首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non‐ductile reinforced concrete buildings represent a prevalent construction type found in many parts of the world. Due to the seismic vulnerability of such buildings, in areas of high seismic activity non‐ductile reinforced concrete buildings pose a significant threat to the safety of the occupants and damage to such structures can result in large financial losses. This paper introduces advanced analytical models that can be used to simulate the nonlinear dynamic response of these structural systems, including collapse. The state‐of‐the‐art loss simulation procedure developed for new buildings is extended to estimate the expected losses of existing non‐ductile concrete buildings considering their vulnerability to collapse. Three criteria for collapse, namely first component failure, side‐sway collapse, and gravity‐load collapse, are considered in determining the probability of collapse and the assessment of financial losses. A detailed example is presented using a seven‐story non‐ductile reinforced concrete frame building located in the Los Angeles, California. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
在基于性能抗震设计中,要求实现多级设防,目的是使结构抗震设计不仅要保护生命安全,同时也要控制因结构破坏而带来的经济损失,使结构在整个生命周期内费用达到最小。但由于结构抗震设计中存在着大量的不确定因素,使得实现每个性能水平都是不确定的,因此,每个性能水平的目标可靠度究竟取多高才能达到设计要求,是目前抗震设计的一个基本问题。针对这一问题,将地震作用、自重荷载、材料强度等看作随机变量,分析了结构造价与失效概率之间的近似关系,明确了不同性能水平失效概率之间的合理比例关系,采用"投资-效益"准则,且控制人员伤亡率小于社会可接受水平,来确定结构的目标性能水平。以两个钢筋混凝土框架结构为例,说明了该方法的应用。  相似文献   

3.
钢筋混凝土框架结构层间位移角与构件变形关系研究   总被引:2,自引:0,他引:2  
层间位移角已作为检验建筑结构抗震性能的主要指标之一而被广泛应用。为实现该指标在钢筋混凝土框架结构基于位移的抗震设计中的应用,研究了层间位移角与构件变形之间的关系。首先,采用对部分子结构的弹性理论分析得到了弹性阶段梁变形对层间位移角贡献比例的计算公式。接着,采用对15层钢筋混凝土框架整体结构的非线性地震反应计算结果的统计分析得到了在塑性阶段梁变形对层间位移角的贡献比例回归计算公式。所建立的计算公式反映了梁与柱的相对刚度和强度比例、层闽塑性变形程度的影响。最后,应用该方法进行了一算例分析,计算结果和试验结果比较一致。利用本文提出的计算方法可以方便地把对框架结构的层间位移需求转变为对梁、柱构件的变形要求。  相似文献   

4.
A multi‐objective optimization procedure is presented for designing steel moment resisting frame buildings within a performance‐based seismic design framework. Life cycle costs are considered by treating the initial material costs and lifetime seismic damage costs as two separate objectives. Practical design/construction complexity, important but difficult to be included in initial cost analysis, is taken into due account by a proposed diversity index as another objective. Structural members are selected from a database of commercially available wide flange steel sections. Current seismic design criteria (AISC‐LRFD seismic provisions and 1997 NEHRP provisions) are used to check the validity of any design alternative. Seismic performance, in terms of the maximum inter‐storey drift ratio, of a code‐verified design is evaluated using an equivalent single‐degree‐of‐freedom system obtained through a static pushover analysis of the original multi‐degree‐of‐freedom frame building. A simple genetic algorithm code is used to find a Pareto optimal design set. A numerical example of designing a five‐storey perimeter steel frame building is provided using the proposed procedure. It is found that a wide range of valid design alternatives exists, from which a decision maker selects the one that balances different objectives in the most preferred way. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
评估结构抗震性能的能量方法   总被引:9,自引:0,他引:9  
在抗震概念设计中,虽然确立了一些准则,但这些准则基本上是定性的,目前尚缺乏简明的定量评估准则。本文结合抗震设计规范提出了一种对结构抗震性能评估的能量方法,可用于抗震设计方案的定量评估和比较,以及场地对结构影响的定量评估,减震方案的评估。该方法在实际工程设计中的应用取得预期效果。  相似文献   

