首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A procedure based on rigorous non‐linear analysis is presented that estimates the peak deformation among all isolators in an asymmetric building due to strong ground motion. The governing equations are reduced to a form such that the median normalized deformation due to an ensemble of ground motions with given corner period Td depends primarily on four global parameters of the isolation system: the isolation period Tb, the normalized strength η, the torsional‐to‐lateral frequency ratio Ωθ, and the normalized stiffness eccentricity eb/r. The median ratio of the deformations of the asymmetric and corresponding symmetric systems is shown to depend only weakly on Tb, η, and Ωθ, but increases with eb/r. The equation developed to estimate the largest ratio among all isolators depends only on the stiffness eccentricity and the distance from the center of mass to the outlying isolator. This equation, multiplied by an earlier equation for the deformation of the corresponding symmetric system, provides a design equation to estimate the deformations of asymmetric systems. This design equation conservatively estimates the peak deformation among all isolators, but is generally within 10% of the ‘exact’ value. Relative to the non‐linear procedure presented, the peak isolator deformation is shown to be significantly underestimated by the U.S. building code procedures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
A wavelet‐based stochastic formulation has been presented in this paper for the seismic analysis of a base‐isolated structural system which is modelled as a two‐degree‐of‐freedom (2‐DOF) system. The ground motion has been modelled as a non‐stationary process (both in amplitude and frequency) by using modified Littlewood–Paley basis wavelets. The proposed formulation is based on replacing the non‐linear system by an equivalent linear system with time‐dependent damping properties. The expressions of the instantaneous damping and the power spectral density function (PSDF) of the superstructure response have been obtained in terms of the functionals of input wavelet coefficients. The proposed formulation has been validated by simulating a ground motion process. The effect of the frequency non‐stationarity on the non‐linear response has also been studied in detail, and it has been clearly shown how ignoring the frequency non‐stationarity in the ground motion leads to inaccurate non‐linear response calculations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
Triple friction pendulum isolators, that exhibit behavior with amplitude‐dependent strength and instantaneous stiffness, represent a new development in seismic isolation. The application of simplified methods of analysis for this type of seismically isolated structures requires development of tools of simplified analysis and demonstration of their accuracy. This paper describes these tools and presents validation studies based on a large number of nonlinear response history analysis results. It is shown that simplified methods of analysis systematically provide good and often conservative estimates of isolator displacement demands and good estimates of isolator peak velocities. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
摩擦摆基础隔震结构多维地震反应分析   总被引:2,自引:0,他引:2  
对摩擦摆基础隔震结构进行了单向、双向和三向地震反应对比分析,表明考虑双向水平地震动时摩擦摆基础隔震结构的支座位移增大,而结构的加速度和楼层剪力减小,其中对支座位移和结构加速度影响较大;考虑竖向地震动时摩擦摆基础隔震结构的支座位移略有减小,而结构的加速度和楼层剪力增大,其中对结构加速度影响较大.因而,在进行摩擦摆基础隔震结构地震反应分析时,应考虑多维地震动的影响.  相似文献   

5.
A systematic method is developed for the dynamic analysis of the structures with sliding isolation which is a highly non-linear dynamic problem. According to the proposed method, a unified motion equation can be adapted for both stick and slip modes of the system. Unlike the traditional methods by which the integration interval has to be chopped into infinitesimal pieces during the transition of sliding and non-sliding modes, the integration interval remains constant throughout the whole process of the dynamic analysis by the proposed method so that accuracy and efficiency in the analysis of the non-linear system can be enhanced to a large extent. Moreover, the proposed method is general enough to be adapted for the analysis of the structures with multiple sliding isolators undergoing independent motion conditions simultaneously. The superiority of the proposed method for the analysis of sliding supported structures is verified by a three-span continuous bridge subjected to harmonic motions and real earthquakes. In addition, the side effect of excessive displacement of the superstructure induced by the sliding isolation is eliminated by replacing one of the roller supports on the abutments with hinge support. Therefore, both reductions in the forces of the substructure and the displacements of the superstructure can be achieved simultaneously. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
Site effects characterize the filtering mechanisms within the soil sedimentary layers overlying bedrock. In regions of high seismicity such as California where strong motion records are relatively abundant, site coefficients can be developed by regression of recorded ground shaking parameters. In regions of low‐to‐moderate seismicity or of high seismicity but with a paucity of recorded strong motion data, such empirical models cannot be obtained in the same way. This study describes the theoretical development of a simple, rational manual procedure to calculate site coefficients, based on a single period approximation (SPA), and to construct displacement response spectra (RSD) for soil sites. The proposed simplified model, which takes into account the non‐linear behaviour of soil that is dependent on the level of shaking, impedance contrast at the soil–bedrock interface and the plasticity of soil material, has been verified by comparison with results obtained from non‐linear shear wave analyses and data recorded during the 1994 Northridge earthquake. The proposed model is believed to be a convenient tool for calculating non‐linear site responses and constructing site‐specific response spectra, which has the potential of being incorporated into code provisions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
支座摩擦系数对摩擦摆基础隔震结构地震反应的影响   总被引:1,自引:0,他引:1  
对不同地震烈度作用下的摩擦摆基础隔震结构进行了地震反应分析,分析了支座摩擦系数对支座位移、楼层加速度和楼层剪力的影响。结果表明随着摩擦摆支座摩擦系数的增大,支座位移逐渐减小,而结构的加速度和楼层剪力逐渐增大;随着地震作用强度的提高,摩擦系数对支座位移的影响逐渐增大,而摩擦系数对结构加速度和楼层剪力的影响逐渐减小。  相似文献   

