首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microplane damage model for jointed rock masses   总被引:1,自引:0,他引:1  
The paper presents a new microplane constitutive model for the inelastic behavior of jointed rock masses that takes into account the mechanical behavior and geometric characteristics of cracks and joints. The basic idea is that the microplane modeling of rock masses under general triaxial loading, including compression, requires the isotropic rock matrix and the joints to be considered as two distinct phases coupled in parallel. A joint continuity factor is defined as a microplane damage variable to represent the stress‐carrying area fraction of the joint phase. Based on the assumption of parallel coupling between the rock joint and the rock matrix, the overall mechanical behavior of the rock is characterized by microplane constitutive laws for the rock matrix and for the rock joints, along with an evolution law for the microplane joint continuity factor. The inelastic response of the rock matrix and the rock joints is controlled on the microplane level by the stress–strain boundaries. Based on the arguments enunciated in developing the new microplane model M7 for concrete, the previously used volumetric–deviatoric splits of the elastic strains and of the tensile boundary are avoided. The boundaries are tensile normal, compressive normal, and shear. The numerical simulations demonstrate satisfactory fits of published triaxial test data on sandstone and on jointed plaster mortar, including quintessential features such as the strain softening and dilatancy under low confining pressure, as well as the brittle–ductile transition under higher confining pressure, and the decrease of jointed rock strength and Young's modulus with an increasing dip angle of the joint. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
张德  刘恩龙  刘星炎  宋丙堂 《岩土力学》2018,39(9):3237-3245
冻土的强度随围压的增加呈先增大后减小的趋势,通过修正子午面内q-p曲线的斜率M*来探讨冻土强度变化规律。基于摩尔圆和包络线定理,推导了冻土内摩擦角随平均正应力的变化规律。假定偏应力的大小采用Mohr-Coulomb和Von-Mises强度准则的组合形式表示,将内摩擦角引入到偏平面中获得了偏平面内的强度准则。在不同温度(-6、-10、-15 ℃)和0.3~15.0 MPa围压下对冻结粉土进行了一系列低温三轴压缩试验,根据试验结果确定了子午面和偏平面的相关强度参数。结果表明:(1)子午面内的强度准则能较好模拟冻土在低围压下的强化效应和高围压下的弱化效应;(2)内摩擦角随平均正应力增大呈先增大后减小的趋势;(3)随控制参数s的增加,在偏平面内偏应力由Mohr-Coulomb包络线逐渐向Von-Mises包络线转化,其形状大小与极限强度值呈一一对应关系。最后通过试验结果与已有的强度准则对比表明:修正的强度准则具有一定的适用性。  相似文献   

