilibrium equation is uncoupled and solved. At the interface of soil‐pile system, the boundary conditions of displacement continuity and force equilibrium are invoked to derive a closed‐form solution of the vertical dynamic response of the pile in frequency domain. The corresponding inverted solutions in time domain for the velocity response of a pile subjected to a semi‐sine excitation force applied at the pile top are obtained by means of inverse Fourier transform and the convolution theorem. A comparison with two other simplified solutions has been performed to verify the more rigorous solutions presented in this paper. Using the developed solutions, a parametric study has also been conducted to investigate the influence of the major parameters of the soil‐pile system on the vertical vibration characteristics of the pile. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
The dynamic response of a viscoelastic bearing pile embedded in multilayered soil is theoretically investigated considering the transverse inertia effect of the pile. The soil layers surrounding the pile are modeled as a set of viscoelastic continuous media in three-dimensional axisymmetric space, and a simplified model, i.e., the distributed Voigt model, is proposed to simulate the dynamic interactions of the adjacent soil layers. Meanwhile, the pile is assumed to be a Rayleigh–Love rod with material damping and can be divided into several pile segments allowing for soil layers and pile defects. Both the vertical and radial displacement continuity conditions at the soil–pile interface are taken into account. The potential function decomposition method and the variable separation method are introduced to solve the governing equations of soil vibration in which the vertical and radial displacement components are coupled. On this basis, the impedance function at the top of the pile segment is derived by invoking the force and displacement continuity conditions at the soil–pile interface as well as the bottom of pile segment. The impedance function at the pile head is then obtained by means of the impedance function transfer method. By means of the inverse Fourier transform and convolution theorem, the velocity response in the time domain can also be obtained. The reasonableness of the assumptions of the soil-layer interactions have been verified by comparing the present solutions with two published solutions and a set of well-documented measured pile test data. A parametric analysis is then conducted using the present solutions to investigate the influence of the transverse inertia effect on the dynamic response of an intact pile and a defective pile for different design parameters of the soil–pile system.  相似文献   

10.
The vertical dynamic response of an inhomogeneous viscoelastic pile embedded in layered soil subjected to axial loading has been investigated. The interaction between pile and soil is simulated by a general Voigt model, one that has been demonstrated by earlier investigators to be capable of representing the plane strain case of soil adequately. The analytical solutions of pile responses in the frequency domain are obtained by using the (two-sided) Laplace transform. The corresponding semi-analytical solutions in the time domain for the case of a pile subjected to an instantaneous half-sine exciting force applied at the pile top are obtained via Fourier transform inversion. Using these solutions, a parametric study of the influence of the pile and soil properties on the vertical dynamic responses has been undertaken. It is shown that an abrupt variation of the soil properties with depth cannot yield evident reflection signal that may lead geotechnical engineers to assess the pile integrity wrongly from the velocity curve of the pile top, and the influence of viscosity of the pile material on the response is different from that of the damping of the soil surrounding the pile. The theoretical model developed in the present paper has also been validated in field studies, where it is shown by means of three examples that the solution developed in this study has been adequately verified by comparison of the theoretical pile model and field measurements of the dynamic responses.  相似文献   

11.
This paper presents an analytical solution for the lateral dynamic response of a pipe pile in a saturated soil layer. The wave propagations in the saturated soil and the pipe pile are simulated by Biot's three‐dimensional poroelastic theory and one‐dimensional elastic theory, respectively. The governing equations of soil are solved directly without introducing potential functions. The displacement response and dynamic impedances of the pipe pile are obtained based on the continuous conditions between the pipe pile and both the outer and inner soil. A comparison with an existing solution is performed to verify the proposed solution. Selected numerical results for the lateral dynamic responses and impedances of the pipe pile are presented to reveal the lateral vibration characteristics of the pile‐soil system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The driving response of thin‐walled open‐ended piles is studied using numerical simulation of the wave propagation inside the soil plug and the pile. An elastic finite element analysis is carried out to identify the stress wave propagation in the vicinity of the pile toe. It is found that the shear stress wave has the highest magnitude above the bottom of the soil plug. Below the bottom of the soil plug, the vertical stress wave has the highest magnitude. Although the shear stress wave propagating in the radial direction is similar in magnitude to the vertical stress wave at the bottom of the soil plug, it decays rapidly while travelling downwards. The highest vertical stress at the bottom of the soil plug appears after the vertical stress wave interacts with the shear stress wave travelling in the radial direction. Initially, the vertical stress wave propagates with the dilation wave velocity in both the radial and vertical directions. After it interacts with the shear stress wave, the vertical stress wave starts to propagate with the shear wave velocity in the radial direction and with the axial wave velocity downwards. It is concluded that at the bottom of the soil plug, the interaction between the waves travelling in radial and vertical directions is important. The capabilities of several one‐dimensional pile‐in‐pile models to reproduce the driving response given by a two‐dimensional axisymmetric finite element model is studied. It is seen that when the base of the soil plug fails, a one‐dimensional pile‐in‐pile model can be used to achieve results in agreement with the finite element model. However, when the pile is unplugged, where the base of the soil plug does not fail, a reduced finite element mesh that permits the radial wave propagation inside the soil plug must be used. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
An analytical solution is developed in this paper to investigate the vertical time-harmonic response of a pipe pile embedded in a viscoelastic saturated soil layer. The wave propagation in the saturated soil is simulated by Biot’s 3D poroelastic theory and that in the pipe pile is simulated by 1D elastodynamic theory. Potential functions are applied to decouple the governing equations of the soil. The analytical solutions of the outer and inner soil in frequency domain are obtained by the method of separation of variables. The vertical response of the pipe pile is then obtained based on the continuity assumption of the displacement and stress between the pipe pile and both the outer and inner soil. The solution is compared with existing solutions to verify the validity. Numerical examples are presented to analyze the vibration characteristics of the pile.  相似文献   

