首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We present a micro‐mechanical analysis of macroscopic peak strength, critical state, and residual strength in two‐dimensional non‐cohesive granular media. Typical continuum constitutive quantities such as frictional strength and dilation angle are explicitly related to their corresponding grain‐scale counterparts (e.g., inter‐particle contact forces, fabric, particle displacements, and velocities), providing an across‐the‐scale basis for a better understanding and modeling of granular materials. These multi‐scale relations are derived in three steps. First, explicit relations between macroscopic stress and strain rate with the corresponding grain‐scale mechanics are established. Second, these relations are used in conjunction with the non‐associative Mohr–Coulomb criterion to explicitly connect internal friction and dilation angles to the micro‐mechanics. Third, the mentioned explicit connections are applied to investigate, understand, and derive micro‐mechanical conditions for peak strength, critical state, and residual strength. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
循环荷载下砂土液化特性颗粒流数值模拟   总被引:7,自引:2,他引:5  
周健  杨永香  刘洋  贾敏才 《岩土力学》2009,30(4):1083-1088
利用PFC2D常体积循环双轴试验条件,对砂土在不排水循环荷载作用下的液化特性进行了颗粒流数值模拟,数值模拟按等应力幅加荷方式进行。颗粒流数值模拟的优点在于得到试样液化宏观力学表现的同时,通过不同循环加荷时刻试样内细观组构参量(包括配位数、接触法向分布、粒间法向接触力、粒间切向接触力)的演化规律,分析砂土液化过程中细观组构变化与宏观力学响应之间的内在联系,从而可进一步探讨砂土液化的细观力学机制。数值模拟研究结果表明,砂土液化现象在宏观力学表现上反映为超静孔隙水压力的累积上升和平均有效主应力的不断减小,在细观组构上对应于配位数的累积损失和粒间接触力的不断减小。砂土液化细观机制分析表明,试样配位数的减少与循环加荷过程中组构各向异性滞后于应力各向异性有关。  相似文献   

3.
Gao  Ge  Meguid  Mohamed A.  Chouinard  Luc E. 《Acta Geotechnica》2020,15(12):3483-3510

The deformation process and failure mechanism of rock mass with increased density of initial joints subjected to confined stress state are investigated in this study using discrete element method (DEM). A numerical model of standard size granite samples is developed and validated using experimental data for both intact and jointed rocks. The micro-parameters of the rock material are first determined, and the effects of the rock discontinuity on strength, deformability, stress–strain relationship, and failure modes are then investigated at the macro-scale level. Analyses are also performed to examine the tensile and shear crack distributions, fragmentation characteristics, particle kinematics, and energy dissipation to advance the current understanding of the deformation processes and failure mechanisms of jointed rock masses. The microscopic evolutions in the fabric and force anisotropy during loading and distributions of contact forces provide insights into the influence of increasing initial jointing on the macroscopic deformational behavior of the rock. The results show how the deceleration in the growth of fabric and contact force anisotropies develops and confirms that the increase in initial jointing and the associated changes in microstructure can restrain the development of anisotropy, thereby reducing significantly the strength of the rock samples.

  相似文献   

4.
The macroscopic mechanical behavior of granular materials inherently depends on the properties of particles that compose them. Using the discrete element method, the effect of particle contact friction and polydispersity on the macroscopic stress response of 3D sphere packings is studied. The analytical expressions for the pressure, coordination number and fraction of rattlers proposed for isotropically deformed frictionless systems also hold when the interparticle coefficient of friction is finite; however, the numerical values of the parameters such as the jamming volume fraction change with varying microscopic contact and particle properties. The macroscopic response under deviatoric loading is studied with triaxial test simulations. Concerning the shear strength, our results agree with previous studies showing that the deviatoric stress ratio increases with particle coefficient of friction μ starting from a nonzero value for μ = 0 and saturating for large μ. On the other hand, the volumetric strain does not have a monotonic dependence on the particle contact friction. Most notably, maximum compaction is reached at an intermediate value of the coefficient of friction μ ≈ 0.3. The effect of polydispersity on the macroscopic stress–strain relationship cannot be studied independent of initial packing conditions. The shear strength increases with polydispersity when the initial volume fraction is fixed, but the effect of polydispersity is much less pronounced when the initial pressure of the packings is fixed. Finally, a simple hypoplastic constitutive model is calibrated with numerical test results following an established procedure to ascertain the relation between particle properties and material coefficients of the macroscopic model. The calibrated model is in good qualitative agreement with simulation results.  相似文献   