3.
Effects of recoverable deformation induced anisotropy in the elastic stiffness of isotropic materials are described. In isotropic materials, thermodynamics predicts coupling of hydrostatic and deviatoric responses. It is shown that the coupling of the two responses is more significant than previously recognized in the literature. Properly accounting for the coupling of hydrostatic and deviatoric responses requires re‐evaluating elastic materials characterization data, allowing for the coupled response. The result is an apparent decrease in the pressure sensitivity of the elastic shear modulus. The decrease in the pressure sensitivity of the shear modulus leads to stress paths that are more tangential to the yield surface in stress space, resulting in an increase in predicted elastic strain at each step of an elastic–plastic stress update. Consequently, predicted plastic strains and, in particular, volumetric plastic strains, are smaller than if recoverable deformation induced anisotropy had been neglected. The result is an associated plasticity model, which appears to be non‐associated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, there is presented an elastoplastic constitutive model to predict sandy soils behavior under monotonic and cyclic loadings. This model is based on an existing model (Cambou‐Jafari‐Sidoroff) that takes into account deviatoric and isotropic mechanisms of plasticity. The flow rule used in the deviatoric mechanism is non‐associated and a mixed hardening law controls the evolution of the yield surface. In this research the critical state surface and history surface, which separates the virgin and cyclic states in stress space, are defined. Kinematic hardening modulus and stress–dilatancy law for monotonic and cyclic loadings are effectively modified. With taking hardening modulus as a function of deviatoric and volumetric plastic strain and with defining the history surface and stress reversal, the model has the ability to predict the sandy soils' behavior. All of the model parameters have clear physical meanings and can be determined from usual laboratory tests. In order to validate the model, the results of homogeneous tests on Hostun and Toyoura sands are used. The results of validation show a good capability of the proposed model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
This paper is interested in the hydro‐mechanical behaviour of an underground cavity abandoned at the end of its service life. It is an extension of a previous study that accounted for a poro‐elastic behaviour of the rock mass (Int. J. Comput. Geomech. 2007; DOI: 10.1016/j.compgeo.2007.11.003 ). Deterioration of the lining support with time leads to the transfer of the loading from the exterior massif to the interior backfill. The in situ material has a poro‐visco‐elastic constitutive behaviour while the backfill is poro‐elastic, both saturated with water. This loading transfer is accompanied by an inward cavity convergence, thereby compressing the backfill, and induces an outward water flow. This leads to a complex space–time evolution of pore pressures, displacements and stresses, which is not always intuitive. In its general setting, a semi‐explicit solution to this problem is developed, using Laplace transform, the inversion being performed numerically. Analytical inversion leading to a quasi‐explicit solution in the time domain is possible by identifying the characteristic creep and relaxation times of volumetric strains with those of the deviatoric strains, on the basis of a parametric study. A few numerical examples are given to illustrate the hydro‐mechanical behaviour of the cavity and highlight the influence of key parameters (e.g. stiffness of backfill, lining deterioration rate, etc.). Further studies accounting for more general material behaviours for the backfill and external ground are ongoing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a new purely viscoplastic soil model based on the subloading surface concept with a mobile centre of homothety, enabling the occurrence of viscoplastic strains inside the yield surface and avoiding the abrupt change in stiffness of the traditional overstress viscoplastic models. This is required for overconsolidated soils. The model is formulated to reproduce the soil rate‐dependent behaviour under cyclic loading (changes in loading direction) and incorporates both initial and induced anisotropy, as well as destructuring. The model shows good qualitative response to some imposed three‐dimensional stress paths under quasi‐inviscid (elastoplastic) behaviour. Some of the main time‐dependent aspects of soil behaviour that the model is capable of reproducing were also illustrated. The capability of the model to adequately reproduce the results from an undrained triaxial test performed on stiff overconsolidated clays from the Lisbon region (Formação de Benfica), with an unloading–reloading deviatoric stress cycle at constant mean stress, that incorporates a series of staggered fast loading and creep stages, was evaluated. The model was able to reproduce well the main observed aspects of the time‐dependent stress–strain response and pore pressure evolution of a stiff overconsolidated clay under complex loading. The revised and generalised viscoplastic subloading surface concept is viable and can be applied to a consistent extension to viscoplasticity, including in the interior of the yield surface, of existing elastoplastic models formulated for soils and other materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Mineral inclusions are ubiquitous in metamorphic rocks and elastic models for host‐inclusion pairs have become frequently used tools for investigating pressure–temperature (P–T) conditions of mineral entrapment. Inclusions can retain remnant pressures () that are relatable to their entrapment P–T conditions using an isotropic elastic model and P–T–V equations of state for host and inclusion minerals. Elastic models are used to constrain P–T curves, known as isomekes, which represent the possible inclusion entrapment conditions. However, isomekes require a temperature estimate for use as a thermobarometer. Previous studies obtained temperature estimates from thermometric methods external of the host‐inclusion system. In this study, we present the first P–T estimates of quartz inclusion entrapment by integrating the quartz‐in‐garnet elastic model with titanium concentration measurements of inclusions and a Ti‐in‐quartz solubility model (QuiG‐TiQ). QuiG‐TiQ was used to determine entrapment P–T conditions of quartz inclusions in garnet from a quartzofeldspathic gneiss from Goodenough Island, part of the (ultra)high‐pressure terrane of Papua New Guinea. Raman spectroscopic measurements of the 128, 206, and 464 cm?1 bands of quartz were used to calculate inclusion pressures using hydrostatic pressure calibrations (), a volume strain calculation (), and elastic tensor calculation (), that account for deviatoric stress. values calculated from the 128, 206, and 464 cm?1 bands’ hydrostatic calibrations are significantly different from one another with values of 1.8 ± 0.1, 2.0 ± 0.1, and 2.5 ± 0.1 kbar, respectively. We quantified elastic anisotropy using the 128, 206 and 464 cm?1 Raman band frequencies of quartz inclusions and stRAinMAN software (Angel, Murri, Mihailova, & Alvaro, 2019,  234 :129–140). The amount of elastic anisotropy in quartz inclusions varied by ~230%. A subset of inclusions with nearly isotropic strains gives an average and of 2.5 ± 0.2 and 2.6 ± 0.2 kbar, respectively. Depending on the sign and magnitude, inclusions with large anisotropic strains respectively overestimate or underestimate inclusion pressures and are significantly different (<3.8 kbar) from the inclusions that have nearly isotropic strains. Titanium concentrations were measured in quartz inclusions exposed at the surface of the garnet. The average Ti‐in‐quartz isopleth (19 ± 1 ppm [2σ]) intersects the average QuiG isomeke at 10.2 ± 0.3 kbar and 601 ± 6°C, which are interpreted as the P–T conditions of quartzofeldspathic gneiss garnet growth and entrapment of quartz inclusions. The P–T intersection point of QuiG and Ti‐in‐quartz univariant curves represents mechanical and chemical equilibrium during crystallization of garnet, quartz, and rutile. These three minerals are common in many bulk rock compositions that crystallize over a wide range of P–T conditions thus permitting application of QuiG‐TiQ to many metamorphic rocks.  相似文献   

