首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Tafoni are a type of cavernous weathering widespread around the world. Despite the extensive distribution of the tafoni, their genesis is not clear and is still a matter of debate, also because they occur in such different climatic conditions and on so many different types of substrate. Geomorphological characterization of more than 60 tafoni in three different Antarctic sites (two coastal and one inland) between 74 and 76° S with sampling of weathering products and salt occurrences are described together with thermal data (on different surfaces) and wind speed recorded in different periods of the year in a selected tafone close to the Italian Antarctic station. The aim of this present study is to provide further information to help understand the processes involved in the growth of tafoni in a cryotic environment, and the relationship of these processes to climate, with particular attention to the thermal regime and the role of wind. The new data presented in this paper suggest that there is no single key factor that drives the tafoni development, although thermal stress seems the most efficient process, particularly if we consider the short‐term fluctuations. The data also confirm that other thermal processes, such as freezing–thawing cycles and thermal shock, are not really effective for the development of tafoni in this area. The wind speed measured within the tafoni is half that recorded outside, thus favouring snow accumulation within the tafoni and therefore promoting salt crystallization. On the other hand, the wind effect on the thermal regime within the tafoni seems negligible. While both salt weathering and thermal stress appear active in this cryotic environment, these are azonal processes and are therefore active in other climatic areas where tafoni are widespread (such as the Mediterranean region). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Despite numerous investigations and theoretical models, tafoni weathering is still not fully understood largely because of limited data available on temperature, moisture and salt regimes. We investigated tafoni developed in granite in the Tafraoute region, Morocco, through an exploratory, two‐week multi‐method field campaign. Temperatures were measured with iButtons and by means of infrared thermography; moisture distribution and progress were captured with handheld moisture sensors and with drilled‐in iButtons. Salts were analysed in drill dust samples from different positions and rock depths. The results derived from very different techniques mutually support one another. Salts and moisture are concentrated near the base of the investigated tafoni, probably due to a saturated pore water body around the base of rock tors. Salts are accumulated close to the rock surface in tafoni, but not on the surrounding rock surfaces. A clear correlation was found between moisture and salt contents. Within a tafone, areas of higher humidity also display increased salt concentration near the surface. The temperature/humidity records allied with ionic analyses suggest that sodium sulfate dominates and is likely to undergo frequent phase changes from thenardite to mirabilite and vice versa. Two pathways of salt transport in and around tafoni are assumed based on the data: infiltration with rainfall on the top and around tors and boulders, and capillary rise from saturated pore water bodies to the surface. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Cavernous weathering (tafoni development) occurs on coastal slopes in greenschist bedrock at elevations up to 40 m above sea level. The freshly weathered surfaces of the cavern interiors are irregular in morphology, discordant to major rock structure, formed by substantially weakened rock and associated with granular weathering debris. The weathering debris contains soluble elements in proportions similar to those present in seawater, and the penetration of elements associated with sea salts into the weathering surface to estimated depths of at least 0·1–0·2 m is indicated by the presence of chlorine. Scanning electron microscopy and microprobe analyses suggest that rock breakdown occurs principally through limited chemical weathering at grain boundaries. The mechanism for the emplacement of marine salts within sheltered rock surfaces in the tafoni is postulated to be a combination of dry deposition under turbulent atmospheric conditions and wetting by coastal fog.  相似文献   

4.