5.
A series of laboratory experiments and numerical simulations are conducted to explore the characteristics of mixtures composed of sand and rubber particles of the same median diameter. The mixtures are prepared with different volumetric sand fractions (sf = Vsand/Vtotal). The experiment focuses on assessing the strain level on the characteristics of the mixture with the volume fraction of each component. Numerical simulations using the discrete element method are performed to obtain insight into the microscale behavior and internal mechanism of the mixtures. The experimental results show that the behavior of the mixtures is dependent on the relative sand and rubber particles composition with variation in the strain levels. The numerical simulation reveals the effect of the soft rubber particle inclusion in the mixture on the micromechanical parameters. In low sand fraction mixtures, a high shear stress along the contact is mobilized, and the stress state is driven to a more anisotropic condition because of the relatively high particle friction angle of the rubber. The rubber particles play different roles with the strain level in the mixture, including increasing the coordination number and controlling plasticity of the mixture in a small strain, preventing buckling of the force chain in an intermediate strain, and leading to contractive behavior in a large strain. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Micromechanical analysis of the failure process of brittle rock   总被引:1,自引:0,他引:1       下载免费PDF全文
The failure process of brittle rock submitted to a compression state of stress with different confining pressures is investigated in this paper based on discrete element method (DEM) simulations. In the DEM model, the rock sample is represented by bonding rigid particles at their contact points. The numerical model is first calibrated by comparing the macroscopic response with the macroscopic response of Beishan granite obtained from laboratory tests. After the validation of numerical model in terms of macroscopic responses, the failure process of the DEM model under unconfined and confined compression is studied in micro‐scale in detail. The contact force network and its relation to the development of micro‐cracks and evolution of major fractures are studied. Confining pressure will prohibit the development of tensile cracks and hence alter the failure patterns. An in‐depth analysis of micro‐scale response is carried out, including the orientation distribution and probability density of stress acting on parallel bonds, the effect of particle size heterogeneity on bond breakage and the evolution of fabric tensor and coordination number of parallel bond. The proposed micromechanical analysis will allow us to extract innovative features emerged from the stresses and crack evolution in brittle rock failure process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
董启朋  姚海林  卢正  詹永祥 《岩土力学》2014,35(7):2071-2078
基于细观力学,建立颗粒材料的宏观应力-应变与接触力、接触位移、枝矢量等细观量之间的关系。用改进的Voronoi-Delaunay法对颗粒材料进行几何和物理上划分,得到改进Bagi双胞元体系;以固体胞元为基础,运用牛顿第二定律和Gauss定理提出含有旋转矢量和重力的颗粒材料平均等效应力,避免了颗粒材料的准静态假设;在孔隙胞元区域内利用变形协调条件推导出含有孔隙面矢量等几何变量的颗粒材料平均等效应变。结合文献的二维颗粒材料宏观试验结果验证了双胞元平均等效应力-应变的正确性;在三维情形下,对比双胞元等效应变和最优拟合应变结果,同样验证了基于双胞元的颗粒材料应力-应变关系,因此,该颗粒材料应力-应变关系可以为数值模拟颗粒材料力学行为提供依据。  相似文献   

8.
The extent to which the evolution of instabilities and failure across multiple length scales can be reproduced with the aid of a bifurcation analysis is examined. We adopt an elastoplastic micropolar constitutive model, recently developed for dense cohesionless granular materials within the framework of thermomicromechanics. The internal variables and their evolution laws are conceived from a direct consideration of the dissipative mechanism of force chain buckling. The resulting constitutive law is cast entirely in terms of the particle scale properties. It thus presents a unique opportunity to test the potential of micromechanical continuum formulations to reproduce key stages in the deformation history: the development of material instabilities and failure following an initially homogeneous deformation. Progression of failure, initiating from frictional sliding and rolling at contacts, followed by the buckling of force chains, through to macroscopic strain softening and shear banding, is reproduced. Bifurcation point, marking the onset of shear banding, occurred shortly after the peak stress ratio. A wide range of material parameters was examined to show the effect of particle scale properties on the progression of failure. Model predictions on the thickness and angle of inclination of the shear band and the structural evolution inside the band, namely the latitudinal distribution of particle rotations and the angular distributions of contacts and the normal contact forces, are consistent with observations from numerical simulations and experiments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A matrix relating stress and elastic strain tensors for anisotropic particulate materials has been derived. The magnitude of the matrix depends on the state of the material anisotropy. Anisotropy in granular materials depends on strain because normal and tangential particle contact forces, as well as the spatial distribution of the contacts, vary with stress and strain. However, the rotation tensor and the strain tensor cannot be independent; they must satisfy certain constraints to meet the requirement for macroscopic stress tensor symmetry. These conditions and constraints lead to the derivation of the matrix presented in this article. The principal directions of the stress tensor and strain tensor are generally not coincident, and the values of deformation parameters, Young's modulus and Poisson's ratio, are direction dependent; these two aspects are also discussed in this paper. Whereas this matrix can be used in static numerical analyses for elastic problems, we note that this relationship can also be used as a basis upon which to derive a fully incremental stress–strain relationship for anisotropic granular materials in the plastic state, where the anisotropy is evolving with strain.  相似文献   