6.
约束混凝土砌块结构抗震性态研究   总被引:1,自引:1,他引:0  
性态抗震设计已成为结构抗震设计的发展趋势,本文以约束混凝土砌块结构为对象,在提出约束混凝土砌块墙承载力计算公式的基础上,建立了砌块墙片的恢复力模型。对3座不同层数的典型约束混凝土砌块结构,在代表不同场地类别、不同地震动强度的输入下分别进行了动力非线性时程分析和静力非线性分析。通过计算结果的对比,讨论了2种分析方法中场地类别、地震动强度、静力非线性分析中侧力分布模式等影响,所得结论可以为用静力非线性分析估计砌块结构的抗震性能提供有益的参考依据。  相似文献   

7.
强震下的水闸结构抗震性能尚待深入研究,结合实际工程案例,运用UC-WCOMD有限元分析软件建立精细化的水闸计算模型,并分别采用Pushover法和时程分析法讨论水闸在强震作用下的抗震性能,结果表明:结合抗震设防目标,采用Pushover分析法评估水闸的抗侧能力,并采用弹塑性时程分析方法进行强震下的抗震性能校核,是值得推荐的研究方法。  相似文献   

8.
Assessment of seismic design response factors of concrete wall buildings   总被引:1,自引:2,他引:1  
To verify the seismic design response factors of high-rise buildings, five reference structures, varying in height from 20- to 60-stories, were selected and designed according to modern design codes to represent a wide range of concrete wall structures. Verified fiber-based analytical models for inelastic simulation were developed, considering the geometric nonlinearity and material inelasticity of the structural members. The ground motion uncertainty was accounted for by employing 20 earthquake records representing two seismic scenarios, consistent with the latest understanding of the tectonic setting and seismicity of the selected reference region (UAE). A large number of Inelastic Pushover Analyses (IPAs) and Incremental Dynamic Collapse Analyses (IDCAs) were deployed for the reference structures to estimate the seismic design response factors. It is concluded that the factors adopted by the design code are adequately conservative. The results of this systematic assessment of seismic design response factors apply to a wide variety of contemporary concrete wall buildings with various characteristics.  相似文献   

9.
A simplified design procedure (SDP) for preliminary seismic design of frame buildings with structural dampers is presented. The SDP uses elastic‐static analysis and is applicable to structural dampers made from viscoelastic (VE) or high‐damping elastomeric materials. The behaviour of typical VE materials and high‐damping elastomeric materials is often non‐linear, and the SDP idealizes these materials as linear VE materials. With this idealization, structures with VE or high‐damping elastomeric dampers can be designed and analysed using methods based on linear VE theory. As an example, a retrofit design for a typical non‐ductile reinforced concrete (RC) frame building using high‐damping elastomeric dampers is developed using the SDP. To validate the SDP, results from non‐linear dynamic time history analyses (NDTHA) are presented. Results from NDTHA demonstrate that the SDP estimates the seismic response with sufficient accuracy for design. It is shown that a non‐ductile RC frame building can be retrofit with high‐damping elastomeric dampers to remain essentially elastic under the design basis earthquake (DBE). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
基于可靠度理论的概率极限状态设计法是结构设计的基本法则之一,而新一代"基于性能的地震工程"要求在性能化设计中尚应考虑随机因素的影响。为获得满足预设性能水准和可靠度指标的最优方案,以钢筋混凝土框架结构为例,根据其在不同性能水准下的位移需求,采用非线性随机有限元方法求解结构的抗震可靠度,并将可靠度指标作为约束条件,以总造价为优化目标,提出了一种基于性能和可靠度的抗震优化设计方法。其中,可靠度计算以OpenSees为平台,并采用基于梯度分析的FORM有限元法。优化分析以MATLAB为平台,通过程序调用,实现了与可靠度分析之间的数据通讯。算例分析表明,模拟退火算法在本问题中较遗传算法具有更高全局搜索能力和计算精度。研究成果可为新一代基于性能和可靠度的优化设计提供参考。  相似文献   