Tafoni are pits formed by non‐uniform weathering in otherwise uniform rock. Two equations have been proposed for the rate of development of tafoni, both based on 2000‐year‐old outcrops from the coast of Japan. We have taken tafoni measurements from the Meteor Crater, Arizona, and vicinity that extend the equations back at least 50 000 years. As reported in earlier studies, we found pit depth to be the best tafone parameter to measure. The size of the pit decreases significantly with increasing inclination of the rock surface; however, the size of the pit can vary greatly for other reasons. In some cases the measurements are statistically significantly different between two stations taken from contiguous areas of similar inclination and aspect in an apparently homogeneous bed. It is clear, however, that over tens of thousands of years tafoni enlarge significantly. Our data are generally log‐normal and all are markedly heteroscedastic. The 1991 equation proposed by Matsukura and Matsuoka does not fit our data. The 1996 equation proposed by Sunamura provides a better fit. We propose a sigmoidal equation D = b1 + e(b2+(b3/t)) where D is the depth, t is the age, and b1, b2 and b3 vary with lithology. This new equation fits our data far better than the earlier published equations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
Cavernous tafoni‐type weathering is a common and conspicuous global feature, creating artistic sculptures, which may be relevant for geochemical budgets. Weathering processes and rates are still a matter of discussion. Field evidence in the type locality Corsica revealed no trend of size variability from the coast to subalpine elevations and the aspect of tafoni seems to be governed primarily by the directions of local fault systems and cleavage, and only subordinately by wind directions or the aspect of insulation. REM analysis of fresh tafone chips confirmed mechanical weathering by the crystallization of salts, as conchoidal fracturing of quartz is observed. The salts are only subordinately provided by sea spray, as calcium and sodium sulfates rather than halite dominate even close to the coast. Characteristic element ratios compare well with aerosols from mixed African and European air masses. Sulfates are largely derived from Sahara dust, indicated by their sulfur isotopic composition. Salt crystals form by capillary rise within the rock and subsequent crystallization in micro‐cracks and at grain boundaries inside rain‐protected overhangs. Siderophile bacteria identified by raster electron microscopy (REM) analysis of tafone debris contribute to accelerated weathering of biotite and tiny sulfide ore minerals. By applying 10Be‐exposure dating, weathering rates of large mature tafone structures were found to be about an order of magnitude higher than those on the exposed top of the affected granite blocks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
A laboratory salt weathering experiment was performed using five salts to attack eight types of rocks to determine the relative significance of rock durability and salt aggressivity to salt crystallization damage. The influence of individual rock properties on the salt susceptibility of the rocks was also evaluated. To study the relation between pore characteristics, salt uptake, and damage, the pre‐ and post‐experiment pore size distributions of the rocks were also examined. It is observed that both salt type and rock properties influenced the damage pattern. The durability ranking of the rocks became significantly altered with the salt type while the variation in salt efficacy ranking with rock type was less pronounced. Of the five salts used, sodium chloride and aluminium sulfate were invariably ineffective with all rock types while sodium carbonate, sodium sulfate, and magnesium sulfate, were markedly more effective in damaging most types of rock used. Of the rock properties investigated, the microporosity (of pores smaller than 0·05 or 0·1 µm) showed the most significant influence on deterioration of the rocks associated with salt crystallization, whereas microporosity of pores smaller than 5 µm played a more important role in salt uptake. Pore size distribution was thus the key factor controlling salt uptake and damage. Rocks with a large number of pores (<5 µm) and a high proportion of pores (<0·05 or 0·1 µm) were particularly susceptible to salt crystallization damage. However, anomalies arose that could not be explained in terms of rock properties or salt efficacy alone. Overall, the relative influences of salt type/efficacy and rock type/properties on salt damage propensity were not clear enough to draw a reasonable conclusion. Salt crystallization damage appears to be influenced by the individual interactions between salts and rocks, which could explain the anomalous results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Opencast mining alters surface and subsurface hydrology of a landscape both during and post‐mining. At mine closure, following opencast mining in mines with low overburden to coal ratios, a void is left in the final landform. This