10.
A granular material consists of an assemblage of particles with contacts newly formed or disappeared, changing the micromechanical structures during macroscopic deformation. These structures are idealized through a strain space multiple mechanism model as a twofold structure consisting of a multitude of virtual two‐dimensional mechanisms, each of which consists of a multitude of virtual simple shear mechanisms of one‐dimensional nature. In particular, a second‐order fabric tensor describes direct macroscopic stress–strain relationship, and a fourth‐order fabric tensor describes incremental relationship. In this framework of modeling, the mechanism of interlocking defined as the energy less component of macroscopic strain provides an appropriate bridge between micromechanical and macroscopic dilative component of dilatancy. Another bridge for contractive component of dilatancy is provided through an obvious hypothesis on micromechanical counterparts being associated with virtual simple shear strain. It is also postulated that the dilatancy along the stress path beyond a line slightly above the phase transformation line is only due to the mechanism of interlocking and increment in dilatancy due to this interlocking eventually vanishing for a large shear strain. These classic postulates form the basis for formulating the dilatancy in the strain space multiple mechanism model. The performance of the proposed model is demonstrated through simulation of undrained behavior of sand under monotonic and cyclic loading. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Within the framework of the second‐order work theory, the onset of instabilities is explored numerically in loose granular materials through three‐dimensional DEM simulations. Stress controlled directional analysis are performed in Rendulic's plane, and a particular attention is paid to transient evolutions at the microscale. Thanks to a micromechanical analysis, the onset and development of transient mechanical instabilities is explored. It is shown that these instabilities result from the unjamming and bending of a few force chains associated with a local burst of kinetic energy. This burst of kinetic energy propagates to the whole sample and provokes a generalized unjamming of force chains. As force chains buckle, a phase transition from a quasi‐static to an inertial regime is observed. At the macroscopic scale, this results in a transient softening and a loss of controllability. After the collapse of existing force chains, the development of plastic strain is eventually stopped as new stable force chains are built.  相似文献   

12.
The smooth‐joint contact model based on distinct element method has been widely used to represent discontinuity in the simulation of fractured rock mass, but there is rare efficient guidance for the selection of proper parameters of smooth‐joint contact model, which is the basement for using this model properly. In this paper, the effect of smooth joint parameters on the macroscopic properties and failure mechanism of jointed rock under triaxial compression test is investigated. The numerical results reveal that the friction coefficient of smooth joint plays a dominant role in controlling mechanical behaviors. The stiffness of smooth joint has a relative small influence on the mechanical behaviors. Poisson ratio decreases with the reduction of normal stiffness but increases with the reduction of shear stiffness. The reduction of smooth joint strength, which is determined by normal strength, cohesion, and friction angle of smooth joint, contributes to the breakage of bonded smooth joint and ultimately decreases the strength of the specimen. We proposed a detailed calibration process for smooth‐joint contact model according to the relationship between smooth‐joint parameters and mechanical properties. By following this process, the numerical results are validated against corresponding experimental results and good agreement between them can be found in stress‐strain curves and failure modes of different joint orientations. Further analyses from the microperspective are performed by looking at transmission of contact force, the nature and distribution of microcracks, and the particle displacement to show the failure process and failure modes.  相似文献   

