首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Observations of the early rise and propagation phases of solar eruptive prominences can provide clues about the forces acting on them through the behavior of their acceleration with height. We have analyzed such an event, observed on 13 April 2010 by SWAP on PROBA2 and EUVI on STEREO. A feature at the top of the erupting prominence was identified and tracked in images from the three spacecraft. The triangulation technique was used to derive the true direction of propagation of this feature. The reconstructed points were fitted with two mathematical models: i) a power-law polynomial function and ii) a cubic smoothing spline, in order to derive the accelerations. The first model is characterized by five degrees of freedom while the second one is characterized by ten degrees of freedom. The results show that the acceleration increases smoothly, and it is continuously increasing with height. We conclude that the prominence is not accelerated immediately by local reconnection, but rather is swept away as part of a large-scale relaxation of the coronal magnetic field.  相似文献   

2.
The SPIRIT complex onboard the CORONAS-F satellite has routinely imaged the Sun in the 171, 175, 195, 284, and 304 Å spectral bands since August 2001. The complex incorporates two telescopes. The Ritchey-Chretien telescope operates in the 171, 195, 284, and 304 Å bands and has an objective similar to that of the SOHO/EIT instrument. The Herschel telescope obtains solar images synchronously in the 175 and 304 Å bands with two multilayer-coated parabolic mirrors. The SPIRIT program includes synoptic observations, studies of the dynamics of various structures on the solar disk and in the corona up to 5 solar radii, and coordinated observations with other spaceborne and ground-based telescopes. In particular, in the period 2002–2003, synoptic observations with the SPIRIT Ritchey-Chretien telescope were coordinated with regular 6-hour SOHO/EIT observations. Since June 2003, when EIT data were temporarily absent (SOHO keyholes), the SPIRIT telescope has performed synoptic observations at a wavelength of 175 A. These data were used by the Solar Influence Data Analysis Center (SIDC) at the Royal Observatory of Belgium for an early space weather forecast. We analyze the photometric and spectral parameters of the SPIRIT and EIT instruments and compare the integrated (over the solar disk) EUV fluxes using solar images obtained with these instruments during the CORONAS-F flight from August 2001 through December 2003.  相似文献   

3.
A major, albeit serendipitous, discovery of the SOlar and Heliospheric Observatory mission was the observation by the Extreme Ultraviolet Telescope (EIT) of large-scale extreme ultraviolet (EUV) intensity fronts propagating over a significant fraction of the Sun??s surface. These so-called EIT or EUV waves are associated with eruptive phenomena and have been studied intensely. However, their wave nature has been challenged by non-wave (or pseudo-wave) interpretations and the subject remains under debate. A string of recent solar missions has provided a wealth of detailed EUV observations of these waves bringing us closer to resolving the question of their nature. With this review, we gather the current state-of-the-art knowledge in the field and synthesize it into a picture of an EUV wave driven by the lateral expansion of the CME. This picture can account for both wave and pseudo-wave interpretations of the observations, thus resolving the controversy over the nature of EUV waves to a large degree but not completely. We close with a discussion on several remaining open questions in the field of EUV waves research.  相似文献   

4.
We present for the first time a three-dimensional reconstruction of the electron density in the corona at distances from 1.5R to 4R using COR1 STEREO observations. The reconstruction is performed using a regularized tomography inversion method for two biweekly periods corresponding to Carrington Rotations 2058 and 2066. Images from the two STEREO spacecraft are used to compare the reconstructed density structures with coronal features located by triangulation. We find that the location of a bright tip of a helmet streamer obtained from the tomographic reconstruction is in good agreement with the location obtained by triangulation. The reconstructed density structure of the equatorial streamer belt is largely consistent with the variation of the current sheet derived from a potential magnetic field extrapolation for most of the equatorial region and for an MHD model of the corona. A zero-value density region in the reconstruction is identified with a low-density region seen in an EUVI image below the reconstruction domain.  相似文献   

