首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
IntheLoessPlateau,alongtheslopelengthfromthetoptothebottom,soilerosionischaracterizedbyobviousverticalzonaldivision,thatis,sheeterosionzone,sheeterosionandrillerosionzone,rillerosionandshallowgullyerosionzoneandgullyerosionzone.Inthesheetandrillero..sionzone,rillerosionamounttakesup70%ofthetotalsoilloss[TANGKenetal.,1983,ZHENGFenlietal.,19871;intherillandshallowgullyerosionzone,rillerosionamountaccountsfor30--40%ofthetotalsoilloss.Sorillerosionisamajorerosionpatternonsteepslopeland.Riller…  相似文献   

2.
Rill erosion is an important erosional form on agricultural soils in England, causing large losses of soil, particularly on cultivated slopes. This paper describes a rill system that developed in a small agricultural catchment in north Oxfordshire during the winter of 1992–93. The rill system comprised two components: a system of ‘feeder rills’ along the valley-side slopes, which were the result of flow concentration and erosion along wheelings, and a thalweg rill, which formed along a dry valley bottom as a result of surface runoff concentration from the feeder rills. Total volumetric soil loss from the rill system was 32·28 m3, equivalent to 3·01 m3, ha?1 for the rill catchment area, or 3·91 t ha?1. Mean discharge for the thalweg rill and feeder rills, calculated during a storm event, was 31·101s?1 and 1·171s?1, respectively. All flows were fully turbulent and supercritical. We emphasize the need for a spatially distributed approach to the study of runoff and erosion at the catchment scale.  相似文献   

3.
Runoff generation and soil loss from slopes have been studied for decades, but the relationships among runoff, soil loss and rill development are still not well understood. In this paper, rainfall simulation experiments were conducted in two neighbouring plots (scale: 1 m by 5 m) with four varying slopes (17.6%, 26.8%, 36.4% and 46.6%) and two rainfall intensities (90 and 120 mm h?1) using two loess soils. Data on rill development were extracted from the digital elevation models by means of photogrammetry. The effects of rainfall intensity and slope gradient on runoff, soil loss and rill development were different for the two soils. The runoff and soil loss from the Anthrosol surface were generally higher than those from the Calcaric Cambisol surface. Higher rainfall intensity produced less runoff and more sediment for almost each treatment. With increasing slope gradient, the values of cumulative runoff and soil loss peaked, except for the treatments with 90 mm h?1 rainfall on the slopes with Anthrosol. With rainfall duration, runoff discharge decreased for Anthrosol and increased for Calcaric Cambisol for almost all the treatments. For both soils, sediment concentration was very high at the onset of rainfall and decreased quickly. Almost all the sediment concentrations increased on the 17.6% and 26.8% slopes and peaked on the 36.4% and 46.6% slopes. Sediment concentrations were higher on the Anthrosol slopes than on the Calcaric Cambisol slopes. At 90 mm h?1 rainfall intensity, increasingly denser rills appeared on the Anthrosol slope as the slope gradient increased, while only steep slopes (36.4% and 46.6%) developed rills for the Calcaric Cambisol soil. The contributions of rill erosion ranged from 36% to 62% of the cumulative soil losses for Anthrosol, while the maximum contribution of rill erosion to the cumulative soil loss was only 37.9% for Calcaric Cambisol. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
On the basis of detailed rill surveys carried out on bare plots of different lengths at slopes of 12 per cent, basic rill parameters were derived. Rill width and maximum depth increased with plot length, whereas rill amount and cross‐sectional area, expressed per unit length, remained similar. On smaller plots, all rills were connected in a continuous transport system reaching the plot outlet, whilst on larger plots (10 and 20 m long) part of the rills ended with a deposition areas inside the plots. Amounts of erosion, calculated from rill volume and soil bulk density, were compared with soil loss measured at the plot outlets. On plots 10 and 20 m long, erosion estimated from volume of all rills was larger than measured soil loss. The latter was larger than erosion estimated from volume of contributing rills. To identify contributing soil loss area on these plots, two methods were applied: (i) ratio of total soil loss to maximum soil loss per unit area, and (ii) partition of plot area according to the ratio of contributing to total rill volume. Both methods resulted in similar areas of 21·8–23·5 m2 for the plot 10 m long and 31·2 m2 for the plot 20 m long. Identification of contributing areas enabled rill (5·9 kg m?2) and interrill (2·6 kg m?2) erosion rate to be calculated, the latter being very close to the value predicted from the Universal Soil Loss Equation. Although rill and interrill rates seemed to be similar on all plots, their ratio increased slightly with plot length. Application of this ratio to compute slope length factor of the Revised Universal Soil Loss Equation resulted in similar values to those predicted with the model. The achieved balance of soil loss suggested that all the sediment measured at the plot outlet originated from contributing rills and associated contributing rill areas. The results confirmed the utility of different plot lengths as a research tool for analysing the dynamic response of soil to rainfall–runoff. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