13.
Hadda  Nejib  Wan  Richard 《Acta Geotechnica》2020,15(3):715-734

The paper examines the mechanics and physics of granular material responses at the macroscopic and microscopic levels during both monotonic and cyclic loadings. A numerical analysis referring to a long retaining wall is conducted using a two-dimensional discrete element model representing a granular system with a free top surface. On one of the lateral boundaries referring to the retaining wall, both active and passive loadings were applied monotonically as well as cyclically. First, the development of sheared zones and classic failure wedges resulting from active and passive monotonic displacements are discussed with respect to Rankine’s and Roscoe’s solution angles. Then, a series of loading cycles were performed using slow small-amplitude displacements at different stress states chosen before the occurrence of failure along the passive monotonic stress response curve. Particular interest is focused on the ultimate asymptotic cyclic response of the granular system, the occurrence of a high-mobility (convective) zone and a detailed macroscopic and microscopic analysis. Finally, major kinematical features that are displayed during cyclic loading from different starting stresses to eventually reach the same asymptotic state were elucidated through particle vortex-like flux formations, including contact rotations. The change in material stiffness was also investigated based on the evolution of strong and weak contact networks, together with the analysis of fabric anisotropy within the entire domain, including the high-mobility zone considered separately.

  相似文献   

14.
土体塑性各向异性的微宏观机理分析   总被引:1,自引:0,他引:1  
钱建固  黄茂松 《岩土力学》2011,32(Z2):88-93
基于微观土力学理论框架推导了宏观应力解析,将各向异性的微观机理归结为微观接触力各向异性和微观组构各向异性的两方面因素。应用基于微观理论的应力解析构建了土体各向异性强度准则,并结合既有的微、宏观试验及理论成果,研究加载条件对硬化定律的影响机理,进而揭示了变形非共轴性的微观理论基础。研究表明,着眼于微观理论机理,强度各向异性和塑性变形各向异性本质上都是微观组构各向异性的宏观表现。其中,强度各向异性起源于土体微观组构的固有各向异性,而塑性诱发各向异性依赖于塑性硬化过程中微观组构各向异性的演化规律。在比例加载条件下土体表现为等向硬化和共轴塑性,而非比例加载条件下表现为等向-运动硬化和塑性非共轴性  相似文献   

15.
The shear behavior at the interface between the soil and a structure is investigated at the macroscale and particle‐scale levels using a 3‐dimensional discrete element method (DEM). The macroscopic mechanical properties and microscopic quantities affected by the normalized interface roughness and the loading parameters are analyzed. The macro‐response shows that the shear strength of the interface increases as the normalized roughness of the interface increases, and stress softening and dilatancy of the soil material are observed in the tests that feature rough interfaces. The particle‐scale analysis illustrates that a localized band characterized by intense shear deformation emerges from the contact plane and gradually expands as shearing progresses before stabilizing at the residual stress state. The thickness of the localized band is affected by the normalized roughness of the interface and the normal stress, which ranges between 4 and 5 times that of the median grain diameter. A thicker localized band is formed when the soil has a rough shearing interface. After the localized band appears, the granular material structuralizes into 2 regions: the interface zone and the upper zone. The mechanical behavior in the interface zone is representative of the interface according to the local average stress analysis. Certain microscopic quantities in the interface zone are analyzed, including the coordination number and the material fabric. Shear at the interface creates an anisotropic material fabric and leads to the rotation of the major principal stress.  相似文献   

16.
It has been established that the second‐order work criterion is a general necessary condition for all instabilities by divergence in rate‐independent granular materials. The relation between the values of discrete second‐order work at the intergranular contact point level and its global macroscopic value is recalled at the beginning of this paper. Then, the basic purpose of the paper is tackled by an analysis of the main features of second‐order work criterion in relation with the granular microstructure. For that, it is considered a novel micromechanical model (the so‐called ‘H‐microdirectional model’), which has the property to involve three scales: grain scale, mesoscale with a specific granular configuration and continuum mechanics macroscale. Eventually, these exhibited features (a bifurcation stress domain and some instability cones) are qualitatively compared with the ones provided by direct numerical simulations issued from a discrete element model. The ultimate goal is to analyse what happens at the granular scale, when the macrosecond‐order work is vanishing at the macrolevel. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
王家全  康博文  周圆兀  唐滢 《岩土力学》2022,43(5):1249-1260
基于可视化拉拔系统及数字照相量测技术,针对5种不同粗粒含量 (粒径>5 mm颗粒的质量百分数)的粗粒土开展拉拔试验,探讨了粗粒含量 对筋土界面强度指标、颗粒位移演化及土工格栅应变等的影响。研究表明:界面黏聚力c与界面摩擦角 随 增加呈不同程度增加; 从20%增长至35%后,土工格栅末段出现应变及拉拔力峰值时所对应的格栅拉拔位移均减少,但各段土工格栅应变量增加;随着 的增加,筋土界面粗粒土颗粒位移矢量方向逐渐趋于水平,其位移量显著减小。同时,筋土界面空洞明显减少; 增加使筋土界面的粗粒土颗粒位移减小,而间接影响区范围扩大,使一定高度范围内的粗粒土颗粒被间接带动,在宏观上使界面似黏聚力增加; 增加后,位于筋土界面V3处的土颗粒最大位移速度减小。位于间接影响区的V1、V2处的土颗粒最大位移速度因受间接影响区范围扩大,颗粒扰动加强而有少量增大。  相似文献   