final void is the location of the active mine pit at closure. Voids are generally not infilled within the mines' lifetime, because of the prohibitive cost of earthwork operations, and they become post‐mining water bodies or pit lakes. Water quality is a significant issue for pit lakes. Groundwater within coal seams and associated rocks can be saline, depending on the nature of the strata and groundwater circulation patterns. This groundwater may be preferentially drawn to and collected in the final void. Surface runoff to the void will not only collect salts from rainfall and atmospheric fallout, but also from the ground surface and the weathering of fresh rock. As the void water level rises, its evaporative surface area increases, concentrating salts that are held in solution. This paper presents a study of the long term, water quality trends in a post‐mining final void in the Hunter Valley, New South Wales, Australia. This process is complex and occurs long term, and modelling offers the only method of evaluating water quality. Using available geochemical, climate and hydrogeological data as inputs into a mass‐balance model, water quality in the final void was found to increase rapidly in salinity through time (2452 to 8909 mg l−1 over 500 years) as evaporation concentrates the salt in the void and regional groundwater containing high loads of salt continues to flow into the void. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Using a combination of field, laboratory and micromorphological evidence, this study examines tafoni (singular, tafone) in the El Chorro area of Andalucia, southern Spain, and makes inferences concerning the processes responsible for their formation. Twenty-five tafoni were randomly selected for field examination. The morphology of these cavernous rock domes is characterized by a helmet-shaped outer roof and an arched-shaped cavern, often with a partially overhanging visor; measurements of height, width and depth of the caverns revealed marked variations in size. The presence or absence of lichen cover, surface varnish, overhanging visor, cavern backwall stripes, rock flaking, weathering pits and cavern floor sediments was also noted. Surface hardness values, obtained using a Schmidt hammer, are relatively low but significantly higher on the outer roof of the tafoni than on the inner cavern walls. Analysis of sediment samples collected from the cavern backwalls and floors indicates predominantly sandy textures, alkaline pH values and some base cation enrichment. Micromorphological analysis of thin sections, prepared from undisturbed blocks, reveals large quantities of pore-filling cement, consisting mainly of calcite, mineral grains affected by weathering and pseudomorphic replacement, and dark, rounded nodules with a metallic appearance. In terms of their formation, different processes appear to act on different parts of the landform. On the outer roof surfaces, case hardening, resulting from near-surface cementation and surface varnish development, is dominant. On the inner cavern surfaces, however, core softening, resulting from granular disintegration and flaking, dominates. Exfoliation weathering, running water and wind deflation also appear to play an important role in tafone formation. A phased model of tafone evolution is proposed whereby the features pass through four phases of development–initiation, enlargement, amalgamation and degradation; in the study area there are examples of tafoni in each of these phases. Much of the evidence suggests that the tafoni are actively developing under current environmental conditions. © 1997 by John Wiley & Sons, Ltd.  相似文献   

9.
Biogeomorphological processes are an important component of dynamic intertidal systems. On rocky shores, the direct contribution of microorganisms, plants and animals to weathering and erosion is well known. There is also increasing evidence that organisms can alter rock breakdown indirectly, by moderating temperature and moisture regimes at the rock–air interface. These influences have been purported to represent mechanisms of bioprotection, by buffering microclimatic fluctuations associated with weathering processes such as wetting and drying and salt crystallization. However, virtually nothing has been done to test whether microclimatic buffering translates to differences in actual rock breakdown rates. Here we report a preliminary laboratory experiment to assess how an artificial canopy (chosen to represent seaweed) affects mechanical rock breakdown. Using a simplified and accelerated thermal regime based on field data from a rocky shore platform in southern England, UK, we find that breakdown (mineral debris release) of mudstone covered with a canopy is reduced by as much as 79% relative to bare rock after around 100 thermal cycles. Reduction in rock surface hardness (measured using an Equotip device) was also greater for bare rock (17%) compared to covered rock (10%) over this period. Measurements of salt crystal formation indicate that the mechanism driving these differences was a reduction in the frequency of crystallization events, via moisture retention and shading of the rock surface. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Bedding‐parallel tafoni are well developed over much of the surface of the Tunnel Spring Tuff (Oligocene) exposed in 300‐m‐high Crystal Peak, an inselberg. The Tunnel Spring Tuff is a crudely stratified, non‐welded rhyolite ash‐flow tuff with > 30 per cent porosity. Clasts of Palaeozoic dolomite, limestone and quartzite make up 10 per cent of the tuff. The tafoni are remarkable because of their size (up to 20 m wide but rarely wider than 4 m), shape of the openings (spherical, arch‐like or crescent‐shaped) and abundance (up to 50 per cent of an outcrop face). They are actively forming today. Calcite is abundant (10 to 40 per cent by weight) in tafoni as an efflorescence in spalling flakes of tuff on their roofs and walls. Halite and gypsum generally make up less than 0·01 per cent of the efflorescence. The absence of corroded quartz and feldspar grains in spall fragments indicates that chemical weathering is unimportant in development of the tafoni. Calcite, aragonite, halite and gypsum dust from modern salt pans less than 20 km from Crystal Peak are potential sources of salt in the tuff, but the prevailing winds are in the wrong direction for significant amounts of these evaporite minerals to reach the inselberg. Calcite is the only evaporite mineral present in the tafoni in more than trace amounts, and this mineral is readily available within the tuff itself as a result of rock weathering. We propose that meteoric water containing carbonic acid infiltrates the tuff, dissolves carbonate clasts, and migrates to the steep flanks (>20°) of the peak through abundant megapores and micropores. There it evaporates and precipitates calcite. Crystallization pressure spalls off grains and sheets as the physical manifestation of salt weathering. The quasi‐uniform spacing of tafoni suggests that a self‐organization process is active in the water flow. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
Honeycomb weathering has been observed in a Carboniferous sandstone at a coastal location near Ballycastle on the north coast of Northern Ireland. Specimens of this sandstone have been analysed by X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. Results reveal that calcium sulphate (gypsum) is the only salt present and is found only at and immediately below the rock surface. SEM observations suggest that crystallization of salts in pores could easily dislodge quartz grains to promote granular disintegration, whilst etching of quartz grain surfaces attests to chemical weathering activity within the rock However, the reason for the development of the honeycomb pattern is not known.  相似文献   

12.
The development of cavernous weathering features such as tafoni remains poorly understood. In particular, the roles played by internal moisture and case hardening remain unclear. In this study, Electric Resistivity Tomography (ERT) has been used to map moisture distribution within inner walls of tafoni developed in sandstone, and an Equotip device used to measure rock surface hardness as a proxy measure of the degree of weathering and case hardening. Seven large tafoni in the Golden Gate Highlands National Park (South Africa), varying in size and degree of development have been monitored. A dynamic relationship between surface hardness, degree of weathering and internal moisture regimes has been found. We propose a new conceptual model which illustrates the complex interaction between case hardening and internal moisture and suggests a new direction for cavernous weathering research. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Inland notches, are elongated concave‐shape indentations that develop on the carbonate rocky cliffs of mountainous zones, down to the desert fringe. These rock shelters form as a result of the interaction between specific petrologic characteristics and climatic controls, emphasizing the importance of environment upon rock decay. Inland notches are shaped due to slight differences (1–15%) in the porosity of the visor and cavity bed: the cavity bed is more porous, so more likely to erode by exfoliation and dissolution. Thus, the cavity bed retreats at a faster rate compared to the slower subaerial dissolution of the visor bed, until a critical point is reached where the visor collapses. In Israel, inland notches inhabit the same lithostratigraphic units as do large caves. The vast majority (71%) of inland notches are formed in hard, dense, and crystalline limestone deposited throughout the Turonian age. Another 27% are cut into the dolomitic sequence of the upper Albian and lower Cenomanian. The rest (2%) are dispersed in the various formations of the Cenomanian and Eocene eras. Notches are most common in semi‐arid and in Mediterranean climates but mainly in areas with annual rainfall of between 400 mm and 850 mm. In more humid areas (> 900 mm/yr) notches are negligible or completely absent, due to the rapid rate of chemical dissolution of carbonate rocks. In the desert fringe (200–300 mm/yr), mechanical decay is accelerated and notches exhibit disintegration processes, visor collapse, and rock falls. In the desert area (< 200 mm/yr), salt decay replaces the chemical decay characteristic of inland notches, encouraging tafoni formation. In addition, notches form through fluvial activity or on account of greater petrophysical differences between consecutive beds; i.e. elongated cavities may form in soft rocks, shaded by harder visors or crusts. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
