首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We detail the investigation of the first application of several dissimilarity measures for large-scale solar image data analysis. Using a solar-domain-specific benchmark dataset that contains multiple types of phenomena, we analyzed combinations of image parameters with different dissimilarity measures to determine the combinations that will allow us to differentiate between the multiple solar phenomena from both intra-class and inter-class perspectives, where by class we refer to the same types of solar phenomena. We also investigate the problem of reducing data dimensionality by applying multi-dimensional scaling to the dissimilarity matrices that we produced using the previously mentioned combinations. As an early investigation into dimensionality reduction, we investigate by applying multidimensional scaling (MDS) how many MDS components are needed to maintain a good representation of our data (in a new artificial data space) and how many can be discarded to enhance our querying performance. Finally, we present a comparative analysis of several classifiers to determine the quality of the dimensionality reduction achieved with this combination of image parameters, similarity measures, and MDS.  相似文献   

2.
In recent years much effort has been devoted to constructing systems for sharing resources within the solar physics community. Several advanced archives and data analysis systems do exist, but there is low availability of data visualization tools for displaying simultaneous multi instruments/wavelengths solar data. Meanwhile map server technology has received great attention by the IT researcher and geophysical community. In this paper we discuss a possible use of an open source environment for building spatially enabled Internet applications for the visualization and analysis of solar physics data sets. We present the preliminary status of the MINVIT (Multi Instrumental Visualization Tool) project, which shall be able to merge images and information produced by different instruments in a single/synoptic image available on-line. Moreover, the tool is designed in order to allow the visualization of the temporal evolution of data. We further discuss the possible integration into the grid framework, focusing on a middleware able to query EGSO resources such us UOC and SEC in order to include data from several space and ground-based solar observatories.  相似文献   

3.
In this study, we look for the mid‐term variations in the daily average data of solar radius measurements made at the Solar Astrolabe Station of TUBITAK National Observatory (TUG) during solar cycle 23 for a time interval from 2000 February 26 to 2006 November 15. Due to the weather conditions and seasonal effect dependent on the latitude, the data series has the temporal gaps. For spectral analysis of the data series, thus, we use the Date Compensated Discrete Fourier Transform (DCDFT) and the CLEANest algorithm, which are powerful methods for irregularly spaced data. The CLEANest spectra of the solar radius data exhibit several significant mid‐term periodicities at 393.2, 338.9, 206.5, 195.2, 172.3 and 125.4 days which are consistent with periods detected in several solar time series by several authors during different solar cycles. The knowledge relating to the origin of solar radius variations is not yet present. To see whether these variations will repeat in next cycles and to understand how the amplitudes of such variations change with different phases of the solar cycles, we need more systematic efforts and the long‐term homogeneous data. Since most of the periodicities detected in the present study are frequently seen in solar activity indicators, it is thought that the physical mechanisms driving the periodicities of solar activity may also be effective in solar radius variations (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We present an automated extraction method based on the continuous wavelet transform (CWT) for analyzing solar magnetic loops. The aim of the work is to extract, from the images taken from solar EUV telescopes, the traces of bright loops presumably shaped by the magnetic field of the solar corona. The technique is that of wavelet analysis, using the two-dimensional Morlet wavelet, because of its efficiency in detecting oriented features, which allows us to follow closely the curvature of the loops. Next, we segment the wavelet modulus image and we threshold it, both globally and locally (i.e., adaptively), in order to eliminate the remaining noise. Altogether, our method performs well, it is robust and fast, and could be used as a standard tool for analyzing large data sets expected from missions like SDO.  相似文献   

5.
We present a comparative evaluation for automated filament detection in Hα solar images. By using metadata produced by the Advanced Automated Filament Detection and Characterization Code (AAFDCC) module, we adapted our trainable feature recognition (TFR) module to accurately detect regions in solar images containing filaments. We first analyze the AAFDCC module’s metadata and then transform it into labeled datasets for machine-learning classification. Visualizations of data transformations and classification results are presented and accompanied by statistical findings. Our results confirm the reliable event reporting of the AAFDCC module and establishes our TFR module’s ability to effectively detect solar filaments in Hα solar images.  相似文献   

