首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The natural (electrical) potential (NP) method – also known as self-potential, spontaneous potential and streaming potential (SP) – has been used to locate areas of groundwater flow in karst terrane. NP is the naturally occurring voltage at the ground surface resulting from ambient electrical currents within the earth. The measurement of NP can be used to characterize groundwater flow in karst terrane because electrical potential gradients are generated by the horizontal flow of water along fractures or conduits and the vertical infiltration of water into fractures or shafts. NP data from a site on the Mitchell Plain of southern Indiana, USA, revealed that NP data can be decomposed into three components: topographic effect, residual NP and noise. At this site, NP was inversely proportional to elevation, but the correlation varied with time. The topographic correction factor varied from –2.5 to –1.2 mV/m (NP change per unit elevation increase), with an average linear correlation coefficient (R) of 0.95. Because the site slopes toward an adjacent creek that is the local groundwater discharge zone, one possible explanation for this effect is a streaming-potential mechanism generated by groundwater movement toward the creek. The residual NP data revealed three negative anomalies at the survey area. Two of them coincide with sinkholes. A part of the third anomaly is coincident with a small valley, and concentrated infiltration does occur at this elevation in other valleys at the site, as evidenced by the existence of sinkholes. However, the dispersed, low-magnitude nature of the third anomaly does not prove the existence of concentrated groundwater recharge activity. Received: 18 March 1998 · Accepted: 27 April 1998  相似文献   

2.
Recently in China, soil–cement is widely used to improve the soft ground in the highway construction engineering. Literature studies are mainly investigating the mechanical properties of the soil–cement, while its properties of the electrical resistivity are not well addressed. In this paper, the properties of the electrical resistivity of the reconstituted soil-cement and the in situ soil–cement columns are investigated. The test results show that the electrical resistivity of the soil–cement increases with the increase in the cement-mixing ratio and curing time, whereas it decreases with the increase in the water content, degree of saturation and water–cement ratio. A simple equation is proposed to predict the electrical resistivity of soil–cement under the condition of the specified curing time and water–cement ratio. It is found that the electrical resistivity has a good relationship with the unconfined compression strength and blow count of SPT. It is expected that the electrical resistivity method can be widely used for checking/controlling the quality of soil–cement in practice.  相似文献   

3.
Soil hydraulic properties such as soil infiltration rate and hydraulic conductivity are closely linked to runoff generation and infiltration processes but little is known about them on karst hillslopes. The objectives of this paper were to investigate the change in soil stable infiltration rate (q s) and near-saturated hydraulic conductivity (K ns) in different slope positions and to understand their relationship with rock fragment content and soil texture within the topsoil in subtropical karst regions of southwest China. Tension infiltrometers (20 cm in diameter) were used to measure q s and K ns at pressure head of −20 mm on hillslopes 1 (a disintegrated landslide failure) and 2 (an avalanche slope). The change of q s and K ns was great and they mostly had a moderate variability with coefficient of variations (CV) between 0.1 and 1.0 in the different slope positions. On average, q s ranged from 0.43 to 4.25 mm/min and K ns varied from 0.75 to 11.00 mm/min. These rates exceed those of most natural rainfall events, confirming that overland flow is rare on karst hillslopes. From bottom to top, q s and K ns had a decrease–increase–decrease trend due to the presence of large rock outcrops (>2 m in height) on hillslope 1 but had an increasing trend on hillslope 2 with less complex landform. They tended to increase with increase in total rock fragment content (5–250 mm) within the topsoil as well as slope gradient on both hillslopes. Pearson correlation analysis suggested that higher coarse pebble (20–75 mm), cobble (75–250 mm), and sand (2–0.05 mm) contents as well as total rock fragment content could significantly facilitate water infiltration into soils, but higher clay (<0.002 mm) content could restrict water movement. This result indicated that rock fragment, sand, and clay contents may remarkably affect water flow in the topsoil layers, and should be considered in hydrological modeling on karst hillslopes in subtropical regions.  相似文献   

