首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We detail the investigation of the first application of several dissimilarity measures for large-scale solar image data analysis. Using a solar-domain-specific benchmark dataset that contains multiple types of phenomena, we analyzed combinations of image parameters with different dissimilarity measures to determine the combinations that will allow us to differentiate between the multiple solar phenomena from both intra-class and inter-class perspectives, where by class we refer to the same types of solar phenomena. We also investigate the problem of reducing data dimensionality by applying multi-dimensional scaling to the dissimilarity matrices that we produced using the previously mentioned combinations. As an early investigation into dimensionality reduction, we investigate by applying multidimensional scaling (MDS) how many MDS components are needed to maintain a good representation of our data (in a new artificial data space) and how many can be discarded to enhance our querying performance. Finally, we present a comparative analysis of several classifiers to determine the quality of the dimensionality reduction achieved with this combination of image parameters, similarity measures, and MDS.  相似文献   

2.
Modulation transfer functions (MTFs), generated as a by-product of the analysis of low-resolution solar images taken for the Global Oscillation Network Group, were used to estimate the quality of seeing at its six sites. These MTFs, after approximate correction for the effects of the instrumental point spread function, were fitted with physically-motived functional forms representing the effects of seeing and scattering. It was found that the estimates of seeing quality were relatively robust to the effects of scattering, but were severely biased by effects caused by changes in instrumental focus. Relative trends in seeing quality are preserved on time scales shorter than a few months and it is found that local topography dominates the observed trends in daytime seeing quality.  相似文献   

3.
M. Woodard 《Solar physics》2014,289(4):1085-1100
The accuracy of helioseismic measurement is limited by the stochastic nature of solar oscillations. In this article I use a Gaussian statistical model of the global seismic wave field of the Sun to investigate the noise limitations of direct-modeling analysis of convection-zone-scale flows. The theoretical analysis of noise is based on hypothetical data that cover the entire photosphere, including the portions invisible from the Earth. Noise estimates are derived for measurements of the flow-dependent couplings of global-oscillation modes and for combinations of coupling measurements that isolate vector-spherical-harmonic components of the flow velocity. For current helioseismic observations, which sample only a fraction of the photosphere, the inferred detection limits are best regarded as optimistic limits. The flow-velocity fields considered in this work are assumed to be decomposable into vector-spherical-harmonic functions of degree less than five. The problem of measuring the general velocity field is shown to be similar enough to the well-studied problem of measuring differential rotation to permit rough estimates of flow-detection thresholds to be gleaned from past helioseismic analysis. I estimate that, with existing and anticipated helioseismic datasets, large-scale flow-velocity amplitudes of a few tens of ${\rm m\,s^{-1}}$ should be detectable near the base of the convection zone.  相似文献   

4.
The rotation characteristics of large-scale (global) magnetic fields (GMF) and their relation to the activity of local fields (LMF) are studied over a long time interval (1915–1996). The main results are as follows. The GMF rotation rates and LMF activity vary in anticorrelation. Both variations have similar periods (11 years and a quasi-secular period of about 55–60 years), but are shifted relative to each other by half an 11-year cycle. Therefore, (1) the GMF rotation rate increases at the minimum of the 11-year cycle of LMF activity. (2) The GMF rotation rate is faster in the less active hemisphere. (3) The GMF rotation period slows down at the maximum of the secular LMF activity (cycles 18 and 19).  相似文献   

5.
Analysis of cosmic-ray intensity time evolution has led to the identification of intensity variations with several periodicities, most of them correlated with one or another phenomenon of the Sun. Recently Valdés-Galicia, Pérez-Enriquez, and Otaola (1996) reported on a newly-found 1.68-yr variation, which seems to be correlated with periodicities in X-ray long-duration events and low-latitude coronal hole area variations. As those phenomena are related with magnetic flux emergence and transport, in this paper we investigate the possible relationship of the referred cosmic-ray variation with characteristic times of different tracers of meridional circulation. Our results indicate that several of the calculated times might be related to the 1.68-yr cosmic-ray variation. A physical mechanism through which this connection may operate is discussed.  相似文献   