In the region of the basaltic plateau in Southern Brazil, problems of runoff and erosion on the deep ferrallitic soils are becoming increasingly recognized. Land use change from conventional tillage using disk plough to no‐tillage on residues without terracing occurred at the beginning of the 1990s and it spread very quickly. Measurements of runoff and sediment concentrations on 1 m2 plots receiving natural rainfall and simulated rainfall under different crops with different stages of growth and different tillage systems, field surveys and measurements of rills and gullies in nested experimental catchments indicate a relative decrease of runoff on slopes but an increase of subsurface flow, and a marked decrease of sheet and rill erosion and soil loss from plot to catchment scales. Nevertheless, the extension of parts of the gully system is still continuing, strongly influenced by extreme rainfall. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
Rill network development not only potentially affects hillslope and drainage network evolution, but also causes severe soil degradation. However, the studies on rill network development remain inconclusive. This study aimed to investigate the temporal and spatial development of hillslope rill networks and their characteristics based on rainfall simulations and field observations. A soil pan (10.0 m long × 3.0 m wide × 0.5 m deep) on a 20° slope was applied three successive simulated rains at two intensities of 50 and 100 mm h–1. The field observations were performed on two bare hillslope runoff plots (10.0 m long × 3.0 m wide) at 20°. Three typical erosive natural rainfall events were observed in the field, and rills were measured in detail, similar to the laboratory rainfall simulation. The results indicated that with increases in rainfall events, the rill network morphology varied from incipient formation to the maximum drainage network density. Four rill network development indicators (rill distribution density, distance between rills, rill bifurcation number, and confluence point number) exhibited different changes over time and space. Among the four indicators, the rill bifurcation number was the best indicator for describing rill network development. Rill flow energy increased and decreased cyclically on a slope ranging between ~3 and 4 m. Moreover, rill networks on loessial hillslopes generally evolved into dendritic rather than parallel forms. The development characteristics of the rill network were relatively similar between the laboratory simulation and natural field conditions. Over time, rill erosion control measures become increasingly difficult to implement as the rill network develops. The morphology of eroding rills evolved over time and space, which led to corresponding rill network development. Further study should quantify the impacts of rill network development on soil degradation and land development. © 2020 John Wiley & Sons, Ltd.  相似文献   

7.
Although unpaved roads are well‐recognized as important sources of Hortonian overland flow and sediment in forested areas, their role in agriculturally‐active rural settings still lacks adequate documentation. In this study, we assessed the effect of micro‐catchment size, slope, and ground cover on runoff and sediment generation from graveled roadbeds servicing a rural area in southern Brazil. Fifteen replications based on 30‐min‐long simulated rainfall experiments were performed at constant rainfall intensities of 22–58 mm h?1 on roadbeds with varying characteristics including ~3–7 m2 micro‐catchment areas, 2–11° slopes, 2–9.7‐m‐long shallow rill features, and 30–100% gravel cover. The contributions of micro‐catchment size and rill length were the most important physical characteristics affecting runoff response and sediment production; both the size of the micro‐catchment and the length of the rills were inversely related to sediment loss and this contradicts most of the rill erosion literature. The effect of micro‐catchment size on runoff and sediment response suggests a potentially problematic spatial‐scale subjectivity of experimental plot results. The inverse relationship between rill length and sediment generation is interpreted here as related to the predominance of coarse fragments within rills, the inability of the shallow flows generated during the simulations to erode this sediment, and their role as zones of net sediment storage. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The European Soil Erosion Model (EUROSEM) is a dynamic distributed model, able to simulate sediment transport, erosion and deposition over the land surface by rill and interill processes in single storms for both individual fields and small catchments. Model output includes total runoff, total soil loss, the storm hydrograph and storm sediment graph. Compared with other erosion models, EUROSEM has explicit simulation of interill and rill flow; plant cover effects on interception and rainfall energy; rock fragment (stoniness) effects on infiltration, flow velocity and splash erosion; and changes in the shape and size of rill channels as a result of erosion and deposition. The transport capacity of runoff is modelled using relationships based on over 500 experimental observations of shallow surface flows. EUROSEM can be applied to smooth slope planes without rills, rilled surfaces and surfaces with furrows. Examples are given of model output and of the unique capabilities of dynamic erosion modelling in general. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
Soil‐mantled landscapes subjected to rainfall, runoff events, and downstream base level adjustments will erode and evolve in time and space. Yet the precise mechanisms for soil erosion also will vary, and such variations may not be adequately captured by soil erosion prediction technology. This study sought to monitor erosion processes within an experimental landscape filled with packed homogenous soil, which was exogenically forced by rainfall and base level adjustments, and to define the temporal and spatial variation of the erosion regimes. Close‐range photogrammetry and terrain analysis were employed as the primary methods to discriminate these erosion regimes. Results show that (1) four distinct erosion regimes can be identified (raindrop impact, sheet flow, rill, and gully), and these regimes conformed to an expected trajectory of landscape evolution; (2) as the landscape evolved, the erosion regimes varied in areal coverage and in relative contribution to total sediment efflux measured at the outlet of the catchment; and (3) the sheet flow and rill erosion regimes dominated the contributions to total soil loss. Disaggregating the soil erosion processes greatly facilitated identifying and mapping each regime in time and space. Such information has important implications for improving soil erosion prediction technology, for assessing landscape degradation by soil erosion, for mapping regions vulnerable to future erosion, and for mitigating soil losses and managing soil resources. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
The creation of a hydrophobic layer in the soil during ?res in semi‐arid environments inhibits the in?ltration of rainfall. This leads to increased rates of runoff and associated sediment transport. When the hydrophobic layer is deposited beneath the soil surface, a perched water table develops which may cause thin (1–2 cm) hillslope failures that are distinguishable from features caused by rilling and sheet?ow. Evidence for these failures was observed after a ?re near Santa Barbara, California. The amount of sediment eroded from some hillslopes was substantial, with 290 kg of sediment per metre width of hillslope delivered to the valley ?oor. The mechanics of these failures are examined with a numerical model that incorporates a stability analysis with subsurface ?ow routing along a typical hillslope pro?le. The model correctly predicts the location of the failures as well as the rainfall amount necessary to trigger them. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Yuhan Huang  Fahu Li  Wei Wang  Juan Li 《水文研究》2020,34(20):3955-3965
Rill erosion processes on saturated soil slopes are important for understanding erosion hydrodynamics and determining the parameters of rill erosion models. Saturated soil slopes were innovatively created to investigate the rill erosion processes. Rill erosion processes on saturated soil slopes were modelled by using the sediment concentrations determined by sediment transport capacities (STCs) measurement and the sediment concentrations at different rill lengths. Laboratory experiments were performed under varying slope gradients (5°, 10°, 15°, and 20°) and unit-width flow rates (0.33, 0.67, and 1.33 × 10−3 m3 s−1 m−1) to measure sediment concentrations at different rill lengths (1, 2, 4, and 8 m) on saturated soil slopes. The measured sediment concentrations along saturated rills ranged from 134.54 to 1,064.47 kg/m3, and also increased exponentially with rill length similar to non-saturated rills. The model of the rill erosion process in non-saturated soil rills was applicable to that in saturated soil rills. However, the sediment concentration of the rill flow increased much faster, with the increase in rill length, to considerably higher levels at STCs. The saturated soil rills produced 120–560% more sediments than the non-saturated ones. Moreover, the former eroded remarkably faster in the beginning section of the rills, as compared with that on the non-saturated soil slopes. This dataset serves as the basis for determining the erosion parameters in the process-based erosion models on saturated soil slopes.  相似文献   

12.