4.
Natural and anthropogenic impacts on karst ground water, Zunyi, Southwest China, are discussed using the stable isotope composition of dissolved inorganic carbon and particulate organic carbon, together with carbon species contents and water chemistry. The waters can be mainly characterized as HCO3–Ca type, HCO3 · SO4–Ca type, or HCO3 · SO4–Ca · Mg type, according to mass balance considerations. It is found that the average δ13CDIC values of ground waters are higher in winter (low-flow season) than in summer (high-flow season). Lower contents of dissolved inorganic carbon (DIC) and lower values of δ13CDIC in summer than in winter, indicate that local rain events in summer and a longer residence time of water in winter play an important role in the evolution of ground water carbon in karst flow systems; therefore, soil CO2 makes a larger contribution to the DIC in summer than in winter. The range of δ13CDIC values indicate that dissolved inorganic carbon is mainly controlled by the rate of carbonate dissolution. The concentrations of dissolved organic carbon and particulate organic carbon in most ground water samples are lower than 2.0 mg C L−1 and 0.5 mg C L−1, respectively, but some waters have slightly higher contents of organic carbon. The waters with high organic carbon contents are generally located in the urban area where lower δ13CDIC values suggest that urbanization has had an effect on the ground water biogeochemistry and might threaten the water quality.  相似文献   

5.
This paper deals with the integration of electrical resistivity tomography and geochemical methods for studying four different fire-prone landfills. Landfill gas composition (CH4, H2S, O2, CO, CO2) and subsurface temperature were measured with the constant net 50 × 50 m from the depth 10–60 cm. 28 electrical resistivity tomography lines were surveyed, while Wenner and Sclumberger electrode arrays were employed for all measurements. At the studied sites the landfill gas and temperature measurements mapped gas and temperature anomalies over underground fire sources. 2D electrical resistivity tomography lines, performed over these anomalies, showed these fire sources as high-resistivity zones. The joint employment of the electrical imaging and geochemical survey seems to be a useful tool in carrying out diagnostic investigations at fire-prone landfills.  相似文献   

6.
The need for more agricultural or residential land has encouraged reclamation at the coastal areas of Korea since 1200 ad (approximately). The groundwaters of these reclaimed areas could be expected to reveal hydrogeochemical properties different from those of areas directly affected by seawater intrusion. The purpose of this study, therefore, was to examine the salinization of shallow groundwater in a coastal reclaimed area and to identify the effect of land reclamation on groundwater quality. Major cations and anions, iodide, total organic carbon, δD, δ 18O and δ 13C were measured to assist the hydrogeochemical analysis. Chloride, δD and δ 18O data clearly show that the Na–Cl type water results from mixing of groundwater with seawater. In particular, the δD and δ 18O of Ca+Mg–Cl+NO3 type groundwaters are close to the meteoric water line, but Na–Cl type waters enriched in chloride are 18O-enriched with respect to the meteoric water line. Meanwhile, carbon isotopic data and I/Cl ratios strongly suggest that there are various sources of salinity. The δ 13C values of Na–Cl type groundwaters are generally similar to those of Ca+Mg–Cl+NO3 type waters, which are depleted in 13C with respect to seawater. I/Cl ratios of Na–Cl type groundwater are 10–100 times higher than that of seawater. Because the reclamation has incorporated a large amount of organic matter, it provides optimum conditions for the occurrence of redox processes in the groundwater system. Therefore, the salinization of groundwater in the study area seems to be controlled not only by saltwater intrusion but also by other effects, such as those caused by residual salts and organic matter in the reclaimed sediments.  相似文献   

7.
The Earth’s uppermost asthenosphere is generally associated with low seismic wave velocity and high electrical conductivity. The electrical conductivity anomalies observed from magnetotelluric studies have been attributed to the hydration of mantle minerals, traces of carbonatite melt, or silicate melts. We report the electrical conductivity of both H2O-bearing (0–6 wt% H2O) and CO2-bearing (0.5 wt% CO2) basaltic melts at 2 GPa and 1,473–1,923 K measured using impedance spectroscopy in a piston-cylinder apparatus. CO2 hardly affects conductivity at such a concentration level. The effect of water on the conductivity of basaltic melt is markedly larger than inferred from previous measurements on silicate melts of different composition. The conductivity of basaltic melts with more than 6 wt% of water approaches the values for carbonatites. Our data are reproduced within a factor of 1.1 by the equation log σ = 2.172 − (860.82 − 204.46 w 0.5)/(T − 1146.8), where σ is the electrical conductivity in S/m, T is the temperature in K, and w is the H2O content in wt%. We show that in a mantle with 125 ppm water and for a bulk water partition coefficient of 0.006 between minerals and melt, 2 vol% of melt will account for the observed electrical conductivity in the seismic low-velocity zone. However, for plausible higher water contents, stronger water partitioning into the melt or melt segregation in tube-like structures, even less than 1 vol% of hydrous melt, may be sufficient to produce the observed conductivity. We also show that ~1 vol% of hydrous melts are likely to be stable in the low-velocity zone, if the uncertainties in mantle water contents, in water partition coefficients, and in the effect of water on the melting point of peridotite are properly considered.  相似文献   