5.
The twin STEREO spacecraft provide a unique tool to study the temporal evolution of the solar-wind properties in the ecliptic since their longitudinal separation increases with time. We derive the characteristic temporal variations at ~?1 AU between two different plasma parcels ejected from the same solar source by excluding the spatial variations from our datasets. As part of the onboard IMPACT instrument suite, the SWEA electron experiment provides the solar-wind electron core density at two different heliospheric vantage points. We analyze these density datasets between March and August 2007 and find typical solar minimum conditions. After adjusting for the theoretical time lag between the two spacecraft, we compare the two density datasets. We find that their correlation decreases as the time difference increases between two ejections. The correlation coefficient is about 0.80 for a time lag of a half day and 0.65 for two days. These correlation coefficients from the electron core density are somewhat lower than the ones from the proton bulk velocity obtained in an earlier study, though they are still high enough to consider the solar wind as persistent after two days. These quantitative results reflect the variability of the solar-wind properties in space and time, and they might serve as input for solar-wind models.  相似文献   

6.
A new method is suggested for finding the preliminary orbit from three complete measurements of the angular coordinates of a celestial body developed by analogy with the classic Lagrange–Gauss method. The proposed method uses the intermediate orbit that we had constructed in an earlier paper based on two position vectors and the corresponding time interval. This intermediate orbit allows for most of the perturbations in the motion of the body. Using the orbital motion of asteroid 1566 Icarus as an example, we compare the results obtained by applying the classic and the new method. The comparison shows the new method to be highly efficient for studying perturbed motion. It is especially efficient if applied to high-precision observational data covering short orbital arcs.  相似文献   

7.
Solar flares presumably have an impact on the deepest layers of the solar atmosphere and yet the observational evidence for such an impact is scarce. Using ten years of measurements of the Na D1 and Na D2 Fraunhofer lines, measured by GOLF onboard SOHO, we show that this photospheric line is indeed affected by flares. The effect of individual flares is hidden by solar oscillations, but a statistical analysis based on conditional averaging reveals a clear signature. Although GOLF can only probe one single wavelength at a time, we show that both wings of the Na line can nevertheless be compared. The varying line asymmetry can be interpreted as an upward plasma motion from the lower solar atmosphere during the peak of the flare, followed by a downward motion.  相似文献   

8.
Warren  H.P. 《Solar physics》1999,190(1-2):363-377
Using SUMER observations taken above the limb of a quiet region we derive electron temperatures, emission measures, and absolute elemental abundances. This analysis, which uses recently published ionization balance calculations and the latest solar photospheric abundances, indicates that the low-FIP elements are enriched by a factor of 2.3±0.7 in the corona, which is smaller than some previous measurements. TRACE observations of this region yield systematically lower temperatures and emission measures.  相似文献   

9.
We study the nature of quiet-Sun oscillations using multi-wavelength observations from TRACE, Hinode, and SOHO. The aim is to investigate the existence of propagating waves in the solar chromosphere and the transition region by analyzing the statistical distribution of power in different locations, e.g. in bright magnetic (network), bright non-magnetic and dark non-magnetic (inter-network) regions, separately. We use Fourier power and phase-difference techniques combined with a wavelet analysis. Two-dimensional Fourier power maps were constructed in the period bands 2??C?4?minutes, 4??C?6?minutes, 6??C?15?minutes, and beyond 15?minutes. We detect the presence of long-period oscillations with periods between?15 and 30?minutes in bright magnetic regions. These oscillations were detected from the chromosphere to the transition region. The Fourier power maps show that short-period powers are mainly concentrated in dark regions whereas long-period powers are concentrated in bright magnetic regions. This is the first report of long-period waves in quiet-Sun network regions. We suggest that the observed propagating oscillations are due to magnetoacoustic waves, which can be important for the heating of the solar atmosphere.  相似文献   

10.
The possibility of using a generalized perfect resonance for the study of libration motions of asteroids near the (p+ q)/p-type commensurabilities of the mean motions of asteroids and Jupiter is considered. Based on the equations of the planar circular restricted three-body problem, the libration-motion equations are derived and their solutions for the intermediate Hamiltonian, as well as a solution taking into account perturbations of the order O(m 3/2), are determined.  相似文献   