A mathematical model was developed for simulating runoff generation and soil erosion on hillslopes. The model is comprised of three modules: one for overland flow, one for soil infiltration, and one for soil erosion including rill erosion and interrill erosion. Rainfall and slope characteristics affecting soil erosion on hillslopes were analysed. The model results show that the slope length and gradient, time distribution rainfall, and distribution of rills have varying influence on soil erosion. Erosion rate increases nonlinearly with increase in the slope length; a long slope length leads to more serious erosion. The effect of the slope gradient on soil erosion can be both positive and negative. Thus, there exists a critical slope gradient for soil erosion, which is about 45° for the rate of erosion at the end of the slope and about 25° for the accumulated erosion. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Mine tailings dams pose a signi?cant risk to the environment if not correctly designed, built and maintained. The effect of erosion on a back‐?lled and capped earthen dam wall was examined by construction of an analogue in an experimental model landscape simulator. The ability of a computer‐based erosion model to simulate erosion processes on the experimental structure was examined. The experimental landscape simulator uses a rainfall simulator to create overland ?ow and erode an arti?cial soil. At the commencement of rainfall, erosion occurred rapidly with deep gullies developing on the dam wall batter. The gullies developed by downcutting, with consequent bank collapse and slumping, and followed ?ow lines towards their source. A physically based erosion model (SIBERIA) was used to simulate erosion on the experimental dam wall. Erosion and consequent development of the experimental structure were modelled by SIBERIA. The ability of SIBERIA to model incision and landscape development in the experimental setting was further examined by use of a simple one‐dimensional experimental catchment. The laboratory experiment and computer simulations demonstrated that erosion on the tailings dam is driven by concentrated runoff and that runoff control is crucial to the long‐term stability of such structures. The study demonstrates that computer‐based erosion models can be used to predict how erosion occurs on the experimental landscapes examined, thus providing con?dence in their use and application. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Longitudinal velocity patterns and bed morphology interaction in a rill   总被引:2,自引:0,他引:2  
Present‐day understanding of rill dynamics is hampered by a lack of detailed data on velocity distributions in rills. The latter are dif?cult to collect with traditional techniques due to the very low water depths and the relatively high ?ow velocities in rills. The objectives of this paper were to investigate the feasibility of miniaturized acoustic Doppler velocimeter (mADV) measurements in rill ?ow and to explore longitudinal variations in ?ow velocities and their relationship with rill bed morphology. Detailed data on longitudinal ?ow velocity were required to achieve these objectives. A 1·8 m long rill was formed freely in a ?ume at 5° slope and 0·001 m3 s?1 discharge. Rill topography was characterized by an alternation of steps and pools. The ?ume surface was then ?xed to preserve rill roughness. A topographical scanning of the entire ?ume surface was made. Velocity was measured with a mADV along the rill, and at different depths. Flow depth in a longitudinal direction was also measured using an elevation gauge. A strong relationship exists between rill topography and ?ow hydraulics. Over steps, ?ow was unidirectional and rapidly accelerating until a threshold Froude number (Fn) value between 1·3 and 1·7 was reached and a hydraulic jump occurred leading to the formation of a pool. In the pool, the ?ow pattern was multidirectional and complex. The ?ow was subcritical when leaving the pool and accelerated over the next step until the threshold Froude number value was again reached. Energy loss in the rill was concentrated in the pools, mainly due to the action of a hydraulic jump. This mechanism of energy dissipation appeared to be an essential factor in rill formation and bedform evolution. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
The process of rill erosion causes significant amounts of sediment to be moved in both undisturbed and disturbed environments and can be a significant issue for agriculture as well as mining lands. Rills also often develop very quickly (from a single rainfall event to a season) and can develop into gullies if sufficient runoff is available to continue their development. This study examines the ability of a terrestrial laser scanner to quantify rills that have developed on fresh and homogeneous mine spoil on an angle of repose slope. It also examines the ability of the SIBERIA erosion model to simulate the rill's spatial and temporal behaviour. While there has been considerable work done examining rill erosion on rehabilitated mine sites and agricultural fields, little work has been done to examine rill development at angle of repose sites. Results show that while the overall hillslope morphology was captured by the laser scanner, with the morphology of the rills being broadly captured, the characteristics of the rills were not well defined. The digital elevation model created by the laser scanner failed to capture the rill thalwegs and tops of the banks, therefore delineating a series of ill defined longitudinal downslope depressions. These results demonstrate that an even greater density of points is needed to capture sufficient rill morphology. Nevertheless, SIBERIA simulations of the hillslope demonstrated that the model was able to capture rill behaviour in both space and time when correct model parameters were used. This result provides confidence in the SIBERIA model and its parameterization. The results demonstrate the sensitivity of the model to changes in parameters and the importance of the calibration process. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Regolith surface characteristics and response were examined over a three‐year period in a badland area in a Mediterranean middle‐mountain zone near Vallcebre (Eastern Pyrenees). Preliminary work carried out in this area indicated clear seasonal patterns of regolith properties driven by frost heaving in winter and crusting and erosion in the rest of the year. Rainfall simulations were performed with a small portable nozzle simulator in order to study seasonal changes in runoff generation, erosion rates and raindrop effect on bulk density changes. The results showed large seasonal variations in runoff and erosion responses. In?ltration rates after runoff start were correlated with precipitation depth before runoff start; runoff generation was therefore related to regolith saturation only to a very limited extent. Erosion rates were more controlled by runoff rates than by the weakness of regolith against raindrop splash, and sediment grain size increased with concentration. The combined role of antecedent regolith moisture and bulk density explained most of the seasonal variability in in?ltration, bulk density changes during rainfall and erosion rates, but some seasonal differences in sediment detachability were not explained by these variables and may be attributed to changes in roughness. Overall, runoff and erosion responses were relatively stable during spring and autumn, whereas wide variations in in?ltration rates and sediment detachment occurred in winter and summer respectively. Experiments conducted in a single season would have produced poorly representative, if not erroneous, results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Water flow velocity is an important hydraulic variable in hydrological and soil erosion models, and is greatly affected by freezing and thawing of the surface soil layer in cold high-altitude regions. The accurate measurement of rill flow velocity when impacted by the thawing process is critical to simulate runoff and sediment transport processes. In this study, an electrolyte tracer modelling method was used to measure rill flow velocity along a meadow soil slope at different thaw depths under simulated rainfall. Rill flow velocity was measured using four thawed soil depths (0, 1, 2 and 10 cm), four slope gradients (5°, 10°, 15° and 20°) and four rainfall intensities (30, 60, 90 and 120 mm·h−1). The results showed that the increase in thawed soil depth caused a decrease in rill flow velocity, whereby the rate of this decrease was also diminishing. Whilst the rill flow velocity was positively correlated with slope gradient and rainfall intensity, the response of rill flow velocity to these influencing factors varied with thawed soil depth. The mechanism by which thawed soil depth influenced rill flow velocity was attributed to the consumption of runoff energy, slope surface roughness, and the headcut effect. Rill flow velocity was modelled by thawed soil depth, slope gradient and rainfall intensity using an empirical function. This function predicted values that were in good agreement with the measured data. These results provide the foundation for a better understanding of the effect of thawed soil depth on slope hydrology, erosion and the parameterization scheme for hydrological and soil erosion models.  相似文献   

19.
Numerical modeling of gravitational erosion in rill systems   总被引:1,自引:0,他引:1  
A self-organizing model was developed for simulating rill erosion process on slopes with particular attention to the role of gravitational erosion.For a complete simulation circle,processes such as precipitation,infiltration,runoff,scouring,gravitational erosion and elevation variation were fully considered.Precipitation time(or runoff time) was regarded as iteration benchmark in the model.To specify the contribution of gravitational erosion to the process of rill formation and development,a gravitational erosion module was inserted into the model.Gravitational erosion in rill development was regarded as a Gaussian random process.A model was calibrated by our experimental data,and further validated satisfactorily with 22 runs of experimental results from different investigators. Systematic comparison was made between sediment yields with and without consideration of gravitational erosion module.It was demonstrated that the model could reasonably simulate the rill erosion process under a variety of slope gradients,rainfall intensities and soil conditions upon the gravitational erosion being considered.However,the role of gravitational erosion on sediment yields in rill systems varies significantly under different conditions,although it is of the utmost importance in steeper slopes.The process of gravitational erosion in rill development was studied by a newly-defined parameter a>,which is defined as the volume ratio of gravitational erosion over hydraulic-related erosion.The gravitational contribution to the total erosion could be over 50%for the rill systems with higher rainfall intensity and steeper slopes.  相似文献   

20.
In the rill erosion process, run-on water and sediment from upslope areas, and rill flow hydraulic parameters have significant effects on sediment detachment and transport. However, there is a lack of data to quantify the effects of run-on water and sediment and rill flow hydraulic parameters on rill erosion process at steep hillslopes, especially in the Loess Plateau of China. A dual-box system, consisting of a 2-m-long feeder box and a 5-m-long test box with 26.8% slope gradient was used to quantify the effects of upslope runoff and sediment, and of rill flow hydraulic parameters on the rill erosion process. The results showed that detachment-transport was dominated in rill erosion processes; upslope runoff always caused the net rill detachment at the downslope rill flow channel, and the net rill detachment caused by upslope runoff increased with a decrease of runoff sediment concentration from the feeder box or an increase of rainfall intensity. Upslope runoff discharging into the rill flow channel or an increase of rainfall intensity caused the rill flow to shift from a stratum flow into a turbulent flow. Upslope runoff had an important effect on rill flow hydraulic parameters, such as rill flow velocity, hydraulic radius, Reynolds number, Froude number and the Darcy-Weisbach resistance coefficient. The net rill detachment caused by upslope runoff increased as the relative increments of rill flow velocity, Reynolds number and Froude number caused by upslope runoff increased. In contrast, the net rill detachment decreased with an increase of the relative decrement of the Darcy-Weisbach resistance coefficient caused by upslope runoff. These findings will help to improve the understanding of the effects of run-on water and sediment on the erosion process and to find control strategies to minimize the impact of run-on water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号