8.
Urban karst systems are typically considered more vulnerable to contamination and excess storm discharge because of potential source areas, increased sediment loading, and focusing of water from impervious surfaces. However, urban hydrology can lead to unexpected patterns, such as pirating of recharge into man-made storm systems. Valley Creek Basin in southeastern Pennsylvania, presents such an urban karst system. Four springs were monitored for suspended sediment, water chemistry, and storm response for an 18-month period. The baseflow suspended sediment concentrations were low, less than 4.0 mg/l. Furthermore, trace metal analysis of baseflow water samples and spring mouth sediment showed only low concentrations. The response to storms within the system was rapid, on the order of 1–3 h. The maximum water stage increases at the urban springs were typically less than 15 cm, with springs from more commercialized areas showing <2 cm increase. A nearby retention basin, in contrast, had water level rises of 100 cm, suggesting that pirating of recharge into stormwater systems occurs. Thus, the concept of an urban karst system as a contaminant conduit is not the only one that applies. In Valley Creek Basin, reduced infiltration due to paving led to smaller storm response and less contaminant input, and the smaller capture area due to diversion of stormwater led to short flow paths and rapid storm response. Although contaminant levels have not increased due to urbanization, the springs may be at risk for future contamination. Short flow paths may reduce flushing, which means that the system will not cleanse itself if contamination occurs.  相似文献   

9.
Groundwater sensitivity (Ray and O’dell in Environ Geol 22:345–352, 1993a) refers to the inherent ease with which groundwater can be contaminated based on hydrogeologic characteristics. We have developed digital methods for identifying areas of varying groundwater sensitivity for a ten county area of south central Kentucky at a scale of 1:100,000. The study area includes extensive limestone karst sinkhole plains, with groundwater extremely sensitive to contamination. Digitally vectorized geologic quadrangles (DVGQs) were combined with elevation data to identify both hydrogeologic groundwater sensitivity regions and zones of “high risk runoff” where contaminants could be transported in runoff from less sensitive to higher sensitivity (particularly karst) areas. While future work will fine-tune these maps with additional layers of data (soils for example) as digital data have become available, using DVGQs allows a relatively rapid assessment of groundwater sensitivity for Kentucky at a more useful scale than previously available assessment methods, such as DRASTIC and DIVERSITY. Geographic definitions: United States of America, Kentucky, Barren River Area Development District.  相似文献   

10.
In this study a multi-tracer test with fluorescent tracers was combined with time series analyses of natural tracers to characterize the dynamics of the solute transport through different recharge pathways and to study hydraulic behaviour of a binary karst system under low-flow conditions. Fluorescent tracer testing included the introduction of uranine, amidorhodamine G, or naphthionate at three injection points. Sampling and monitoring took place at two karst springs (Malenščica, Unica) and at two underground rivers (Pivka, Rak) recharging the Unica River at the Polje of Planina, SW Slovenia. Other monitored parameters included precipitation, spring or underground river discharge, water temperature, and electrical conductivity. Water samples were collected and analyzed for total organic carbon, Mg2+, SO4 2−, and NO3 in the laboratory. In the study area, results of the tracer test suggest that contaminant transport in karst may be retarded for several weeks during low-flow conditions followed by increases in contaminant concentrations after subsequent rainfall events. Based on interpretation of tracer concentration breakthrough curves, low apparent dominant flow velocities (i.e., between 5.8 and 22.8 m/h through the well developed karst conduits, and 3.6 m/h through the prevailing vadose zone with a dominant influence of a diffuse recharge) were obtained. Together with analyses of hydro-chemographs the artificial tracing identified different origins of water recharging the studied aquifer. During prolonged low-water conditions the Malenščica spring is mainly recharged from the karst aquifer and the Unica spring by the sinking Pivka River. After more intensive rainfall events allogenic recharge from Cerknica prevails in the Malenščica spring, while the Unica spring drains mainly the allogenic water from the Pivka Valley. These findings of alternating hydraulic connections and drainage areas due to respective hydrological conditions are important and should be considered when monitoring water quality, implementing groundwater protection measures, and optimizing future water exploitation.  相似文献   