11.
We present a statistical analysis of coronal mass ejections (CMEs) imaged by the Heliospheric Imager (HI) instruments on board NASA’s twin-spacecraft STEREO mission between April 2007 and August 2017 for STEREO-A and between April 2007 and September 2014 for STEREO-B. The analysis exploits a catalogue that was generated within the FP7 HELCATS project. Here, we focus on the observational characteristics of CMEs imaged in the heliosphere by the inner (HI-1) cameras, while following papers will present analyses of CME propagation through the entire HI fields of view. More specifically, in this paper we present distributions of the basic observational parameters – namely occurrence frequency, central position angle (PA) and PA span – derived from nearly 2000 detections of CMEs in the heliosphere by HI-1 on STEREO-A or STEREO-B from the minimum between Solar Cycles 23 and 24 to the maximum of Cycle 24; STEREO-A analysis includes a further 158 CME detections from the descending phase of Cycle 24, by which time communication with STEREO-B had been lost. We compare heliospheric CME characteristics with properties of CMEs observed at coronal altitudes, and with sunspot number. As expected, heliospheric CME rates correlate with sunspot number, and are not inconsistent with coronal rates once instrumental factors/differences in cataloguing philosophy are considered. As well as being more abundant, heliospheric CMEs, like their coronal counterparts, tend to be wider during solar maximum. Our results confirm previous coronagraph analyses suggesting that CME launch sites do not simply migrate to higher latitudes with increasing solar activity. At solar minimum, CMEs tend to be launched from equatorial latitudes, while at maximum, CMEs appear to be launched over a much wider latitude range; this has implications for understanding the CME/solar source association. Our analysis provides some supporting evidence for the systematic dragging of CMEs to lower latitude as they propagate outwards.  相似文献   

12.
CCD observations of Mercury were obtained with the large angle spectrometric coronograph (LASCO) on the solar and heliospheric observatory spacecraft, near superior and inferior solar conjunctions. Whole disk photometry was extracted from the orange and blue filter images and transformed to V magnitudes on the UBV system. The LASCO data were combined with ground-based, V-filter photometry acquired at larger elongation angles. The resulting photometric phase function covers the greatest span of angles to date and is the first wide-range function to be obtained since the era of visual observation. We analyzed the data using a polynomial fit and a Hapke function fit, and derived the following photometric results. Mercury's fully lit brightness, adjusted to a distance of 1.0 AU from the Sun and observer, was found to be V=−0.694(±0.030), which is more luminous than previously measured. The corresponding geometric albedo is 0.142(±0.005). The phase integral is 0.478(±0.005) and resulting spherical albedo is 0.068(±0.003). The upper limit of a possible rotational brightness variation is about 0.05 magnitude. Mercury's brightness surges by more than 40% between phase angles 10 and 2°, while the illuminated fraction of the disk increases by less than 1%. A set of coefficients for Hapke's function that fit most of the phase curve includes h=0.065±0.002 indicating that Mercury and the Moon have similar regolith compaction states and particle size distributions, and θ-bar=16°±1° implying a macroscopically smoother surface than the Moon. However, we found other solutions that fit the observations nearly as well with significantly smaller and larger values of h, and with values of θ-bar around 25°. The wide range for θ-bar is due to the inability of the model to fit the photometry obtained at large phase angles.  相似文献   

13.
We consider a planetary system consisting of two primaries, namely a star and a giant planet, and a massless secondary, say a terrestrial planet or an asteroid, which moves under their gravitational attraction. We study the dynamics of this system in the framework of the circular and elliptic restricted three-body problem, when the motion of the giant planet describes circular and elliptic orbits, respectively. Originating from the circular family, families of symmetric periodic orbits in the 3/2, 5/2, 3/1, 4/1 and 5/1 mean-motion resonances are continued in the circular and the elliptic problems. New bifurcation points from the circular to the elliptic problem are found for each of the above resonances, and thus, new families continued from these points are herein presented. Stable segments of periodic orbits were found at high eccentricity values of the already known families considered as whole unstable previously. Moreover, new isolated (not continued from bifurcation points) families are computed in the elliptic restricted problem. The majority of the new families mainly consists of stable periodic orbits at high eccentricities. The families of the 5/1 resonance are investigated for the first time in the restricted three-body problems. We highlight the effect of stable periodic orbits on the formation of stable regions in their vicinity and unveil the boundaries of such domains in phase space by computing maps of dynamical stability. The long-term stable evolution of the terrestrial planets or asteroids is dependent on the existence of regular domains in their dynamical neighbourhood in phase space, which could host them for long-time spans. This study, besides other celestial architectures that can be efficiently modelled by the circular and elliptic restricted problems, is particularly appropriate for the discovery of terrestrial companions among the single-giant planet systems discovered so far.  相似文献   