8.
The Friction Pendulum System (FPS) isolator is commonly used as a base isolation system in buildings. In this paper, a new tunable FPS (TFPS) isolator is proposed and developed to act as a semi‐active control system by combining the traditional FPS and semi‐active control concept. Theoretical analysis and physical tests were carried out to investigate the behavior of the proposed TFPS isolator. The experimental and theoretical results were in good agreement, both suggesting that the friction force of the TFPS isolator can be tuned to achieve seismic isolation of the structure. A series of numerical simulations of a base‐isolated structure equipped with the proposed TFPS isolator and subjected to earthquake ground motions were also conducted. In the analyses, the linear quadratic regulator (LQR) method was adopted to control the friction force of the proposed TFPS, and the applicability and effectiveness of the TFPS in controlling the structure's seismic responses were investigated. The simulation results showed that the TFPS can reduce the displacement of the isolation layer without significantly increasing the floor acceleration and inter‐story displacement of the superstructure, confirming that the TFPS can effectively control a base‐isolated structure under earthquake ground motions.  相似文献   

9.
摩擦摆基础隔震结构双向地震反应分析   总被引:6,自引:0,他引:6  
采用双向耦合力学模型模拟摩擦摆支座的双向耦合效应,对摩擦摆基础隔震结构进行了单向和双向地震反应对比分忻,分析表明在双向地震作用下结构各层的加速度反应较小,隔震层的层间位移较大,而上部结构的层间位移较小,并且在双向地震作用下,支座的最大位移明显大于单向地震作用时的支座最大位移,因而应考虑双向地震作用对摩擦摆基础隔震结构地震反应和隔震支座性能的影响。  相似文献   

10.
Current structural analysis software programs offer few if any applicable device-specifi c hysteresis rules or nonlinear elements to simulate the precise mechanical behavior of a multiple friction pendulum system(MFPS) with numerous sliding interfaces.Based on the concept of subsystems,an equivalent series system that adopts existing nonlinear elements with parameters systematically calculated and mathematically proven through rigorous derivations is proposed.The aim is to simulate the characteristics of sliding motions for an MFPS isolation system with numerous concave sliding interfaces without prior knowledge of detailed information on the mobilized forces at various sliding stages.An MFPS with numerous concave sliding interfaces and one articulated or rigid slider located between these interfaces is divided into two subsystems: the fi rst represents the concave sliding interfaces above the slider,and the second represents those below the slider.The equivalent series system for the entire system is then obtained by connecting those for each subsystem in series.The equivalent series system is validated by comparing numerical results for an MFPS with four sliding interfaces obtained from the proposed method with those from a previous study by Fenz and Constantinou.Furthermore,these numerical results demonstrate that an MFPS isolator with numerous concave sliding interfaces,which may have any number of sliding interfaces,is a good isolation device to protect structures from earthquake damage through appropriate designs with controllable mechanisms.  相似文献   