14.
饱和黏弹性地基土中管桩纵向振动研究   总被引:1,自引:0,他引:1  
应跃龙  罗海亮  闻敏杰 《岩土力学》2013,34(Z1):103-108
用解析方法在频率域内研究考虑质量耦合效应的饱和黏弹性地基土中管桩的纵向振动特性。基于Biot理论,采用薄层法,推导得到饱和黏弹性地基土的位移、应力等的表达式。将管桩等效为一维弹性杆件处理。根据界面连续性条件,给出饱和黏弹性地基土中管桩的纵向振动一般分析方法和桩顶动力复刚度的表达式。在该基础上,对比分析饱和地基土中实心桩和管桩纵向振动特性。通过算例分析,考察桩周土和桩芯土的力学参数对桩顶刚度因子和等效阻尼的影响。研究表明,饱和黏弹性地基土中实心桩和管桩的纵向振动有明显的差异。  相似文献   

15.
An analytical solution is developed in this paper to investigate the dynamic response of a large‐diameter end‐bearing pipe pile subjected to torsional loading in viscoelastic saturated soil. The wave propagation in saturated soil and pile are simulated by Biot's two‐phased linear theory and one‐dimensional elastic theory, respectively. The dynamic equilibrium equations of the outer soil, inner soil, and pile are established. The solutions for the outer and inner soils in frequency domain are obtained by Laplace transform technique and the separation of variables method. Then, the dynamic response of the pile is obtained on the basis of the perfect contacts between the pile and the outer soil as well as the inner soil. The results in this paper are compared with that of a solid pile in elastic saturated soil to verify the validity of the solution. Furthermore, the solution in this paper is compared with the classic plane strain solution to verify the solution further and check the accuracy of the plane strain solution. Numerical results are presented to analyze the vibration characteristics and illustrate the effect of the soil parameters and the geometry size of the pile on the complex impedance and velocity admittance of the pile head. Finally, the displacement of the soil at different depth and frequency is analyzed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The behavior of a pile group is solved using the finite element method, and the fundamental solution of saturated multilayered soils with anisotropic permeability is obtained by the analytical layer element method. Based on the supposition of no slip occurring at the pile‐soil interface, the governing equations of the interaction between the pile group and the soils due to a point sink are established in the Laplace‐Hankel transformed domain by considering the pile‐soil compatibility condition. Numerical results are presented to study the effect of point sink pumping, the properties of soils, and the geometries of piles on the behavior of the pile group.  相似文献   

17.
史吏  王慧萍  孙宏磊  潘晓东 《岩土力学》2019,40(5):1750-1760
建立了饱和半空间-群桩基础耦合动力近似解析模型,其中基桩考虑为欧拉梁,饱和地基采用Biot两相介质动力控制方程,二者在频率-波数域中利用桩-土相互作用点处的饱和地基柔度矩阵进行耦合,并采用快速傅里叶逆变换获得频域解答。分析了饱和地基中群桩基础的动力阻抗及刚性承台上施加简谐振动荷载时群桩基础引起的饱和地基振动响应。研究结果表明,荷载类型、激振频率以及地基渗透系数对饱和地基位移和孔压响应有明显影响。特别的,群桩基础动力阻抗峰值频率会随着地基渗透系数的增加而增大。  相似文献   

18.
This note presents a new method to derive closed‐form expressions describing the horizontal response of an end‐bearing pile in viscoelastic soil subjected to harmonic loads at its head. The soil surrounding the pile is assumed as a linearly viscoelastic layer. The propagation of waves in the soil and pile is treated mathematically by three‐dimensional and one‐dimensional theories, respectively. Unlike previous studies of the problem, the formulation presented allows the governing equations of the soil to be solved directly, eliminating the need to introduce potential functions. Accordingly, the dynamic response of the pile is obtained by means of the initial parameter method, invoking the requirement for continuity at the pile–soil interface. It is demonstrated that the derived compact solution matches exactly an existing solution that utilises potential functions to formulate the problem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A semi‐analytical method for calculating the response of single piles and pile groups subjected to lateral loading is developed in this paper. Displacements anywhere in the soil domain are tied to the displacements of the piles through decay functions. The principle of virtual work and the calculus of variations are used to derive the governing differential equations that describe the response of the piles and soil. The eigenvalue method and the finite difference technique are used to solve the system of coupled differential equations for the piles and soil, respectively. The proposed method takes into account the soil surface displacement along and perpendicular to the loading direction and produces displacement fields that are very close to those produced by the finite element method but at lower computational effort. Compared with the previous method that considered only the soil displacement along the loading direction, accounting for the multi‐directional soil displacement field produces responses for the piles and soil that are closer to those approximated by the finite element method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
A simplified analysis method has been developed to estimate the vertical movement and load distribution of pile raft foundations subjected to ground movements induced by tunneling based on a two‐stage method. In this method, the Loganathan–Polous analytical solution is used to estimate the free soil movement induced by tunneling in the first stage. In the second stage, composing the soil movement to the pile, the governing equilibrium equations of piles are solved by the finite difference method. The interactions between structural members (such as pile–soil, pile–raft, raft–soil, and pile–pile) are modeled based on the elastic theory method of a layered half‐space. The validity of the proposed method is verified through comparisons with some published solutions for single piles, pile groups, and pile rafts subjected to ground movements induced by tunneling. Good agreements between these solutions are demonstrated. The method is also used for a parametric study to develop a better understanding of the behavior of pile rafts influenced by tunneling operation in layered soil foundations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号