6.
Basu  Sarbani  Antia  H.M. 《Solar physics》2000,192(1-2):469-480
Using data from the Michelson Doppler Imager (MDI) instrument on board the Solar and Heliospheric Observatory (SOHO), we study the large-scale velocity fields in the outer part of the solar convection zone using the ring diagram technique. We use observations from four different times to study possible temporal variations in flow velocity. We find definite changes in both the zonal and meridional components of the flows. The amplitude of the zonal flow appears to increase with solar activity and the flow pattern also shifts towards lower latitude with time.  相似文献   

7.
The effect of large-scale magnetic fields on total solar irradiance (TSI) was studied both in time–frequency and in time–longitude aspects. A continuous wavelet analysis revealed that the energy of thermomagnetic disturbances due to sunspots and faculae cascades into the magnetic network and facular macrostructure. A numerical technique of time–longitude analysis was developed to study the fine structure of temporal changes in the TSI caused by longitudinal brightness inhomogeneities and rotation of the Sun. The analysis facilitates mapping large-scale thermal inhomogeneities of the Sun and reveals patterns of radiative excesses and deficits relative to the undisturbed solar photosphere. These patterns are organized into 2- and 4-sector structures that exhibit the effects of both activity complexes and magnetically active longitudes. Large-scale patterns with radiative excess display a facular macrostructure and bright patterns in the magnetic network caused by the dissipation of large-scale thermomagnetic disturbances. Similar global-scale temperature patterns were found in the upper solar atmosphere. These temperature patterns are also causally related to long-lived magnetic fields of the Sun. During activity cycles 21–23 the patterns with radiative excess tend to be concentrated around the active longitudes which are centered at about 60° and 230° in the Carrington system.  相似文献   

8.
Extreme ultra-violet images of the corona contain information over a wide range of spatial scales, and different structures such as active regions, quiet Sun, and filament channels contain information at very different brightness regimes. Processing of these images is important to reveal information, often hidden within the data, without introducing artefacts or bias. It is also important that any process be computationally efficient, particularly given the fine spatial and temporal resolution of Atmospheric Imaging Assembly on the Solar Dynamics Observatory (AIA/SDO), and consideration of future higher resolution observations. A very efficient process is described here, which is based on localised normalising of the data at many different spatial scales. The method reveals information at the finest scales whilst maintaining enough of the larger-scale information to provide context. It also intrinsically flattens noisy regions and can reveal structure in off-limb regions out to the edge of the field of view. We also applied the method successfully to a white-light coronagraph observation.  相似文献   

9.
Chertok  I.M. 《Solar physics》2001,198(2):367-383
A phenomenon of large-scale solar activity – relatively weak extended emitting chains with a characteristic length comparable with the solar disk radius or even diameter – were detected recently on the modified heliograms in the microwave (Nobeyama radioheliograph), soft X-ray (Yohkoh/SXT), EUV (SOHO/EIT, TRACE), and some other ranges. In this paper, some examples of the chains are presented to draw attention to their existence. Evidence on the reality of the chains is given, particularly based on the following factors: (a) the coincidence of the chains with other large-scale structures, particularly with boundaries of some coronal holes; (b) the similarity and identity of the clearly distinguishable chain-like structures on the various spacecraft and ground-based heliograms at different wavelengths, and (c) intensity changes of the chains of long duration ranging from a few tens of hours to several days. Some features of the long-lived and transient chains, including their relations to long-duration events (LDEs) and coronal mass ejections (CMEs), are outlined briefly. Based on the observed properties of the chains it is suggested that at least some of the chains are visible manifestations of separators or quasi-separatrix layers formed between different interacting large-scale magnetic flux systems in the evolving global magnetic solar atmosphere. In this paper, some images and movies illustrating the chains are presented also on the accompanying CD-ROM. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1005226502908  相似文献   