11.
结合长联大跨连续梁桥的特点,以1座(65+123+156+123+10×90+55)m长联大跨摩擦摆支座隔震连续梁桥为背景,建立了全桥三维有限元模型,运用非线性时程分析法,分析了地震动输入模式、地震动强度、摩擦摆支座参数对该桥内力、位移和能量响应的影响。研究结果表明:(1)长联大跨连续梁桥布置摩擦摆支座,可有效延滞固定墩顶有效主梁质量效应,实现全桥协同抗震。大部分地震能量可通过支座滞回耗能散耗,大幅降低了该桥固定墩地震能量耗散需求。(2)长联大跨连续梁桥减隔震设计中,建议采用水平单向+竖向地震组合进行内力设计,采用三向地震组合进行位移设计。(3)强震作用下,支座摩擦因数取0.029~0.034时该桥隔震性能最优。  相似文献   

12.
Buildings are continually subject to dynamic loads, such as wind load, seismic ground motion, and even the load from internal utility machines. The recent trend of constructing more flexible high‐rise buildings underscores the importance of including viscoelastic dampers in building designs. Viscoelastic dampers are used to control the dynamic response of a building. If the seismic design is based only on the linear response spectrum, considerable error may occur when calculating the seismic response of a building; rubber viscoelastic dampers show non‐linear hysteretic damping that is quite different from viscous damping. This study generated a non‐linear response spectrum using a non‐linear oscillator model to simulate a building with viscoelastic dampers installed. The parameters used in the non‐linear damper model were obtained experimentally from dynamic loading tests. The results show that viscoelastic dampers effectively reduce the seismic displacement response of a structure, but transmit more seismic force to the structure, which essentially increases its seismic acceleration response. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
摩擦摆隔震结构地震反应谱的计算分析   总被引:2,自引:0,他引:2  
探讨了摩擦摆基底隔震结构的地震反应谱规律。采用上部结构-摩擦摆两质点模型并利用系统振动微分方程,计算绘制了设计参数(质量比、摩擦系数、滑道半径)不同取值下上部结构的绝对加速度、侧向位移和基底水平滑移反应谱。结果表明:摩擦摆系统对刚度较大的上部结构具有良好的隔震效果。摩擦系数对上部结构的加速度反应、层间水平侧移和系统滑移均有较大的影响,质量比的影响次之.而滑道半径仅对系统滑移有较为显著的作用。  相似文献   