8.
The principle of lithostatic pressure is habitually used in metamorphic geology to calculate burial/exhumation depth from pressure given by geobarometry. However, pressure deviation from lithostatic, i.e. tectonic overpressure/underpressure due to deviatoric stress and deformation, is an intrinsic property of flow and fracture in all materials, including rocks under geological conditions. In order to investigate the influences of tectonic overpressure on metamorphic P–T paths, 2D numerical simulations of continental subduction/collision zones were conducted with variable brittle and ductile rheologies of the crust and mantle. The experiments suggest that several regions of significant tectonic overpressure and underpressure may develop inside the slab, in the subduction channel and within the overriding plate during continental collision. The main overpressure region that may influence the P–T paths of HP–UHP rocks is located in the bottom corner of the wedge‐like confined channel with the characteristic magnitude of pressure deviation on the order of 0.3 GPa and 10–20% from the lithostatic values. The degree of confinement of the subduction channel is the key factor controlling this magnitude. Our models also suggest that subducted crustal rocks, which may not necessarily be exhumed, can be classified into three different groups: (i) UHP‐rocks subjected to significant (≥0.3 GPa) overpressure at intermediate subduction depth (50–70 km, P = 1.5–2.5 GPa) then underpressured at depth ≥100 km (P 3 GPa); (ii) HP‐rocks subjected to ≥0.3 GPa overpressure at peak P–T conditions reached at 50–70 km depth in the bottom corner of the wedge‐like confined subduction channel (P = 1.5–2.5 GPa); (iii) lower‐pressure rocks formed at shallower depths (≤40 km depth, P 1 GPa), which are not subjected to significant overpressure and/or underpressure.  相似文献   

9.
The modified Cam clay (MCC) model is used to study the response of virgin‐compressed clay subjected to undrained triaxial compression. The MCC constitutive relationship is obtained in a closed form. Both elastic and plastic deviatoric strains are considered in the analysis. The solution allows to obtain total and effective stress paths followed by the clay in undrained spherical expansion. Pore water pressures are determined from the difference between total and effective mean stresses. For illustration purposes, the analysis is also applied to the well‐known reconstituted normally consolidated London clay and the results are compared with the recently published data obtained by a numerical approach. In addition, the Almansi large strains are used in the analysis, as these allow to obtain limit expansion and pore pressures, whereas both small‐strain and logarithmic‐strain approaches do not permit to determine them. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
This paper compares the compression and uplift capacity of a strip foundation from numerical coupled analyses using the Modified Cam Clay (MCC) soil model. The focus is on the failure mechanism and pore pressure development in the soil. Triaxial compression and tension tests were first modelled to develop a rigorous understanding of the pore pressure responses; then, the compression and uplift of a strip foundation were modelled. The results show that the balance of excess pore pressures due to the changes in mean total stress and deviatoric stress during the compression and uplift of a strip foundation are different, although the ultimate undrained capacities are identical. Furthermore, the resistance and excess pore pressure responses during uplift differ from those in compression under the K0-consolidated condition because of the elastic unloading. Although the failure mechanisms have identical shape and size between undrained compression and uplift, the pore pressure distribution in the soil is different and affects the load–displacement behaviours under partially drained compression and uplift.  相似文献   

11.
变质软岩路堤填料湿化变形规律研究   总被引:2,自引:0,他引:2  
采用双线法,对十堰-天水高速公路安康西段的变质软岩路堤填料,在两种密度条件下进行了大型三轴试验,同一竖向偏应力下饱和与风干状态填料应变的差值即为湿化引起的应变,对其变化规律进行分析,结果表明:填料的湿化变形发展呈两个阶段,临界湿化应变的大小与竖向偏应力和围压的比值密切相关,同一密度、不同围压条件下的各曲线变化点的湿化应变值较为一致;填料密度增大,则变化点的湿化应变值增加,说明密度和围压不仅影响湿化变形的大小,还影响其发展规律。根据3种围压条件下的试验结果,对两种密度的填料,分别建立了填料湿化变形发展规律的公式,并用新的第4种围压条件下的试验结果进行校核,吻合程度较好。该公式可用于分析高速公路施工中路堤湿化变形的大小及发展规律。  相似文献   