18.
郭兴文  赵骞  顾水涛  蔡新 《岩土力学》2016,37(Z2):105-112
强黏结土体或胶凝砂砾石料等颗粒材料的颗粒间存在较大黏结力,在低应力情况下主要由颗粒接触特性决定颗粒材料的宏观蠕变特性。基于颗粒细观力学方法,研究了二维各向同性颗粒材料的蠕变特性。首先引入速率相关的力与位移关系描述颗粒材料细观颗粒间特性。其次,运用Laplace变换,将时间域内的线黏弹性颗粒材料细观均匀化问题转化为拉氏空间内线弹性颗粒材料细观均匀化问题,随后基于颗粒材料线弹性问题在Reuss、Voigt和一般位移场三种假设下的解,通过Laplace逆变换得到颗粒材料相应的宏观蠕变特性解析模型,并建立了材料蠕变特性的上下限。最后,通过理论模型的解析解与商业软件(PFC2D)的数值结果的对比,验证了理论模型的合理性。  相似文献   

19.
Aging- or creep-related phenomena in sand have been widely studied, and the discrete element method (DEM) has been frequently used to model the associated soil behavior and then to explore the associated underlying mechanisms. However, several difficulties involved in modeling still remain unsolved. To resolve these difficulties, a new approach based on the effect of the microfracturing of asperities is proposed in this study for the DEM modeling of the sand aging or creep process through several aging cycles of associated reduction in the mobilized friction resistance at particle contacts and subsequent particle rearrangement to reach a new equilibrium state. This approach can be easily incorporated into different contact models and DEM simulations of the loading, unloading, and/or reloading processes, in either drained or undrained conditions, before and/or after aging. This new approach is proven effective because the DEM simulations incorporated with this new approach can satisfactorily reproduce the experimental observations in the triaxial creep process, drained and undrained recompression after aging, and 1D secondary compression and rebound. The simulation results also indicate that, based on the stress–force–fabric relationship, the contribution from the contact normal anisotropy to the deviatoric stress q gradually increases, whereas the contribution from the tangential force anisotropy becomes less during triaxial creep under a constant q. Moreover, the contacts between particles are gradually away from the state where the frictional resistance is fully mobilized, and then become more stable. During the subsequent triaxial recompression after creep, the aged samples exhibit enhanced soil stiffness, which is also found to be associated with the evolution of the invariants of the anisotropy tensors. It is worthwhile noting that the aging or creep effects on the microstructural changes, e.g., the invariants of the anisotropy tensors, can be gradually erased upon further recompression. This explains why the stress–strain responses of the aged samples during recompression gradually rejoin the original stress–strain response obtained from the sample without being subjected to aging or creep.  相似文献   

20.
This paper presents a numerical investigation into mechanical behavior and strain localization in methane hydrate (MH) bearing sediments using the distinct element method (DEM). Based on the results of a series of laboratory tests on the bonded granules idealized by two glued aluminum rods and the available experimental data of methane hydrate samples, a pressure and temperature dependent bond contact model was proposed and implemented into a two-dimensional (2D) DEM code. This 2D DEM code was then used to numerically carry out a series of biaxial compression tests on the MH samples with different methane hydrate saturations, whose results were then compared with the experimental data obtained by Masui et al. [9]. In addition, stress, strain, void ratio and velocity fields, the distributions of bond breakage and averaged pure rotation rate (APR) as well as the evolution of strain localization were examined to investigate the relationships between micromechanical variables and macromechanical responses in the DEM MH samples. The numerical results show that: (1) the shear strength increases as methane hydrate saturation SMH increases, which is in good agreement with the experimental observation; (2) the strain localization in all the DEM MH samples develops with onset of inhomogeneity of void ratio, velocity, strain, APR, and distortion of stress fields and contact force chains; and (3) the methane hydrate saturation affects the type of strain localization, with one shear band developed in the case of 40.9% and 67.8% methane saturation samples, and two shear bands formed for 50.1% methane saturation sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号