6.
We present a detailed analysis of solar acoustic mode frequencies and their rotational splittings for modes with degree up to 900. They were obtained by applying spherical harmonic decomposition to full-disk solar images observed by the Michelson Doppler Imager onboard the Solar and Heliospheric Observatory spacecraft. Global helioseismology analysis of high-degree modes is complicated by the fact that the individual modes cannot be isolated, which has limited so far the use of high-degree data for structure inversion of the near-surface layers (r>0.97R ). In this work, we took great care to recover the actual mode characteristics using a physically motivated model which included a complete leakage matrix. We included in our analysis the following instrumental characteristics: the correct instantaneous image scale, the radial and non-radial image distortions, the effective position angle of the solar rotation axis, and a correction to the Carrington elements. We also present variations of the mode frequencies caused by the solar activity cycle. We have analyzed seven observational periods from 1999 to 2005 and correlated their frequency shift with four different solar indices. The frequency shift scaled by the relative mode inertia is a function of frequency alone and follows a simple power law, where the exponent obtained for the p modes is twice the value obtained for the f modes. The different solar indices present the same result.  相似文献   

7.
We present the results using the AutoClass analysis application available at NASA/Ames Intelligent Systems Div. (2002) which is a Bayesian, finite mixture model classification system developed by Cheeseman and Stutz (1996). We apply this system to Mount Wilson Solar Observatory (MWO) intensity and magnetogram images and classify individual pixels on the solar surface to calculate daily indices that are then correlated with total solar irradiance (TSI) to yield a set of regression coefficients. This approach allows us to model the TSI with a correlation of better than 0.96 for the period 1996 to 2007. These regression coefficients applied to classified pixels on the observed solar surface allow the construction of images of the Sun as it would be seen by TSI measuring instruments like the Solar Bolometric Imager recently flown by Foukal et al. (Astrophys. J. 611, L57, 2004). As a consequence of the very high correlation we achieve in reproducing the TSI record, our approach holds out the possibility of creating an on-going, accurate, independent estimate of TSI variations from ground-based observations which could be used to compare, and identify the sources of disagreement among, TSI observations from the various satellite instruments and to fill in gaps in the satellite record. Further, our spatially-resolved images should assist in characterizing the particular solar surface regions associated with TSI variations. Also, since the particular set of MWO data on which this analysis is based is available on a daily basis back to at least 1985, and on an intermittent basis before then, it will be possible to estimate the TSI emission due to identified solar surface features at several solar minima to constrain the role surface magnetic effects have on long-term trends in solar energy output.  相似文献   

8.
The periodic analyses of solar flare data have been carried out by different authors for about three decades. Controversial results appear as depending on the analysis techniques and investigated time periods. Considering that different authors applied different methods to different data sets, it seems necessary to reanalyze the periodicity of solar flare index with a unified method. In this study we used two new methods to investigate the periodic behavior of solar flare index data, first for individual cycles 21, 22 and 23, and then for all of them. We used i) the multi taper method with red- and white-noise approximations, and ii) the Morlet wavelet transform for periodicity analysis. Apart from the solar rotation periodicity of about 27 days which is of obvious significance and is found in all examined cycles with at least a 90% significance level, we obtained the following prominent periods: 152 days for cycle 21, 73 days for cycle 22, and 62 days for cycle 23. Finally, we compare our results with the ones previously found. We emphasize the fact that a lesser number of periodicities is found in the range of low frequencies (long periods) while the higher frequencies show a greater number of periodicities. This result might be useful for better predictions of the solar cycles.  相似文献   