Salt precipitation on the surface of porous media significantly affects water transport processes. Most studies on salt precipitation mainly focused on single salts, but in nature, salt precipitation usually occurs as mixtures. Consequently, information on the crystallization of salt mixtures and its effect on water transport remains scarce. This study investigated the precipitation of mixtures (the mass ratios of NaCl:Na2SO4 were 3:7, 5:5, and 7:3, respectively) of NaCl (typical efflorescence) and Na2SO4 (typical subflorescence) in the initially saturated sandy soil columns and its effect on evaporation and compared it with the cases of the two salts individually. The results showed that salt mixtures exhibited a mixed pattern of crystals including both efflorescence and subflorescence, and the efflorescence showed granular aggregation, unlike the mono-salts. The crystallization coverage of the salt mixtures was smaller than that of NaCl mono-salt; high (7:3) and low (5:5 and 3:7) proportions of NaCl led to larger and smaller crystallization coverage than that of Na2SO4 mono-salt, respectively. While the salt mixtures had less crystallization coverage than the mono-salts, they showed lower evaporation because the salt mixtures formed a denser crystallization structure of efflorescence-subflorescence-soil layer, this crystallization structure exhibited greater inhibition of water vapour diffusion, thus reducing evaporation. In addition, the crystallization of the salt mixtures with higher NaCl proportion afforded greater resistance of evaporation. The mixed crystallization pattern formed by the salt mixtures significantly enhances the crystallization resistance to evaporation.  相似文献   

15.
Soluble salt deposit in the Nihewan beds and its environmental significance   总被引:2,自引:0,他引:2  
Observation and experimental analysis of soluble salt deposit along four profiles across the strata deposited in Nihewan paleolake basin enabled us to recognize the nature and evolution stages of the Nihewan paleolake and its significance in stratigraphical division and pa-leo-environmental reconstruction. The Nihewan paleolake was at least a weak-saline to semi-saline lake and represents an intracontinental lake in the semi-arid region. The lower member of sedimentary strata in the paleolake contains gypsum layer and gypsum lamellae. Soluble salt is mainly composed of SO 4 2- and Ca2+ ions, representing a trend of the paleolake evolving into a stage of sulfate lake. The upper member of the strata has predominantly Cl-, K+, and Na+ ions in soluble salt, indicating a starting development of the paleolake to chlorite lake, but no salt rock was deposited, indicating a drying trend of the area.  相似文献   

16.
Rapid surface lowering of bedrock is taking place in the supratidal zone by salt spray weathering. A seven-year run of data demonstrates a mean rate of lowering of 0·625 mm a?1. Considerable variation exists in annual point lowering values within measurement sites, although between-site variation is not significant. Aggregate year to year variations in surface lowering are not significant. Spatial variation in individual point values may be compensated by temporal variation over an 11-year period. There is a marked summer maximum in surface lowering rate, and this is strongly correlated with monthly air temperature. Spatially and temporally episodic swelling of the rock surface is demonstrated. This does not correlate statistically with any available climatic variable and is deemed to be a real and largely stochastic phenomenon. It is interpreted as rock bursting at the granular scale due to haloclasty. The processes most likely to be responsible for the observed rapid denudation are crystallization and thermal expansion of halite, both of which are enhanced by high summer temperatures.  相似文献   

17.
The equipment and techniques being used at Bedford College, London to simulate salt weathering processes in deserts are described in the context of a general discussion of the nature of salt weathering processes and approaches to studying them. An experiment based on the equipment and techniques is described: it is designed to test the durability of three building stones in the presence of several different saline solutions under conditions of surface temperature and relative humidity that are considered typical of hot deserts. The experiment, the first of a series, shows that Na2SO4 is the most effective of the salts used, and that susceptibility of the rocks to weathering is related to such rock properties as porosity, microporosity and water absorption capacity.  相似文献   

18.
