首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A kinematic hardening mechanism has previously been proposed to capture the behavior of soil during large stress reversals in the triaxial plane. This mechanism is now extended to the principal stress space. It incorporates rotation and intersection of yield surfaces to achieve a consistent and physically rational fit with experimentally observed soil behavior during large three‐dimensional stress reversals. An existing elasto‐plastic model with isotropic hardening is used as the basic framework to which the rotational kinematic hardening mechanism has been added. The new combined model preserves the behavior of the isotropic hardening model under monotonic loading conditions, and the extension from isotropic to rotational kinematic hardening under three‐dimensional conditions is accomplished without introducing new material parameters. The framework of the model is presented here with some comparisons between theoretical and experimental directions of strain increment vectors to indicate the potential of the model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
A rotational kinematic hardening constitutive model with the capability of predicting the behavior of soil during three‐dimensional stress reversals has been developed. An existing elasto‐plastic constitutive model, the Single Hardening Model, utilizing isotropic hardening serves as the basic framework in these formulations. The framework of the kinematic hardening model was discussed in a companion paper. The previously proposed cross‐anisotropic Single Hardening Model is added to the present kinematic hardening mechanism to capture inherent anisotropy of sands in addition to the stress reversals. This model involves 13 parameters, which can be determined from simple laboratory experiments, such as isotropic compression, drained triaxial compression and triaxial extension tests. The results from a series of true triaxial tests with large three‐dimensional stress reversals performed on medium dense cross‐anisotropic Santa Monica Beach sand are employed for comparison with predictions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
4.
修正剑桥模型是最早建立和得到广泛承认的经典土体弹塑性模型之一,但不能模拟应力路径转折时土体的应力-应变特性以及应力引起的各向异性。将旋转运动硬化理论引入到剑桥模型中,给出了椭圆屈服面的旋转运动硬化机制,在不增加任何模型参数的情况下,把等向硬化的修正剑桥模型扩展为旋转运动硬化模型。扩展的新模型既保留了单调加载时的等向硬化的特性,又能反映应力路径转折时土体的本构特性与应力诱发的各向异性,初步验证了模型的有效性。  相似文献   

5.
A rotational kinematic hardening constitutive model with the capability of predicting the behavior of soil during 3-D stress-reversals has been developed. An existing elasto-plastic constitutive model, the Single Hardening Model, utilizing isotropic hardening serves as the basic framework in these formulations. To this framework is added the capability of handling cross-anisotropic behavior as well as the kinematic hardening mechanism to capture inherent anisotropy of the sand in addition to the large stress-reversals. The model involves thirteen parameters, which can be determined from simple laboratory experiments, such as isotropic compression, drained triaxial compression and triaxial extension tests. The results from a series of true triaxial tests with large stress-reversals performed on loose cross-anisotropic Santa Monica Beach sand are employed for comparison with predictions.  相似文献   

6.
We model the development of shape preferred orientation (SPO) of a large population of two- and three-dimensional (2D and 3D) rigid clasts suspended in a linear viscous matrix deformed by superposed steady and continuously non-steady plane strain flows to investigate the sensitivity of clasts to changing boundary conditions during a single or superposed deformation events. Resultant clast SPOs are compared to one developed by an identical initial population that experienced a steady flow history of constant kinematic vorticity and reached an identical finite strain state, allowing examination of SPO sensitivity to deformation path. Rotation paths of individual triaxial inclusions are complex, even for steady plane strain flow histories. It has been suggested that the 3D nature of the system renders predictions based on 2D models inadequate for applied clast-based kinematic vorticity gauges. We demonstrate that for a large population of clasts, simplification to a 2D model does provide a good approximation to the SPO predicted by full 3D analysis for steady and non-steady plane strain deformation paths. Predictions of shape fabric development from 2D models are not only qualitatively similar to the more complex 3D analysis, but they display the same limitations of techniques based on clast SPO commonly used as a quantitative kinematic vorticity gauge. Our model results from steady, superposed, and non-steady flow histories with a significant pure shearing component at a wide range of finite strain resemble predictions for an identical initial population that experienced a single steady simple shearing deformation. We conclude that individual 2D and 3D clasts respond instantaneously to changes in boundary conditions, however, in aggregate, the SPO of a population of rigid inclusions does not reflect the late-stage kinematics of deformation, nor is it an indicator of the unique ‘mean’ kinematic vorticity experienced by a deformed rock volume.  相似文献   