11.
为探讨湖南省益阳市岳家桥地质灾害现状,以区内典型岩溶发育区为研究对象,通过长剖面高密度电法、视电阻率联合剖面法等地球物理方法,研究了地层电性响应特点,利用钻孔数据和综合电法勘探数据建立了三维地层结构模型,揭示了典型区域近地表电性结构形态,构建了区内三维地层构造格架,圈定了岩溶发育范围,并评价了地质灾害程度。研究表明: 因地制宜地利用综合电法勘探,有助于在我国南方含水较多的岩溶发育区快速、有效地进行灾害范围的圈定和评价。  相似文献   

12.
13.
In a semiarid region, the karst aquifer generally forms a large groundwater reservoir that can play an important role in regional water supply. But because of the specific physical properties of karst aquifers, they are vulnerable to pollution and anthropogenic impacts. Karst groundwater management strategies are vital. As representative of karst springs in a semiarid area, Niangziguan Springs is located in the east of Shanxi Province, China with an annual average rate of discharge of 10.34 m3/s (1956–2003) (Y. Liang, unpublished data). The Niangziguan Spring Basin covers an area of 7,394 km2 with an annual average precipitation of 535 mm (1958–2003) (Hao et al. in Carsologica Sinica 23(1):43–47, 2004). Over the past three decades, accelerated groundwater exploitation has caused water-table decline in the aquifer, reduction of the spring discharge, and deterioration of water quality. In this study, three protection zones were defined to ensure the quality and capacity of this resource. The confluence of the 11 spring systems and the discharge areas were defined as I protection zone, the recharge basin was II protection zone, and the slack water area where there is little surface recharge was the III protection zone. Management strategies for each zone were suggested and evaluated to provide a scientific foundation for sustainable utilization.  相似文献   

14.
Hydrogeochemical investigations are carried out in and around Perumal Lake, Cuddalore district, South India in order to assess its suitability in relation to domestic and agricultural uses. The water samples (surface water = 16; groundwater = 12) were analyzed for various physicochemical attributes like pH, electrical conductivity (EC), sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), chloride (Cl), bicarbonate (HCO3 ), sulfate (SO4 2−), phosphate (PO4), silica (H4SiO4) and total dissolved solids (TDS). Major hydrochemical facies were identified using Piper trilinear diagram. Hydrogeochemical processes controlling the water chemistry are water–rock interaction rather than evaporation and precipitation. Interpretation of isotopic signatures reveals that groundwater samples recharged by meteoric water with few water–rock interactions. A comparison of water quality in relation to drinking water quality standard proves that the surface water samples are suitable for drinking purpose, whereas groundwater in some areas exceeds the permissible limit. Various determinants such as sodium absorption ratio (SAR), percent sodium (Na%), residual sodium carbonate (RSC) and permeability index (PI) revealed that most of the samples are suitable for irrigation.  相似文献   