11.
A fully automated design methodology based on nonlinear response history analysis is proposed for the optimum seismic design of reinforced concrete (RC) structures. The conventional trial‐and‐error process is replaced by a structural optimization algorithm that serves as a search engine capable of locating the most efficient design in terms of cost and performance. Two variations of the proposed design methodology are introduced. The first approach treats the optimum design problem in a deterministic manner, while in the second variation the optimum design is sought in the framework of a reliability‐based optimization problem. The reliability‐based approach seems to be a more rational procedure since more meaningful design criteria that correlate better with the performance‐based design concept can be adopted. Thus, the practice of using the mean annual frequency of a limit‐state being exceeded to assess the candidate designs is compared with the use of deterministic criteria. Both formulations take into consideration the structural response for a number of limit‐states, from serviceability to collapse prevention. The proposed design procedure is specifically tailored to the design of RC structures, where a preliminary design step of generating tables of concrete sections is introduced. In order to handle the large size of the tables, the concept of multi‐database cascade optimization is implemented. The final design has to comply with the provisions of European design codes. The proposed methodology allows for a significant reduction of the direct construction cost combined with improved control of the seismic performance under earthquake loading. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
This paper outlines a methodology to assess the seismic drift of reinforced concrete buildings with limited structural and geotechnical information. Based on the latest and the most advanced research on predicting potential near-field and far field earthquakes affecting Hong Kong, the engineering response spectra for both rock and soil sites are derived. A new step-by-step procedure for displacement-based seismic hazard assessment of building structures is proposed to determine the maximum inter-storey drift demand for reinforced concrete buildings. The primary information required for this assessment is only the depth of the soft soil above bedrock and the height of the building. This procedure is further extended to assess the maximum chord rotation angle demand for the coupling beam of coupled shear wall or frame wall structures, which may be very critical when subjected to earthquake forces. An example is provided to illustrate calibration of the assessment procedure by using actual engineering structural models.  相似文献   