7.
Performance of three classes of explicit and implicit time‐stepping integrators is assessed for a cyclic plasticity constitutive model for sands. The model is representative of an important class of cyclic plasticity models for soils and includes both isotropic and nonlinear kinematic hardening. The implicit algorithm is based on the closest point projection method and the explicit algorithm follows a cutting‐plane integration procedure. A sub‐stepping technique was also implemented. The performance of these algorithms is assessed through a series of numerical simulations ranging from simulations of laboratory tests (such as triaxial and bi‐axial compression, direct shear, and cyclic triaxial tests) to the analysis of a typical boundary value problem of geotechnical earthquake engineering. These simulations show that the closest point projection algorithm remains stable and accurate for relatively large strain increments and for cases where the mean effective stress in a soil element reaches very small values leading to a liquefaction state. It is also shown that while the cutting plane (CP) and sub‐stepping (SS) algorithms provide high efficiency and good accuracy for small to medium size strain increments, their accuracy and efficiency deteriorate faster than the closest point projection method for large strain increments. The CP and SS algorithms also face convergence difficulties in the liquefaction analysis when the soil approaches very small mean effective stresses. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
A number of constitutive models are nowadays implemented in numerical codes which simulate the stress–strain behaviour of soil from very small to large strain. In this paper, the mechanical behaviour of Leighton Buzzard sand (grade E), used worldwide for physical modelling, has been thoroughly characterized by laboratory testing along several stress paths. Tests were aimed at calibrating a constitutive model, that allows considering stiffness nonlinearities in a wide range of strains, in the framework of isotropically hardening plasticity. As a validation, the results of dynamic centrifuge tests on a layer of the same sand were compared with finite element predictions.  相似文献   

9.
杭州湾浅层储气砂土应力路径试验研究   总被引:2,自引:0,他引:2  
孔令伟  钟方杰  郭爱国  王勇 《岩土力学》2009,30(8):2209-2214
利用GDS非饱和三轴试验系统开展了杭州湾储气砂土主动压缩、被动压缩、主动伸长与被动伸长等4种应力路径试验研究,以论证应力路径对非饱和砂土的变形性状与强度特性影响。结果表明,在卸荷应力路径被动压缩与被动伸长下非饱和砂土的应力-应变曲线呈明显的应变软化性状,而加荷应力路径主动压缩与主动伸长则分别表现为轻度应变软化及显著应变硬化变形特征;非饱和砂土的强度参数在卸荷与加荷应力路径中也存在差异,前者的有效凝聚力高于后者,而内摩擦角则相反;但其表观凝聚力与基质吸力关系在不同应力路径下均可用乘幂函数 有效描述,而试验参数a、b值不同,公式 可合理地用于表述非饱和砂土的强度特性。  相似文献   