Determining the rates of rock weathering is difficult because, firstly, the weathering rate of rocks is usually so slow that it is difficult to measure; secondly, it is also difficult to determine the start time and duration of weathering. The Shanxi River Valley in Fujian, China dried up after a reservoir was built upstream in 1959, and became a stone quarry site. Quarrying ceased in 1977, so a large amount of quarry wastes with artificially excavated surfaces were left in the valley. The concave-upward curved rocky surface, broken by manual excavation, easily contains rainwater in its central part, which was easily weathered into a more concave surface. Plaster mould casting was performed in situ on such a concave surface of an excavated stone rock in the valley and scanned with a high-precision 3D scanner to obtain 3D data of the concave-upward rock surface and its more concave middle part, which was considered as an initial weathering pit. The 3D model provided an in-depth understanding of the initial formation process of weathering pits, indicating that: (1) the average weathering rate of a weathering pit is 10.8 ± 0.49 cm ka−1; (2) weathering pits are generally formed by standing water in depressions on a flat near-horizontal rock surface due to weathering actions involving water; (3) the deepening rate of a weathering pit is about four times greater than that of the surrounding area; (4) the growth of a weathering pit can begin in some small concavities on the flat rock surface without pre-existing depressions and gradually expands; (5) a weathering pit is generally wider than deep or with a flat bottom due to expansion with a lateral weathering rate that is greater than that of the vertical, and the lamination of the host rock is not necessary for the formation of flat-floored weathering pits. © 2020 John Wiley & Sons, Ltd.  相似文献   

19.
Honeycomb weathering occurs in two environments in Late Cretaceous and Eocene sandstone outcrops along the coastlines of south‐west Oregon and north‐west Washington, USA, and south‐west British Columbia, Canada. At these sites honeycomb weathering is found on subhorizontal rock surfaces in the intertidal zone, and on steep faces in the salt spray zone above the mean high tide level. In both environments, cavity development is initiated by salt weathering. In the intertidal zone, cavity shapes and sizes are primarily controlled by wetting/drying cycles, and the rate of development greatly diminishes when cavities reach a critical size where the amount of seawater left by receding tides is so great that evaporation no longer produces saturated solutions. Encrustations of algae or barnacles may also inhibit cavity enlargement. In the supratidal spray zone, honeycomb weathering results from a dynamic balance between the corrosive action of salt and the protective effects of endolithic microbes. Subtle environmental shifts may cause honeycomb cavity patterns to continue to develop, to become stable, or to coalesce to produce a barren surface. Cavity patterns produced by complex interactions between inorganic processes and biologic activity provide a geological model of ‘self‐organization’. Surface hardening is not a factor in honeycomb formation at these study sites. Salt weathering in coastal environments is an intermittently active process that requires particular wind and tidal conditions to provide a supply of salt water, and temperature and humidity conditions that cause evaporation. Under these conditions, salt residues may be detectable in honeycomb‐weathered rock, but absent at other times. Honeycomb weathering can form in only a few decades, but erosion rates are retarded in areas of the rock that contain cavity patterns relative to adjacent non‐honeycombed surfaces. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
This research characterizes the weathering of natural building stone using an unsteady‐state portable probe permeameter. Variations between the permeability properties of fresh rock and the same rocks after the early stages of a salt weathering simulation are used to examine the effects of salt accumulation on spatial variations in surface rock permeability properties in two limestones from Spain. The Fraga and Tudela limestones are from the Ebro basin and are of Miocene age. Both stone types figure largely in the architectural heritage of Spain and, in common with many other building limestones, they are prone to physical damage from salt crystallization in pore spaces. To examine feedbacks associated with salt accumulation during the early stages of this weathering process, samples of the two stone types were subjected to simulated salt weathering under laboratory conditions using magnesium sulphate and sodium chloride at concentrations of 5% and 15%. Permeability mapping and statistical analysis (aspatial statistics and spatial prediction) before and after salt accumulation are used to assess changes in the spatial variability of permeability and to correlate these changes with salt movement, porosity change, potential rock deterioration and textural characteristics. Statistical analyses of small‐scale permeability measurements are used to evaluate the drivers for decay and hence aid the prediction of the weathering behaviour of the two limestones. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号