14.
198 4年 5月 5日太阳东边缘土墩日珥的Hα单色像和D3线被观测到了。D3发射线由两部分组成 :主成分和致宽成分。本文利用双层模型方法对该土墩日珥的 1 7条D3发射线成功地进行了计算 ,给出了D3线的计算结果。计算结果表明 :日珥的D3发射线主要由热的多普勒致宽和微观湍流致宽所致 ,其它致宽机制的作用可以忽略  相似文献   

15.
Ignacio R. Ferrín 《Icarus》1974,22(2):159-174
A photometric study of high-resolution (~0″.3) plates of Saturn taken at the Lowell Observatory in 1943 and 1945 is presented. N-S scans were taken over both the planet and rings. The excess brightness due to the planet seen through the rings is found by taking the difference between the central meridian (CM) scans and scans displaced by 5″.7. Adopting a value for the albedo of the planet, it is possible to obtain the optical thickness, τCM(r). In particular, for the regions of maximum brightness in rings A and B, we find τCM(IA max) = 0.38 ± 0.11 and τCM(IB max) = 0.61 ± 0.11. Observations by Barnard made in 1890 show evidence of ring D, recently discovered by Guerin (1969). The value for the optical thickness of this ring is τD(ID max) = 0.03 ± 0.01. Ring B exhibits a pronounced (7–10%) decrease in brightness from the extremity of the major axis to the CM. After considering several possible explanations, we conclude that the ring particles are nonspherical and are in synchronous rotation around the planet with their long axis toward it. The mean value for the ratio of major to minor axis for the particles at 15″ is (a/b) ? 1.08. Because of the shape and orientation of the particles, the optical thickness at the extremity of the major axis and at the CM are different for any saturnicentric latitude B ≠ 90°. Under these circumstances, only a minimum value for τ at the extremity can be derived.  相似文献   

16.
Mid-infrared limb spectra in the range 600-1400 cm−1 taken with the Composite InfraRed Spectrometer (CIRS) on-board the Cassini spacecraft were used to determine vertical profiles of HCN, HC3N, C2H2, and temperature in Titan's atmosphere. Both high (0.5 cm−1) and low (13.5 cm−1) spectral resolution data were used. The 0.5 cm−1 data gave profiles at four latitudes and the 13.5 cm−1 data gave almost complete latitudinal coverage of the atmosphere. Both datasets were found to be consistent with each other. High temperatures in the upper stratosphere and mesosphere were observed at Titan's northern winter pole and were attributed to adiabatic heating in the subsiding branch of a meridional circulation cell. On the other hand, the lower stratosphere was much colder in the north than at the equator, which can be explained by the lack of solar radiation and increased IR emission from volatile enriched air. HC3N had a vertical profile consistent with previous ground based observations at southern and equatorial latitudes, but was massively enriched near the north pole. This can also be explained in terms of subsidence at the winter pole. A boundary observed at 60° N between enriched and un-enriched air is consistent with a confining polar vortex at 60° N and HC3N's short lifetime. In the far north, layers were observed in the HC3N profile that were reminiscent of haze layers observed by Cassini's imaging cameras. HCN was also enriched over the north pole, which gives further evidence for subsidence. However, the atmospheric cross section obtained from 13.5 cm−1 data indicated a HCN enriched layer at 200-250 km, extending into the southern hemisphere. This could be interpreted as advection of polar enriched air towards the south by a meridional circulation cell. This is observed for HCN but not for HC3N due to HCN's longer photochemical lifetime. C2H2 appears to have a uniform abundance with altitude and is not significantly enriched in the north. This is consistent with observations from previous CIRS analysis that show increased abundances of nitriles and hydrocarbons but not C2H2 towards the north pole.  相似文献   