9.
Grechnev  V.V.  Lesovoi  S.V.  Smolkov  G. Ya.  Krissinel  B.B.  Zandanov  V.G.  Altyntsev  A.T.  Kardapolova  N.N.  Sergeev  R.Y.  Uralov  A.M.  Maksimov  V.P.  Lubyshev  B.I. 《Solar physics》2003,216(1-2):239-272
The Siberian Solar Radio Telescope (SSRT) is one of the world's largest solar radio heliographs. It commenced operation in 1983, and since then has undergone several upgrades. The operating frequency of the SSRT is 5.7 GHz. Since 1992 the instrument has had the capability to make one-dimensional scans with a high time resolution of 56 ms and an angular resolution of 15 arc sec. Making one of these scans now takes 14 ms. In 1996 the capability was added to make full, two-dimensional images of the solar disk. The SSRT is now capable of obtaining images with an angular resolution of 21 arc sec every 2 min. In this paper we describe the main features and operation of the instrument, particularly emphasizing issues pertaining to the imaging process and factors limiting data quality. Some of the data processing and analysis techniques are discussed. We present examples of full-disk solar images of the quiet Sun, recorded near solar activity minimum, and images of specific structures: plages, coronal bright points, filaments and prominences, and coronal holes. We also present some observations of dynamic phenomena, such as eruptive prominences and solar flares, which illustrate the high-time-resolution observations that can be done with this instrument. We compare SSRT observations at 5.7 GHz, including computed `light curves', both morphologically and quantatively, with observations made in other spectral domains, such as 17 GHz radio images, Hα filtergrams and magnetograms, extreme-ultraviolet and X-ray observations, and dynamic radio spectra.  相似文献   

10.
Lemaire  P.  Wilhelm  K.  Curdt  W.  SchÜle  U.  Marsch  E.  Poland  A. I.  Jordan  S. D.  Thomas  R. J.  Hassler  D. M.  Vial  J. C.  KÜhne  M.  Huber  M. C. E.  Siegmund  O. H. W.  Gabriel  A.  Timothy  J. G.  Grewing  M. 《Solar physics》1997,170(1):105-122
SUMER – Solar Ultraviolet Measurements of Emitted Radiation – is not only an extreme ultraviolet (EUV) spectrometer capable of obtaining detailed spectra in the range from 500 to 1610 Å, but, using the telescope mechanisms, it also provides monochromatic images over the full solar disk and beyond, into the corona, with high spatial resolution. We report on some aspects of the observation programmes that have already led us to a new view of many aspects of the Sun, including quiet Sun, chromospheric and transition region network, coronal hole, polar plume, prominence and active region studies. After an introduction, where we compare the SUMER imaging capabilities to previous experiments in our wavelength range, we describe the results of tests performed in order to characterize and optimize the telescope under operational conditions. We find the spatial resolution to be 1.2 arc sec across the slit and 2 arc sec (2 detector pixels) along the slit. Resolution and sensitivity are adequate to provide details on the structure, physical properties, and evolution of several solar features which we then present. Finally some information is given on the data availability and the data management system.  相似文献   

11.
Previous studies of the source regions of solar wind sampled by ACE and Ulysses showed that some solar wind originates from open magnetic flux rooted in active regions. These solar wind sources were labeled active-region sources when the open flux was from a strong field region with no corresponding coronal hole in the NSO He 10830 Å synoptic coronal-hole maps. Here, we present a detailed investigation of several of these active-region sources using ACE and Ulysses solar wind data, potential field models of the corona, and solar imaging data. We find that the solar wind from these active-region sources has distinct signatures, e.g., it generally has a higher oxygen charge state than wind associated with helium-10830 Å coronal-hole sources, indicating a hotter source region, consistent with the active region source interpretation. We compare the magnetic topology of the open field lines of these active-region sources with images of the hot corona to search for corresponding features in EUV and soft X-ray images. In most, but not all, cases, a dark area is seen in the EUV and soft X-ray image as for familiar coronal-hole sources. However, in one case no dark area was evident in the soft X-ray images: the magnetic model showed a double dipole coronal structure consistent with the images, both indicating that the footpoints of the open field lines, rooted deep within the active region, lay near the separatrix between loops connecting to two different opposite polarity regions.  相似文献   