13.
The paper investigates the degree of accuracy achievable when some non‐linear static procedures based on a pushover analysis are used to evaluate the seismic performance. In order to assess the significance of different sources of errors, three types of structural systems are analysed: (i) single‐degree‐of‐freedom (SDOF) systems with different hysteretic behaviour; (ii) shear‐type multi‐degree‐of‐freedom (MDOF) systems with elastic–perfect plastic (EPP) shear force–interstorey drift relationships; (iii) a steel moment‐resisting frame with rigid joints and EPP moment–curvature relationship. In SDOF systems, the source of approximation comes only from the calibration of the demand spectrum, while in MDOF systems some further errors are introduced by the schematization with an equivalent SDOF system. The non‐linear static procedures are compared with rigorous time‐history analyses carried out by considering ten generated earthquake ground motions compatible with the Eurocode 8 elastic spectra. It was found that SDOF systems with longer periods satisfy the equal displacement approximation regardless of the hysteretic model, while hysteresis loops with smaller energy dissipated indicate lower response for shorter periods. This is the opposite of what predicted by the ATC‐40 capacity spectrum method, which underestimates and overestimates, respectively, the actual response of low‐ and high‐ductility systems. Conversely, the inelastic spectrum method proposed by Vidic, Fajfar and Fischinger leads to the most accurate results for all types of structural systems. The analyses carried out on EPP shear‐type frames point out a large concentration of the ductility demand on some storeys. However, such a concentration markedly reduces when some hardening is accounted for. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
This work presents a new seismic evaluation methodology for corroded reinforced concrete bridges on the basis of nonlinear static pushover analysis. Corrosion of steel reinforcement by chloride attack is considered. At the material level, the effects of corrosion are considered by modeling the degradation of the mechanical properties of steel reinforcement, softening of cover concrete under compression, degradation of core concrete due to confinement steel corrosion, and reduction of bond strength between concrete and steel reinforcement. At the structural level, the effects of corrosion on both flexural behavior and shear behavior, and their interaction are considered. Eleven bridges of various structural types in Taiwan that are located within 6.5 km of their nearest coastline are analyzed to identify their long‐term seismic performance. Relationships between the yield and collapse peak ground accelerations (PGAs), and service time and corrosion level are established for each bridge. Analysis results show that chloride corrosion starts in 2–32 years. The transverse steel reinforcement typically starts corroding before the longitudinal steel reinforcement, as the former has a thicker cover. Research results show that collapse PGA reduces by 0.94% or 1.23% per 10 years when the mean value plus 1 or 2 standard deviation of the collapse PGA values are considered, respectively. Therefore, we suggest increasing the design PGA from 4.70% to 6.15% for a bridge adjacent to a coastline to ensure adequate long‐term seismic performance for 50 years, the typical design life span of a regular bridge. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, a practical method is developed for performance‐based design of RC structures subjected to seismic excitations. More efficient design is obtained by redistributing material from strong to weak parts of a structure until a state of uniform deformation or damage prevails. By applying the design algorithm on 5, 10 and 15‐storey RC frames, the efficiency of the proposed method is initially demonstrated for specific synthetic and real seismic excitations. The results indicate that, for similar structural weight, designed structures experience up to 30% less global damage compared with code‐based design frames. The method is then developed to consider multiple performance objectives and deal with seismic design of RC structures for a design spectrum. The results show that the proposed method is very efficient at controlling performance parameters and improving structural behaviour of RC frames. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
This article reports a method to determine the storey‐wise column size for displacement‐based design of reinforced concrete frame buildings with a wide range of storey drift and building plan. The method uses a computer program based algorithm. The basic relation used in the algorithm is formulated by considering the various possible deformation components involved in the overall frame deformation. As a necessity to represent the deformation component due to plastic rotation of beam members, a relation between the beam plastic rotation and the target‐drift is adopted. To control the dynamic amplification of interstorey drift, a target‐drift dependant design‐drift reduction factor is used. The dynamic amplification of column moment is accounted with the help of an approximate conversion of fundamental period of the building from the effective period of the equivalent SDOF system. To avoid the formation of plastic hinge in column members, a design‐drift dependant column–beam moment capacity ratio is used. The method successfully determines the storey‐wise column size for buildings of four plans of different varieties, heights up to 12 storeys and target‐drift up to 3%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The performance‐based seismic design of steel special moment‐resisting frame (SMRF) structures is formulated as a multiobjective optimization problem, in which conflicting design criteria that respectively reflect the present capital investment and the future seismic risk are treated simultaneously as separate objectives other than stringent constraints. Specifically, the initial construction expenses are accounted for by the steel material weight as well as by the number of different standard steel section types, the latter roughly quantifying the degree of design complexity related additional construction cost; the seismic risk is considered in terms of maximum interstory drift demands at two hazard levels with exceedance probabilities being 50% and 2% in 50 years, respectively. The present formulation allows structural engineers to find an optimized design solution by explicitly striving for a desirable compromise between the initial investment and seismic performance. Member sizing for code‐compliant design of a planar five‐story four‐bay SMRF is presented as an application example using the proposed procedure that is automated by a multiobjective genetic algorithm. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
结构体系可靠度分析面临的主要问题是失效模式多,但通过pushover分析方法在一定情况下可以得到结构的最弱失效模式。本文将结构体系抗力等效为与结构特定损伤状况相关的结构的顶点位移,结构的地震作用效应由pushover分析及能力谱法求得。考虑结构体系抗力随机性的主要影响因素以及地震作用的随机性,分别求得了结构抗力及地震作用效应的概率分布参数,通过一次二阶矩方法求得了结构体系可靠度,并进一步研究了结构层数变化及耐久性退化因素对结构体系可靠度的影响。研究发现,结构体系的抗震可靠度水平随着结构层数的增加有减小的趋势,结构体系的抗震可靠度水平随着结构使用期增加而降低,降低幅度与薄弱层个数有关,薄弱层越多,降低幅度越大。  相似文献   

19.
近年来,国内学者强调对于复杂和超限结构需进行中震性能设计,即在小震弹性设计后进行中震下的承载力复核及调整,然而中震设计能否提高结构整体抗震性能仍存在争议.为探究中震设计与小震设计方法的差异,本文依据现行规范,以设防烈度、结构高度和场地类别为变化参数,建立了48个典型RC剪力墙模型,并分别以"小震"、"高规中震"、"广东...  相似文献   

20.
《建筑工程抗震生态设计通则(试用)》是一部对我国抗震设计规范修订具有重大指导意义的试用标准。地震作用是抗震设计的首要问题,《通则》中地震作用计算方法与现行规范的差异引人关注。首先分析了《通则》和规范的场地设计谱,然后比较了二者地震作用计算方法,最后引入2个算例计算了水平地震作用的差别。对《通则》的应用,对修订和完善下一代规范有一定的参考作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号