17.
We report observation and analysis of a high-resolution 2.87-3.54 μm spectrum of the southern temperate region of Saturn obtained with NIRSPEC at Keck II. The spectrum reveals absorption and emission lines of five molecular species as well as spectral features of haze particles. The ν2+ν3 band of CH3D is detected in absorption between 2.87 and 2.92 μm; and we derived from it a mixing ratio approximately consistent with the Infrared Space Observatory result. The ν3 band of C2H2 also is detected in absorption between 2.95 and 3.05 μm; analysis indicates a sudden drop in the C2H2 mixing ratio at 15 mbar (130 km above the 1 bar level), probably due to condensation in the low stratosphere. The presence of the ν3+ν9+ν11 band of C2H6 near 3.07 μm, first reported by Bjoraker et al. [Bjoraker, G.L., Larson, H.P., Fink, U., 1981. Astrophys. J. 248, 856-862], is confirmed, and a C2H6 condensation altitude of 10 mbar (140 km) in the low stratosphere is determined. We assign weak emission lines within the 3.3 μm band of CH4 to the ν7 band of C2H6, and derive a mixing ratio of 9±4×10−6 for this species. Most of the C2H6 3.3 μm line emission arises in the altitude range 460-620 km (at ∼μbar pressure levels), much higher than the 160-370 km range where the 12 μm thermal molecular line emission of this species arises. At 2.87-2.90 μm the major absorber is tropospheric PH3. The cloud level determined here and at 3.22-3.54 is 390-460 mbar (∼30 km), somewhat higher than found by Kim and Geballe [Kim, S.J., Geballe, T.R., 2005. Icarus 179, 449-458] from analysis of a low resolution spectrum. A broad absorption feature at 2.96 μm, which might be due to NH3 ice particles in saturnian clouds, is also present. The effect of a haze layer at about 125 km (∼12 mbar level) on the 3.20-3.54 μm spectrum, which was not apparent in the low resolution spectrum, is clearly evident in the high resolution data, and the spectral properties of the haze particles suggest that they are composed of hydrocarbons.  相似文献   

18.
We present the first version of E3D, the Euro3D visualization tool for data from integral field spectroscopy. We describe its major characteristics, based on the proposed requirements, the current state of the project, and some planned future upgrades. We show examples of its use and capabilities. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In this paper, we describe the capabilities of E3D, the Euro3D visualization tool, to handle and display data created by large Integral Field Units (IFUs) and by mosaics consisting of multiple pointings. The reliability of the software has been tested with real data, originating from the PMAS instrument in mosaic mode and from the VIMOS instrument, which features the largest IFU currently available. The capabilities and limitations of the current software are examined in view of future large IFUs, which will produce extremely large datasets. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We present candidate members of the Pal 5,GD-1,Cetus Polar and Orphan tidal stellar streams found in LAMOST DR3,SDSS DR9 and APOGEE catalogs.In LAMOST DR3,we find 20,4 and 24 high confidence candidates of tidal streams GD-1,Cetus Polar and Orphan respectively.We also list 59,118 and 10 high confidence candidates of tidal streams Cetus Polar,Orphan and Pal 5,respectively from the SDSS DR9 spectroscopic catalog.Furthermore,we find seven high confidence candidates of the Pal 5 tidal stream in the APOGEE data.Compared with SDSS,the new candidates from LAMOST DR3 are brighter,so that together,more of the color-magnitude diagram,including the giant branch,can be explored.Analysis of the SDSS data shows that there are three metallicity peaks associated with the Orphan stream which also exhibit some spatial separation.The LAMOST data confirm multiple metallicities in this stream.The metallicity,given by the higher resolution APOGEE instrument,of the Pal 5 tidal stream is [Fe/H] ~-1.2,higher than that given earlier by SDSS spectra.Many previously unidentified stream members are tabulated here for the first time,along with existing members,allowing future researchers to further constrain the orbits of these objects as they move within the Galaxy's dark matter potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号