10.
Observations of the solar photosphere from the ground encounter significant problems caused by Earth’s turbulent atmosphere. Before image reconstruction techniques can be applied, the frames obtained in the most favorable atmospheric conditions (the so-called lucky frames) have to be carefully selected. However, estimating the quality of images containing complex photospheric structures is not a trivial task, and the standard routines applied in nighttime lucky imaging observations are not applicable. In this paper we evaluate 36 methods dedicated to the assessment of image quality, which were presented in the literature over the past 40 years. We compare their effectiveness on simulated solar observations of both active regions and granulation patches, using reference data obtained by the Solar Optical Telescope on the Hinode satellite. To create images that are affected by a known degree of atmospheric degradation, we employed the random wave vector method, which faithfully models all the seeing characteristics. The results provide useful information about the method performances, depending on the average seeing conditions expressed by the ratio of the telescope’s aperture to the Fried parameter, \(D/r_{0}\). The comparison identifies three methods for consideration by observers: Helmli and Scherer’s mean, the median filter gradient similarity, and the discrete cosine transform energy ratio. While the first method requires less computational effort and can be used effectively in virtually any atmospheric conditions, the second method shows its superiority at good seeing (\(D/r_{0}<4\)). The third method should mainly be considered for the post-processing of strongly blurred images.  相似文献   

11.
To investigate the relationship between solar activity and the large-scale axisymmetric magnetic field of the Sun, we inferred from sunspot data over the period 1964–1985 a latitude–time distribution of magnetic field associated with active regions. This has been done allowing for both bipolar structure of the active regions and inclination of their axes to parallels of latitude, so the inferred magnetic field characterizes latitudinal separation of magnetic polarities which might be related to the large-scale magnetic field of the Sun according to the Babcock–Leighton model. The inferred magnetic field, A z, is compared with the longitude-averaged (zonal) magnetic field of the Sun, B z, derived from series of magnetograms obtained at Mount Wilson Observatory in the years 1964–1976, and at Kitt Peak National Observatory during the period from 1976 to 1985. The inferred magnetic field, A z, exhibits a complex structure distribution of magnetic polarities with respect to latitude and time. Apart from concentration of the different polarity magnetic fields inside the high- and low-latitude portions of the sunspot belts, bipolar active regions produce an intensive, shorter-scale component of the magnetic field which varies on the time scale of about 2 years. Such a short-term variation of A z reveals substantial correlation with the short-term component of B z which has the form of the poleward-drifting streams of magnetic field. Most significant correlation takes place between the short-term variations of A z occurring at latitudes below 20° and those of the large-scale magnetic fields occurring at middle latitudes of 40–50°. Moreover we analyze harmonic coefficients a l and b l obtained by expanding A z and B z into series in terms of the spherical harmonics. Power spectra of the time-dependent harmonic coefficients indicate that both A z and B z reveal a number of resonant modes which oscillate either with the 22-year period in the case of the anti-symmetric (odd-l) modes or with periods of about 2 years in the case of the symmetric (even-l) modes, but the resonant modes of A z have significantly larger values of the spherical harmonic degree l (and, hence, smaller spatial scales) as compared to those of B z. It is found that there is a close relationship between the harmonic coefficients b l and a m for which either ml16 (even l=4,...,10) or ml=4 (odd l=5,...,15).  相似文献   

12.
吴宁  李燕  沈呈彩  林隽 《天文学进展》2012,30(2):125-158
从理论和观测两个方面来介绍和讨论出现在太阳爆发过程中的磁重联电流片及其物理本质和动力学特征。首先介绍在理论研究和理论模型中,磁重联电流片是如何在爆发磁结构当中形成并发展的,对观测研究有什么指导意义。然后介绍观测工作是从哪几个方面对理论模型预测的电流片进行证认和研究的。第三,将介绍观测研究给出了哪些过去所没有能够预期的结果,这些结果对深入研究耀斑一CME电流片以及其中的磁重联过程的理论工作有什么重要的、挑战性的意义。第四,讨论最新的与此有关的理论研究和数值实验。最后,对未来的研究方向和重要课题进行综述和展望。  相似文献   

13.
Auto-correlation analysis was performed using digitized synoptic charts of photospheric magnetic fields for the past three solar activity cycles (1965–1994). The obtained correlograms were used to study the rotation and the zonal-sector structure of large-scale solar magnetic fields all over the observable region of heliolatitudes in various phases of solar activity. It is shown that the large-scale system of solar magnetic fields is rather complex and comprises at least three different systems. One is a global rigidly rotating system. It determines the cyclic variation of magnetic fields and is probably responsible for the behavior of magnetic fields in the polar zones. Another is a rigidly rotating 4-sector structure in the central (equatorial and mid-latitude) zone. The third is a differentially rotating system that determines the behavior of the LSSMF structure elements with a size of 30–60° and less. This one is the most noticeable in the central zone and absent in the polar zones. Various cyclic and rotation parameters of the three field structures are discussed.  相似文献   