12.
Previous studies of the source regions of solar wind sampled by ACE and Ulysses showed that some solar wind originates from open magnetic flux rooted in active regions. These solar wind sources were labeled active-region sources when the open flux was from a strong field region with no corresponding coronal hole in the NSO He 10830 Å synoptic coronal-hole maps. Here, we present a detailed investigation of several of these active-region sources using ACE and Ulysses solar wind data, potential field models of the corona, and solar imaging data. We find that the solar wind from these active-region sources has distinct signatures, e.g., it generally has a higher oxygen charge state than wind associated with helium-10830 Å coronal-hole sources, indicating a hotter source region, consistent with the active region source interpretation. We compare the magnetic topology of the open field lines of these active-region sources with images of the hot corona to search for corresponding features in EUV and soft X-ray images. In most, but not all, cases, a dark area is seen in the EUV and soft X-ray image as for familiar coronal-hole sources. However, in one case no dark area was evident in the soft X-ray images: the magnetic model showed a double dipole coronal structure consistent with the images, both indicating that the footpoints of the open field lines, rooted deep within the active region, lay near the separatrix between loops connecting to two different opposite polarity regions.  相似文献   

13.
Improving our understanding of the mechanisms that energize the solar wind and heat structures in the solar corona requires the development of empirical methods that can determine the three-dimensional (3D) temperature and density distributions with as much spatial and temporal resolution as possible. This paper reviews the solar rotational tomography (SRT) methods that will be used for 3D reconstruction of the solar corona from data obtained by the next generation of space-based missions such as the Solar and Terrestrial Relations Observatory (STEREO), Solar-B and the Solar Dynamics Observatory (SDO). In the next decade, SRT will undergo rapid advancement on several frontiers of 3D image reconstruction:
  1. Electron density reconstruction from white-light coronagraph images.
  2. Differential emission measure (DEM) reconstruction from EUV images.
  3. Dual-spacecraft (STEREO) observing geometry.
  4. Fusion of data from multiple spacecraft with differing instrumentation.
  5. Time-dependent estimation methods.
Although the principles described apply to many different wavelength regimes, this paper concentrates on white-light and EUV data. Previous work on all of these subjects is reviewed, and major technical issues and future directions are discussed.  相似文献   

14.
The solar neutron detector Space Environment Data Acquisition Equipment – Attached Payload (SEDA-FIB) onboard the International Space Station (ISS) detected several events from the solar direction associated with three large solar flares observed on 05 (X1.1), 07 (X5.4), and 09 (M6.3) March 2012. In this study, we focus on the interesting event of 05 March, present the temporal profiles of the neutrons, and discuss the physics that may be related to a possible acceleration scenario for ions above the solar surface. We compare our data with images of the flares obtained by the ultraviolet telescope Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO).  相似文献   

15.
The cadence and resolution of solar images have been increasing dramatically with the launch of new spacecraft such as STEREO and SDO. This increase in data volume provides new opportunities for solar researchers, but the efficient processing and analysis of these data create new challenges. We introduce a fuzzy-based solar feature-detection system in this article. The proposed system processes SDO/AIA images using fuzzy rules to detect coronal holes and active regions. This system is fast and it can handle different size images. It is tested on six months of solar data (1 October 2010 to 31 March 2011) to generate filling factors (ratio of area of solar feature to area of rest of the solar disc) for active regions and coronal holes. These filling factors are then compared to SDO/EVE/ESP irradiance measurements. The correlation between active-region filling factors and irradiance measurements is found to be very high, which has encouraged us to design a time-series prediction system using Radial Basis Function Networks to predict ESP irradiance measurements from our generated filling factors.  相似文献   

16.
Hyperspectral imaging is an ubiquitous technique in solar physics observations and the recent advances in solar instrumentation enabled us to acquire and record data at an unprecedented rate. The huge amount of data which will be archived in the upcoming solar observatories press us to compress the data in order to reduce the storage space and transfer times. The correlation present over all dimensions, spatial, temporal and spectral, of solar data-sets suggests the use of a 3D base wavelet decomposition, to achieve higher compression rates. In this work, we evaluate the performance of the recent JPEG2000 Part 10 standard, known as JP3D, for the lossless compression of several types of solar data-cubes. We explore the differences in: a) The compressibility of broad-band or narrow-band time-sequence; I or V Stokes profiles in spectropolarimetric data-sets; b) Compressing data in [x,y, λ] packages at different times or data in [x,y,t] packages of different wavelength; c) Compressing a single large data-cube or several smaller data-cubes; d) Compressing data which is under-sampled or super-sampled with respect to the diffraction cut-off.  相似文献   