10.
This paper explores the possibility of using well-accepted concepts—Mohr-Coulomb-like strength criterion, critical state, existence of a small strain elastic region, hyperbolic relationship for representing global plastic stress–strain behaviour, dependence of strength on state parameter and flow rules derived from the Cam-Clay Model—to represent the general multiaxial stress–strain behaviour of granular materials over the full range of void ratios and stress level (neglecting grain crushing). The result is a simple model based on bounding surface and kinematic hardening plasticity, which is based on a single set of constitutive parameters, namely two for the elastic behaviour plus eight for the plastic behaviour, which all have a clear and easily understandable physical meaning. In order to assist the convenience of the numerical implementation, the model is defined in a ‘normalized’ stress space in which the stress–strain behaviour does not undergo any strain softening and so certain potential numerical difficulties are avoided. In the first part the multiaxial formulation of the model is described in detail, using appropriate mixed invariants, which rationally combine stress history and stress. The model simulations are compared with some experimental results for tests on granular soils along stress paths lying outside the triaxial plane over a wide range of densities and mean stresses, using constitutive parameters calibrated using triaxial tests. Furthermore, the study is extended to the analysis of the effects induced by the different shapes of the yield and bounding surfaces, revealing the different role played by the size and the curvature of the bounding surface on the simulated behaviour of completely stress- and partly strain-driven tests. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
Soil models based on kinematic hardening together with elements of bounding surface plasticity, provide a means of introducing some memory of recent history and stiffness variation in the predicted response of soils. Such models provide an improvement on simple elasto‐plastic models in describing soil behaviour under non‐monotonic loading. Routine use of such models requires robust numerical integration schemes. Explicit integration of highly non‐linear models requires extremely small steps in order to guarantee convergence. Here, a fully implicit scheme is presented for a simple kinematic hardening extension of the Cam clay soil model. The algorithm is based on the operator split methodology and the implicit Euler backward integration scheme is proposed to integrate the rate form of the constitutive relations. This algorithm maintains a quadratic rate of asymptotic convergence when used with a Newton–Raphson iterative procedure. Various strain‐driven axisymmetric triaxial paths are simulated in order to demonstrate the efficiency and good performance of the proposed algorithm. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
An objective of this paper is to demonstrate that the small strain model developed by the authors can be incorporated into the conventional kinematic hardening plasticity framework to predict pre‐failure defor mations. The constitutive model described in this paper is constituted by three elliptical yield surfaces in triaxial stress space. Two inner surfaces are rotated ellipses of the same shape, representing the boundaries of the linear elastic and small strain regions, while the third surface is the modified Cam clay large‐scale yield surface. Within the linear elastic region, the soil behaviour is elastic with cross‐coupling between the shear and volumetric stress–strain components. Within the small strain region, the soil behaviour is elasto‐plastic, described by the kinematic hardening rule with an infinite number of loading surfaces defined by the incremental energy criterion. Within the large‐scale yield surface, the soil behaviour is elasto‐plastic, described by kinematic and isotropic hardening of the small strain region boundary. Since the yield surfaces have different shapes, the uniqueness of the plastic loading condition imposes a restriction on the ratio between their semi‐diameters. The model requires 12 parameters, which can be determined from a single consolidated undrained triaxial compression test. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
Since cross-anisotropic sand behaves differently when the loading direction or the stress state changes, the influences of the loading direction and the intermediate principal stress ratio (b = (σ 2 ? σ 3)/(σ 1 ? σ 3)) on the initiation of strain localization need study. According to the loading angle (angle between the major principal stress direction and the normal of bedding plane), a 3D non-coaxial non-associated elasto-plasticity hardening model was proposed by modifying Lode angle formulation of the Mohr–Coulomb yield function and the stress–dilatancy function. By using bifurcation analysis, the model was used to predict the initiation of strain localization under plane strain and true triaxial conditions. The predictions of the plane strain tests show that the major principal strain at the bifurcation points increases with the loading angle, while the stress ratio decreases with the loading angle. According to the loading angle and the intermediate principal stress ratio, the true triaxial tests were analyzed in three sectors. The stress–strain behavior and the volumetric strain in each sector can be well captured by the proposed model. Strain localization occurs in most b value conditions in all three sectors except for those which are close to triaxial compression condition (b = 0). The difference between the peak shear strength corresponding to the strain localization and the ultimate shear strength corresponding to plastic limit becomes obvious when the b value is near 0.4. The influence of bifurcation on the shear strength becomes weak when the loading direction changes from perpendicular to the bedding plane to parallel. The bifurcation analysis based on the proposed model gives out major principal strain and peak shear strength at the initiation of strain localization; the given results are consistent with experiments.  相似文献   