12.
A new phenomenological macroscopic constitutive model for the numerical simulation of quasi‐brittle fracture and ductile concrete behavior, under general triaxial stress conditions, is presented. The model is particularly addressed to simulate a wide range of confinement stress states, as also, to capture the strong influence of the mean stress value in the concrete failure mechanisms. The model is based on a two‐surface damage‐plastic formulation. The mechanical behavior in different domains of the stress space is separately described by means of a quasi‐brittle or ductile material response:

13.
真空-堆载预压作用下软土蠕变特性试验研究   总被引:4,自引:1,他引:3  
采用改进的、可施加负压的三轴仪开展了真空预压、堆载预压以及真空-堆载联合预压作用下软土的固结蠕变试验,描述了加载率、应力比和时间等对软土蠕变特性的影响,分析了轴向应变(率)、体积应变(率)及偏应变(率)与应力比和时间之间的关系。结果表明:轴向应变率和体积应变率与时间的对数关系并非线性,但经过若干天以后可近似认为是线性关系;在不同应力比n下,体应变与时间的关系可用双曲线方程来表示;偏应变、偏应变率与时间的关系符合双曲线方程,通过温州软黏土样的蠕变试验结果验证了其有效性。  相似文献   

14.
This study focuses on identifying concrete behavior under severe triaxial loadings (near field detonation or ballistic impacts). In order to reproduce high stress levels with well‐controlled loading paths, static tests have been carried out on concrete samples by mean of a very high‐capacity triaxial press (stress levels on the order of 1 GPa). It is a longstanding fact that the water/cement ratio (W/C), upon entering the concrete composition, is a major parameter affecting the porosity and strength of the cement matrix of hardened concrete. The objective of this article is to quantify the effect of this ratio on concrete behavior under conditions of high confinement. From the composition of a reference ‘ordinary’ concrete (i.e. W/C=0.6), two other concretes have been produced with W/C ratios equal to 0.4 and 0.8, respectively. This article presents experimental results and their analysis regarding the effect of water/cement ratio (W/C) on concrete behavior under high confinement. It shows that when placed under high confinement, concrete behaves like a granular stacking composed of concrete without any influence from the level of cement matrix strength. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The influence of the plastic potential on plane strain failure   总被引:1,自引:0,他引:1  
The influence of the shape of the plastic potential in the deviatoric plane on plane strain collapse is investigated. The most commonly employed elastic‐perfect plastic models are considered, which adopt well‐known failure criteria for defining the yield and plastic potential surfaces, namely the von Mises, the Drucker–Prager, the Tresca, the Mohr–Coulomb and the Matsuoka–Nakai criteria. Finally, the conclusions are also extended to strain hardening/softening models. For simple constitutive models based on perfect plasticity, it is shown that the value of the Lode's angle at plastic collapse in plane strain conditions strongly depends on the specific failure surface adopted for reproducing the plastic potential surface. If the value of the Lode's angle at yield coincides with the failure value prescribed by the plastic potential, the stress–strain curves exhibit the typical perfect plastic behaviour with yield coinciding with failure, otherwise the stress changes after yield and the stress‐strain curves resemble those of strain hardening/softening models. The infinite strength which is in some situations exhibited by the Drucker–Prager model in plane strain condition is investigated and explained, and it is shown that this can also affect strain hardening/softening models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The Influence of Shearing Velocity on Shear Behavior of Artificial Joints   总被引:1,自引:1,他引:0  
In this paper, the effects of shear velocity on the shearing behavior of artificial joints have been studied at different normal stress levels. Here, artificial joints with planar and rough surfaces were prepared with the plaster (simulating soft rock joints) and concrete (medium-hard rock joints) materials. The rough joints had triangular shaped asperities with 10° and 20° inclination angles. Direct shear tests were performed on these joints under various shear velocities in the range of 0.3–30 mm/min. The planar plaster–plaster and planer concrete–concrete joints were sheared at three levels of normal stress under constant normal load boundary condition. Also, the rough plaster–plaster and concrete–concrete joints were sheared at one level of normal stress under constant normal stiffness boundary condition. The results of the shear tests show that the shearing parameters of joints, such as shear strength, shear stiffness and friction angle, are related to the shear velocity. Shear strength of planar and rough plaster–plaster joints were decreased when the shear velocity was increased. Shear strength of concrete joints, except for rough joints with 10° inclination, increased with increasing shear velocity. Regardless of the normal stress level, shear stiffness of both planar plaster–plaster and concrete–concrete joints were decreased when the shear velocity was increased.  相似文献   