15.
16.
We report the first study of electrical conductivities of silicate melts at very high pressures (up to 10 GPa) and temperatures (up to 2,173 K). Impedance spectroscopy was applied to dry and hydrous albite (NaAlSi3O8) glasses and liquids (with 0.02–5.7 wt% H2O) at 473–1,773 K and 0.9–1.8 GPa in a piston-cylinder apparatus, using a coaxial cylindrical setup. Measurements were also taken at 473–2,173 K and 6–10 GPa in two multianvil presses, using simple plate geometry. The electrical conductivity of albite melts is found to increase with temperature and water content but to decrease with pressure. However, at 6 GPa, conductivity increases rapidly with temperature above 1,773 K, so that at temperatures beyond 2,200 K, conductivity may actually increase with pressure. Moreover, the effect of water in enhancing conductivity appears to be more pronounced at 6 GPa than at 1.8 GPa. These observations suggest that smaller fractions of partial melt than previously assumed may be sufficient to explain anomalously high conductivities, such as in the asthenosphere. For dry melt at 1.8 GPa, the activation energy at T > 1,073 K is higher than that at T < 1,073 K, and the inflection point coincides with the rheological glass transition. Upon heating at 6–10 GPa, dry albite glass often shows a conductivity depression starting from ~1,173 K (due to crystallization), followed by rapid conductivity enhancement when temperature approaches the albite liquidus. For hydrous melts at 0.9–1.8 GPa, the activation energies for conductivity at ≥1,373 K are lower than those at <973 K, with a complex transition pattern in between. Electrical conductivity and previously reported Na diffusivity in albite melt are consistent with the Nernst–Einstein relation, suggesting the dominance of Na transport for electrical conduction in albite melts.  相似文献   

17.
Water injection tests and electrical logging are particularly useful techniques in the characterization of geological media in engineering works. In this paper these techniques in conjunction with cracks measurements obtained from drilling cores, were used in the characterization of a singular location in a karst massif. The aim of our work is to determine the hydraulic characteristics of the investigated site, as well as to establish the relationship between the data obtained by the different techniques used. Thus, electrical resistivity records and fracture data were obtained from two boreholes of 100 and 120 m depth. Hydraulic conductivity was calculated from 25 low-pressure water injection tests (LPT) carried out at different depths in both boreholes. The relationship between hydraulic conductivity and fracture frequency was not very statististically significant (R2: 0.062–0.672; σest: 0.61–1.575). Conversely, electrical resistivity and hydraulic conductivity had a great relationship (R2: 0.725–0.935; σest: 0.159–0.738), so the electrical resistivity may be related to the functionality of the fractures. Finally, the LPT is shown as a very practical tool for determining the degree of the hydraulically interconnection with the surroundings, for establishing the hydraulic conductivity profile and for obtaining a measure of soil erosionability according to the significance of the fracture washing out processes recorded.  相似文献   

18.
Sukinda chromite valley is one of the largest chromite deposits of the country and produces nearly 8% of chromite ore. It greatly contributes towards the economic development but at the same time deteriorates the natural environment. It is generally excavated by opencast mining method. In the Sukinda mining area, around 7.6 million tons of solid waste have been generated in the form of rejected minerals, overburden material/waste rock and sub-grade ore that may be resulting in environmental degradation, mainly causing lowering in the water table vis-à-vis deterioration in surface and ground water quality. The study conducted in and around one of the chromite mine of the valley reveals that the concentration of hexavalent chromium is found in the water samples of ground and surface water, mine effluents and seepage water. Hexavalent Chromium (Cr+6) have been found varying between 0.02 mg/l and 0.12 mg/l in mine effluents and 0.03–0.8 mg/l in shallow hand pumps and 0.05 and 1.22 mg/l in quarry seepage. The concentration of Cr+6 in Damsal nalah, the main surface water source in the area, is found varying between 0.03 mg/l and 0.14 mg/l and a increasing trend, which is in the downstream of mining activities, has been observed. Leachate study clearly shows that the soil lying in the vicinity of mine waste dump shows highest concentration of Cr+6. Contaminant migration in ground water depends upon various geohydrological conditions of the area. The study shows that aquifer resistivity varies between 15 Ωm to 150 Ωm and aquifer depth varies from 4 m to 26 m below ground level. The ground water flow and mass transport models were constructed with the help of geo-hydrological and geophysical informations using Visual Modflow software. Contaminant migration and path lines for 20 years have been predicted in two layers model of ground water. The study provided an insight into the likely migration of contaminant in ground water due to leaching from overburden dump of chromite ore and will be helpful in making strategic planning for limiting the contaminant migration in the ground water regime in and around the mining areas.  相似文献   