14.
This paper presents an elasto‐plastic model for non‐linear analyses of cement‐treated sand. Various laboratory tests were systematically carried out to investigate the pre‐peak and post‐peak behaviours of a cement‐treated sand. On the basis of these experimental results, the new model was built within the framework of a relatively simple elasto‐plastic theory. Two failure criteria are employed to express tensile and shear failure characteristics observed in the experimental results of the cement‐treated sand. The proposed model can describe strain‐hardening and strain‐softening responses under both failure modes. In the strain‐softening rules, the smeared crack concept is used, and a characteristic length is considered to avoid the issue of mesh‐size dependency. Since the failure criterion and strain‐hardening/softening rules are based on the experimental evidences, the model is relatively easy to understand and the parameters used in the model have clear physical meaning. The proposed model was applied to simulate the behaviour of cement‐treated sand in various laboratory tests, allowing for a reasonable comprehensive evaluation. It was demonstrated that the proposed model is suitable for describing both the tensile and shear failure behaviours of cement‐treated sand. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Based on hypotheses derived directly from experimental observations of the triaxial behaviour, a constitutive model for fibre reinforced sands is built in this paper. Both the sand matrix and the fibres obey their own constitutive law, whereas their contributions are superimposed using a volumetric homogenization procedure. The Severn‐Trent sand model, which combines well‐known concepts such as critical state theory, Mohr‐Coulomb like strength criterion, bounding surface plasticity and kinematic hardening, is adopted for the sand matrix. Although the fibres are treated as discrete forces with defined orientation, an equivalent continuum stress for the fibre phase is derived to allow the superposition of effects of sand and fibres. The fibres are considered as purely tensile elements following a linear elastic constitutive rule. The strain in the fibres is expressed as a fraction of the strain in the reinforced sample so that imperfect bonding is assumed at the sand‐fibre interface. Only those fibres oriented within the tensile strain domain of the sample can mobilize tensile stress—the orientation of fibres is one of the key ingredients to capture the anisotropic behaviour of fibre reinforced soil that is observed for triaxial compression and extension loading. A further mechanism of partition of the volume of voids between the fibres and the sand matrix is introduced and shown to be fundamental for the simulation of the volumetric behaviour of fibre‐reinforced soils. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
17.
A single‐surface elasto‐plastic model developed by Desai and his coworkers is used to predict the behaviour of an interface between sand and a steel plate. The loading in the experiments and in their predictions followed various stress and displacement paths. The results of predictions of the two‐ and three‐dimensional behaviour of the interface under both constant normal stress and constant normal stiffness conditions are presented. The predictions are compared with their corresponding experimental results. The model parameters were determined on the basis of 2‐D conventional experiments under the condition of constant normal stress and they were used in the prediction of the interface behaviour in various stress paths. There is, in general, a good agreement between the predicted and experimental results. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Experimental and numerical studies on and sand–steel interfaces are presented. Emphasis is laid on the effect of boundary conditions of the whole system and of localized deformation. The experiments with different roughness of steel surface, sand density, normal stress and grain size are carried out in a plane strain apparatus, a parallely guided direct shear apparatus and in a planar silo model with a movable bottom and parallel steel walls. During the test in the plane strain apparatus the localized zone is observed with the help of X-rays. The results indicate a significant effect of wall roughness and boundary conditions of the whole system on the wall friction angle and the thickness of the localized zone along the steel surface. An elastoplastic constitutive model established within the framework of a Cosserat continuum, capable of describing isotropic hardening, softening and dilatancy, is implemented in a finite element code. The model differs from the conventional theory of plasticity due to the presence of Cosserat rotation and couple stress using the mean grain diameter as the characteristic length. Finite element simulations of simple shear tests are presented. The additional boundary condition along the steel plate, characteristic of the Cosserat continuum, allows for modelling the different roughness of the steel plate with consideration of grain rotations. A comparison between the numerical calculations and the experimental results shows acceptable agreement.  相似文献   

19.
A unified constitutive model for unsaturated soils is presented in a critical state framework using the concepts of effective stress and bounding surface plasticity theory. Consideration is given to the effects of unsaturation and particle crushing in the definition of the critical state. A simple isotropic elastic rule is adopted. A loading surface and a bounding surface of the same shape are defined using simple and versatile functions. The bounding surface and elastic rules lead to the existence of a limiting isotropic compression line, towards which the stress trajectories of all isotropic compression load paths approach. A non‐associated flow rule of the same general form is assumed for all soil types. Isotropic hardening/softening occurs due to changes in plastic volumetric strains as well as suction for some unsaturated soils, enabling the phenomenon of volumetric collapse upon wetting to be accounted for. The model is used to simulate the stress–strain behaviour observed in unsaturated speswhite kaolin subjected to three triaxial test load paths. The fit between simulation and experiment is improved compared to that of other constitutive models developed using conventional Cam‐Clay‐based plasticity theory and calibrated using the same set of data. Also, the model is used to simulate to a high degree of accuracy the stress–strain behaviour observed in unsaturated Kurnell sand subjected to two triaxial test load paths and the oedometric compression load path. For oedometric compression theoretical simulations indicate that the suction was not sufficiently large to cause samples to separate from the confining ring. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
The results of an experimental study of the undrained behaviour of Changi sand under axisymmetric and plane-strain conditions are presented. K0 consolidated undrained plane-strain tests and K0 or isotropically consolidated triaxial tests on very loose and medium dense specimens were conducted. The undrained behaviour of sand at very loose and medium dense states under plane-strain conditions was characterised and compared with that under axisymmetric conditions. It was observed that the undrained behaviour of very loose and medium dense sand under plane strain is similar to that under axisymmetric conditions. However, because of the formation of shear bands in plane-strain tests, the post-peak behaviour of medium dense sand in plane strain is different from that in triaxial tests. It was also established that an instability line for plane-strain conditions can be defined in a way similar to that for axisymmetric conditions. Using the state parameter, a unified relationship between the normalised slope of instability line and the state parameters can be established for both axisymmetric and plane-strain conditions. Using this relationship, the instability conditions established under axisymmetric conditions can be used for plane-strain conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号