14.
Erofeev  D. V. 《Solar physics》1997,175(1):45-58
The rotation of large-scale solar magnetic fields has been investigated by analysing a 20-yr series of synoptic maps of the radial magnetic field. For this purpose, a specially adapted method of spectral analysis was used. We calculated rotation spectra of the magnetic field as functions of the rotation period, heliographic latitude, and longitudinal wave number, k. These spectra reveal the existence of a number of discrete, rigidly rotating components (modes) of the magnetic field, whose rotation periods lie in the wide range from 26.5 to 30.5 days. The significant spectral maxima lie in the (rotation period–latitude) plane close to the curve that represents the differential rotation of small-scale magnetic features. For the first harmonic of the magnetic field (k=1) the properties of the rotation spectra are consistent with those reported by Antonucci, Hoeksema, and Scherrer (1990). However, the distribution of the rigidly rotating modes over rotation period and their latitudinal structure change systematically with the harmonic number k. As k increases, the mean distance P in rotation period between the modes decreases, from 1.2 days for k=1 to 0.3–0.5 days for k=4. This decreasing period separation is accompanied by a decrease of the characteristic latitude separation between the mode maxima. The latitudinal and longitudinal discrete spatial scales of the non-axisymmetric magnetic field appear to be connected with each other, as well as with the temporal scale P.  相似文献   

15.
空间太阳望远镜的星上数据处理系统需要对高速、海量的科学数据流进行实时处理,选择合适的空间数据总线解决方案至关重要.SpaceWire是由欧空局提出的一种新型高速串行数据总线标准,已经应用并计划用于ESA和NASA等多个任务中.在空间太阳望远镜项目中,Spacewire将负责在五个载荷仪器和科学处理单元(SDPU)之间组建网络,完成高速数据传输的任务.通过对SpaceWire协议进行分析,设计了基于SpaceWire的双冗余总线的容错方案.建立了基于DSP+FPGA结构的通信测试平台,并分别给出软硬件设计及测试结果.  相似文献   

16.
随着天文大科学设备的投入使用,传统的开发模式面临程序重复开发,环境依赖冲突等问题。另外,集群是一个高度耦合的计算资源,严重的环境冲突可能导致整个集群不可用。为了解决这个问题,采用微服务的概念开发新的流水线框架,这种框架可以实现短期内开发和部署新的流水线。介绍了通过这种框架开发的ONSET数据流水线,为了实现准实时数据处理,采用MPI和GPU技术对核心程序做了优化,并对最后的性能做了评估。结果表明,这种开发模式可以在短期内搭建满足需求的流水线,这种开发模式对未来多波段多终端的天文数据处理有借鉴意义。  相似文献   

17.
18.
The Solar Weather Browser (SWB) is a standalone, open-source software tool designed to display solar images with context overlays. It was originally developed for the space-weather forecast activities of the Solar Influence Data analysis Center (SIDC) but it is more generally well suited to display the output of solar-feature recognition methods. The SWB is also useful in the context of distributed solar-image archives, where it could play the role of a quick-look viewer. The SWB allows the user to visually browse large solar data sets and investigate the solar activity for a given date. It has a client – server design that minimizes the bandwidth from the network to the user’s monitor. The server processes the data using the SolarSoft library and distributes them through a Web server to which the SWB client connects. The client is readily available for Linux, Mac OS X, and Windows at . We discuss the software technology embedded in the SWB as well as its use for solar physics and space weather.  相似文献   

19.
Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.  相似文献   

20.
There has for some time been evidence of variability in radiochemical solar neutrino measurements, but this evidence has seemed suspect since the Cerenkov experiments have not shown similar evidence of variability. The present reanalysis of Super-Kamiokande data shows strong evidence of r-mode oscillations. The frequencies of these oscillations correspond to a region with a sidereal rotation rate of 13.97 year−1. This estimate is incompatible with the rotation rate in the convection zone but is compatible with current estimates of the rotation rate in the radiative zone. The excitation of r modes in the radiative zone may be due to a velocity field originating in or related to the nuclear-burning core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号