19.
Groundwater recharge: an overview of processes and challenges   总被引:11,自引:13,他引:11  
Since the mid-1980s, a relative explosion of groundwater-recharge studies has been reported in the literature. It is therefore relevant to assess what is now known and to offer further guidance to practitioners involved in water-resource development. The paper summarizes current understanding of recharge processes, identifies recurring recharge-evaluation problems, and reports on some recent advances in estimation techniques. Emphasis is accorded to (semi-)arid regions because the need for information is greatest in those areas – groundwater is often the only water source, is vulnerable to contamination, and is prone to depletion. Few studies deal explicitly with groundwater recharge in temperate and humid zones, because recharge is normally included in regional groundwater investigations as one component of the water balance. The resolution of regional water-balance studies in (semi-)arid areas is, in contrast, often too low to quantify the limited recharge component with sufficient precision. Despite the numerous studies, determination of recharge fluxes in (semi-)arid regions remains fraught with uncertainty. Multiple tracer approaches probably offer the best potential for reliable results in local studies that require 'at-point' information. However, many investigations indicate that these approaches are not straightforward, because in some cases preferential flow contributes as much as 90% of the estimated total recharge. Tracer results (e.g. Cl, 3H) must therefore be interpreted with care in areas with multi-modal flow in the vadose zone. Moreover, accurate estimation of total chloride deposition is essential, and tritium may be influenced by vapour transport at low flux rates. In addition, paleoclimatic and paleohydrological conditions may cause discrepancies between measured actual processes and calculated long-term averages. The frequently studied issues of localized recharge and spatial variability need not be a problem if concern is with regional estimates. The key for practitioners is the project objective, which dictates whether 'at-point' or area-/groundwater-based estimation methods are appropriate. Many indirect (wadi) recharge studies reported in the literature are site specific; the relationship between 'at point' hydraulic properties and channel-reach losses demands further investigation. Electronic Publication  相似文献   

20.
Gas hydrate is a recently-found new source of energy that mostly exists in marine sediments. In recent years, we have conducted gas hydrate exploration in the South China Sea. The Xisha trough, one of the promising target areas for gas hydrate, is located in the northern margin of the South China Sea, adjacent to several large oil and gas fields. The Xisha trough extends 420 km long with the water depth of 1 500 m in the west part and 3 400 m in the east part and deposits thick sediments with organic matter content of 0.41%–1.02%. Previous studies on topographical features, geological P-T conditions, structural geology, sedimentary geology and geophysical bottom simulating reflectors (BSR) in the Xisha trough suggest that this area is favorable for the formation and accumulation of gas hydrate. In this paper, we present geochemical analyses for the sediment and pore water from a piston core at Site XS-01 in the Xisha trough. Seven pore water samples were analyzed for their anion (Cl, SO4 2−, Br, I) contents, cation (Na, K, Ca, Mg) contents and trace element (Li, B, Sr, Ba, Rb, Mn) contents. Eight sediment samples were analyzed for stable carbon and oxygen isotopic compositions. A number of geochemical anomalies such as anions (e.g. Cl, SO4 2−), cations (e.g. Ca, Mg) and trace elements (e.g. Sr, Ba, B) were found in this study. For example, the concentrations of Cl and SO4 2− in pore water show a decreasing trend with depth. The estimated sulfate/methane interface (SMI) is only 18 m, which is quite similar to the SMI value of 23 m in the ODP164 Leg 997 at Blake Ridge. The Ca, Mg and Sr concentrations of pore water also decrease with depth, but concentrations of Ba, and Mg/Ca and Sr/Ca ratios increase with depth. These geochemical anomalies are quite similar to those found in gas hydrate locations in the world such as the Blake Ridge and may be related to the formation and dissociation of gas hydrates. The salt exclusion effect during the gas hydrate formation will cause an increase in major ion concentrations in the pore waters that diffused upward such as Cl. The anaerobic methane oxidation (AMO) may lead to the change of SO4 2− and other cations such as Ca, Mg, Sr and Ba in pore water. Low δ 13C value of authigenic carbonates is a good indicator for gas hydrate occurrence. However, the bulk sediment samples we analyzed all show normal δ 13C values similar to biogenic marine carbonates, and this may also suggest that no gas hydrate-related authigenic carbonates exist or their amount is so small that they are not detectable by using this bulk analytical method. In conclusion, we suggest that the Site XS-01 in the Xisha trough of the northern margin of the South China Sea is a potential target for further gas hydrate exploration. Translated from Quaternary Sciences, 2006, 26(3): 442–448 [译自: 第四纪研究]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号