14.
The N2 method for simplified non‐linear seismic analysis has been extended in order to make it applicable to infilled reinforced concrete frames. Compared to the simple basic variant of the N2 method, two important differences apply. A multi‐linear idealization of the pushover curve, which takes into account the strength degradation which occurs after the infill fails, has to be made, and specific reduction factors, developed in a companion paper, have to be used for the determination of inelastic spectra. It is shown that the N2 method can also be used for the determination of approximate summarized IDA curves. The proposed method was applied to two test buildings. The results were compared with the results obtained by non‐linear dynamic analyses for three sets of ground motions, and a reasonable accuracy was demonstrated. A similar extension of the N2 method can be made to any structural system, provided that an appropriate specific R–µ–T relation is available. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
The steady‐forced and earthquake responses of SDF systems with a non‐linear fluid viscous damper (FVD) are investigated. The energy dissipation capacity of the FVD is characterized by the supplemental damping ratio ζsd and its non‐linearity by a parameter designated α. It is found that the structural response is most effectively investigated in terms of ζsd and α because (1) these two parameters are dimensionless and independent, and (2) the structural response varies linearly with the excitation intensity. Damper non‐linearity has essentially no influence on the peak response of systems in the velocity‐sensitive spectral region, but differences up to 14% were observed in the other spectral regions. The structural deformation is reduced by up to 25% when ζsd= 5%; and by up to 60% when ζsd= 30%. Non‐linear FVDs are advantageous because they achieve essentially the same reduction in system responses but with a significantly reduced damper force. For practical applications, a procedure is presented to estimate the design values of structural deformation and forces for a system with non‐linear FVD directly from the design spectrum. It is demonstrated that the earthquake‐induced force in a non‐linear FVD can be estimated from the damper force in a corresponding system with linear FVD, its peak deformation, and peak relative velocity; however, the relative velocity should not be approximated by the pseudo‐velocity as this approximation introduces a large error in the damper force. Finally, a procedure is presented to determine the non‐linear damper properties necessary to limit the structural deformation to some design value or the structural capacity for a given design spectrum. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
This investigation is concerned with the seismic response of one‐story, one‐way asymmetric linear and non‐linear systems with non‐linear fluid viscous dampers. The seismic responses are computed for a suite of 20 ground motions developed for the SAC studies and the median values examined. Reviewed first is the behaviour of single‐degree‐of‐freedom systems to harmonic and earthquake loading. The presented results for harmonic loading are used to explain a few peculiar trends—such as reduction in deformation and increase in damper force of short‐period systems with increasing damper non‐linearity—for earthquake loading. Subsequently, the seismic responses of linear and non‐linear asymmetric‐plan systems with non‐linear dampers are compared with those having equivalent linear dampers. The presented results are used to investigate the effects of damper non‐linearity and its influence on the effects of plan asymmetry. Finally, the design implications of the presented results are discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
In many parts of the world, the repetition of medium–strong intensity earthquake ground motions at brief intervals of time has been observed. The new design philosophies for buildings in seismic areas are based on multi‐level design approaches, which take into account more than a single damageability limit state. According to these approaches, a sequence of seismic actions may produce important consequences on the structural safety. In this paper, the effects of repeated earthquake ground motions on the response of single‐degree‐of‐freedom systems (SDOF) with non‐linear behaviour are analysed. A comparison is performed with the effect of a single seismic event on the originally non‐damaged system for different hysteretic models in terms of pseudo‐acceleration response spectra, behaviour factor q and damage parameters. The elastic–perfect plastic system is the most vulnerable one under repeated earthquake ground motions and is characterized by a strong reduction of the q‐factor. A moment resisting steel frame is analysed as well, showing a reduction of the q‐factor under repeated earthquake ground motions even larger than that of an equivalent SDOF system. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
The seismic response of a critical rotating machine either rigidly attached to a floor or independently isolated housed within an initially aseismically designed or uncontrolled structure are investigated. A particular isolation system, the Resilient‐Friction Base Isolator (RFBI), is employed. Finite element formulations of a rotor‐disk‐bearing model on a rigid base are developed. The equations of motion for the combined rotating machine–structure–RFBI systems are presented. Parametric studies are performed to investigate the effects of variations in system physical properties including friction coefficient, mass ratio, shaft flexibility, bearing rigidity, bearing damping and speed of rotation on the response of rotating machines for the combined rotating machine–structure–isolator systems. Comparative studies in the peak response of the rotating machine supported on various isolation systems and the corresponding fixed base system are carried out. The study indicates that the Resilient‐Friction Base Isolator can significantly reduce the seismic response of rotating components to potentially damaging ground excitations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
Predictors (or estimates) of seismic structural demands that are less computationally time‐consuming than non‐linear dynamic analysis can be useful for structural performance assessment and for design. In this paper, we evaluate the bias and precision of predictors that make use of, at most, (i) elastic modal vibration properties of the given structure, (ii) the results of a non‐linear static pushover analysis of the structure, and (iii) elastic and inelastic single‐degree‐of‐freedom time‐history analyses for the specified ground motion record. The main predictor of interest is an extension of first‐mode elastic spectral acceleration that additionally takes into account both the second‐mode contribution to (elastic) structural response and the effects of inelasticity. This predictor is evaluated with respect to non‐linear dynamic analysis results for ‘fishbone’ models of steel moment‐resisting frame (SMRF) buildings. The relatively small number of degrees of freedom for each fishbone model allows us to consider several short‐to‐long period buildings and numerous near‐ and far‐field earthquake ground motions of interest in both Japan and the U.S. Before doing so, though, we verify that estimates of the bias and precision of the predictor obtained using fishbone models are effectively equivalent to those based on typical ‘full‐frame’ models of the same buildings. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
Alternative non‐linear dynamic analysis procedures, using real ground motion records, can be used to make probability‐based seismic assessments. These procedures can be used both to obtain parameter estimates for specific probabilistic assessment criteria such as demand and capacity factored design and also to make direct probabilistic performance assessments using numerical methods. Multiple‐stripe analysis is a non‐linear dynamic analysis method that can be used for performance‐based assessments for a wide range of ground motion intensities and multiple performance objectives from onset of damage through global collapse. Alternatively, the amount of analysis effort needed in the performance assessments can be reduced by performing the structural analyses and estimating the main parameters in the region of ground motion intensity levels of interest. In particular, single‐stripe and double‐stripe analysis can provide local probabilistic demand assessments using minimal number of structural analyses (around 20 to 40). As a case study, the displacement‐based seismic performance of an older reinforced concrete frame structure, which is known to have suffered shear failure in its columns during the 1994 Northridge Earthquake, is evaluated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号