17.
The emission sources of umbral flashes(UFs) are believed to be closely related to running umbral and penumbral waves,and are concluded to be associated with umbral dots in the solar photosphere. Accurate identification of emission sources of UFs is crucial for investigating these physical phenomena and their inherent relationships. A relatively novel model of shape perception,namely phase congruency(PC),uses phase information in the Fourier domain to identify the geometrical shape of the region of interest in different intensity levels,rather than intensity or gradient.Previous studies indicate that the model is suitable for identifying features with low contrast and low luminance. In the present paper,we applied the PC model to identify the emission sources of UFs and to locate their positions. For illustrating the high performance of our proposed method,two time sequences of Ca II H images derived from the Hinode/SOT on 2010 August 10 and 2013 August 20 were used. Furthermore,we also compared these results with the analysis results that are identified by the traditional/classical identification methods,including the gray-scale adjusted technique and the running difference technique. The result of our analysis demonstrates that our proposed method is more accurate and effective than the traditional identification methods when applied to identifying the emission sources of UFs and to locating their positions.  相似文献   

18.
It is well established that both total and spectral solar irradiance are modulated by variable magnetic activity on the solar surface. However, there is still disagreement about the contribution of individual solar features for changes in the solar output, in particular over decadal time scales. Ionized Ca ii K line spectroheliograms are one of the major resources for these long-term trend studies, mainly because such measurements have been available now for more than 100 years. In this paper we introduce a new Ca ii K plage and active network index time series derived from the digitization of almost 40 000 photographic solar images that were obtained at the 60-foot solar tower, between 1915 and 1985, as a part of the monitoring program of the Mount Wilson Observatory. We describe here the procedure we applied to calibrate the images and the properties of our new defined index, which is strongly correlated to the average fractional area of the visible solar disk occupied by plages and active network. We show that the long-term variation of this index is in an excellent agreement with the 11-year solar-cycle trend determined from the annual international sunspot numbers series. Our time series agrees also very well with similar indicators derived from a different reduction of the same data base and other Ca ii K spectroheliograms long-term synoptic programs, such as those at Kodaikanal Observatory (India), and at the National Solar Observatory at Sacramento Peak (USA). Finally, we show that using appropriate proxies it is possible to extend this time series up to date, making this data set one of the longest Ca ii K index series currently available.  相似文献   

19.
Jiao  Litao  McClymont  A. N.  MikiĆ  Z. 《Solar physics》1997,174(1-2):311-327
Studies of solar flares indicate that the mechanism of flares is magnetic in character and that the coronal magnetic field is a key to understanding solar high-energy phenomena. In our ongoing research we are conducting a systematic study of a large database of observations which includes both coronal structure (from the Soft X-ray Telescope on the Yohkoh spacecraft) and photospheric vector magnetic fields (from the Haleakala Stokes Polarimeter at Mees Solar Observatory). We compare the three-dimensional nonlinear force-free coronal magnetic field, computed from photospheric boundary data, to images of coronal structure. In this paper we outline our techniques and present results for active region AR 7220/7222. We show that the computed force-free coronal magnetic field agrees well with Yohkoh X-ray coronal loops, and we discuss the properties of the coronal magnetic field and the soft X-ray loops.  相似文献   

20.
A principle of restoration methods based on multichannel blind deconvolution (MBD) is introduced. The methods assume that for every un-degraded unobservable image several degraded observed images are available. It is better conditioned than classical single channel approach. The first algorithm represents a generalization of iterative deconvolution scheme introduced for single images. The second MBD algorithm is based on so-called subspace technique. The subspace method is not iterative and this possibly implies an implementation that can be computationally more efficient. Both methods are presented in applications to artificial image data (computer-generated multichannel degraded data) with known ideal image to get a comparison with restored one. Performance in a real situation on solar photosphere images is shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号