17.
Behavior of unsaturated soils is influenced by many factors, and the influences of these factors are usually coupled together. Suction‐controlled triaxial (SCTX) tests are considered to allow researchers to investigate influences of individual variables on unsaturated soils under specified stress path with controls of stresses, pore water, and air pressures. In the past 50 years, SCTX testing method has been established as a standard approach to characterize constitutive behavior of unsaturated soils. Most important concepts for modern unsaturated soil mechanics were developed upon results from the SCTX tests. Among these, one of the most important contributions in the constitutive modeling of elasto‐plastic behavior for unsaturated soils is the Barcelona basic model (BBM) proposed by Alonso et al. in 1990. The BBM successfully explained many features of unsaturated soils and received extensive acceptance. However, the SCTX tests are designed based upon the divide‐and‐conquer approach in which an implicit assumption is used: soil behavior is stress‐path independent. However, it is well‐established that unsaturated soil behavior is elasto‐plastic and stress‐path dependent. It is found that the SCTX tests in fact cannot control the stress path of an unsaturated soil during loading. This incapability, in combination with complicated loading/collapse behavior of unsaturated soils, makes the SCTX tests for characterizing unsaturated soil questionable. This paper discusses the limitations of the SCTX tests in the characterization of unsaturated soils. A possible solution to the problem was proposed based on a newly developed modified state surface approach. The discussions are limited for isotropic conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
王伸远  李栋伟 《冰川冻土》2014,36(6):1479-1483
通过将试样等向固结再冻结, 然后保持轴压不变进行径向卸载的实验方法, 获得深部冻结黏土在复杂应力状态下的蠕变变形规律. 对冻黏土进行了大量的三轴蠕变试验, 得到了在冻结温度不同和固结围压不同条件下的蠕变试验结果. 结果表明: 在较低的偏应力水平下, 试样只发生前两个阶段的蠕变变形, 且蠕变变形量超过总变形量的70%; 当试样偏应力值高于某一临界值时会出现加速蠕变阶段, 蠕变变形量超过总变形量的80%. 可以用改进的Zienkiewicz-Pande抛物线型屈服准则来描述加速蠕变阶段的临界应力.  相似文献   

19.
This paper reports some results of a large experimental program on Boom Clay conducted in Grenoble in the framework of the European project SELFRAC. The program included isotropic compression up to relatively high stress, drained triaxial compression tests at different cell pressures, as well as permeability measurements under isotropic and deviatoric stress. Local measurement of axial and radial displacements allowed the detection of strain localization during deviatoric loading. The permeability of Boom Clay is found to depend on the mean effective stress. The response of Boom Clay during deviatoric loading appears to be strongly affected by the swelling experienced during the isotropic stage preceding triaxial compression. The rate of swelling decreases with isotropic stress. The longer the swelling before shear, more the response under shear becomes ductile and the lower the initial stiffness. Permeability depends on the mean effective stress and it is found to decrease of about two orders of magnitude when the mean stress increases from 1 to 32 MPa. Permeability during shear loading is essentially constant and does not seem to be affected by strain localization. These results are complemented by a few observations obtained using X-ray microtomography in the framework of the more recent European project TIMODAZ. These findings illustrate the impact of pre-existing inclusions and fissures on specimen deformation upon deviatoric loading in the laboratory.  相似文献   

20.
A porosity change influences the transport properties and the elastic moduli of rock while circulating water in a geothermal reservoir. The static and dynamic elastic moduli can be derived from the slope of stress–strain curves and velocity measurements, respectively. Consequently, the acoustic velocities were measured while performing hydrostatic drained tests. The effect of temperature on static and dynamic elastic moduli and porosity variations of Flechtinger sandstone was investigated in a wide range of confining pressure from 2 to 55 MPa. The experiments were carried out in a conventional triaxial system whereas the pore pressure remained constant, confining pressure was cycled, and temperature was increased step wise (25, 60, 90, 120, and 140 °C). The porosity variation was calculated by employing two different theories: poroelasticity and crack closure. The porosity variation and crack porosity were determined by the first derivative of stress–strain curves and the integral of the second derivative of stress–strain curves, respectively. The crack porosity analysis confirms the creation of new cracks at high temperatures. The porosity variation was increasing with an increase in temperature at low effective pressures and was decreasing with a rise in temperature at high effective pressures. Both compressional and shear wave velocities were increasing with increasing pressure due to progressive crack closure. Furthermore, the thermomechanical behavior of Flechtinger sandstone was characterized by an inversion effect where the sign of the temperature derivative of the drained bulk modulus changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号