首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of large roughness elements on sand transport efficiency was evaluated on a coastal sand sheet by measuring sand flux with two types of sand traps [Big Spring Number Eight (BSNE) and the Cox Sand Catcher (CSC)] at 30 positions through a 100 m‐long × 50 m‐wide roughness array comprised of 210 elements each with the dimensions 1·17 m long × 0·4 m high × 0·6 m wide. The 210 elements were used to create a roughness density (λ) of 0·022 (λ = n bh/S, where n is the number of elements, b the element breadth, h the element height, and S is the area of the surface that contains all the elements) in an area of 5000 m2. The mean normalized saltation flux (NSF) values (NSF = outgoing sand flux/incoming sand flux) at the furthest downwind distance for the two trap types were 0·44 and 0·41, respectively. This is in excellent agreement with an empirical model prediction of 0·5. The reduction in saltation flux is similar to an earlier separate study for an equivalent λ composed of elements of similar height (0·36 m), even though the roughness element forms were different (rectangular in this study as opposed to circular) as were the horizontal porosity of the arrays (49% versus 16%). This corroborates earlier results that roughness element height is a critical parameter that enhances reduction in sand transport by wind for similar λ configurations. The available data suggest the form of the relationship between transport reduction efficiency and height is likely a power relationship with two limiting conditions: (1) for elements ≤ 0·1 m high the effect is minimized, and (2) as element height matches and then exceeds the maximum height of the saltation layer (≥ 1 m), the effect will stabilize near a maximum of NSF ≈ 0·32. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The effect of a step change in macro‐roughness on the saltation process under sediment supply limited conditions was examined in the atmospheric boundary layer. For an array of roughness elements of roughness density λ = 0.045 (λ = total element frontal area/total surface area of the array) the horizontal saltation flux was reduced by 90% (±7%) at a distance of ≈150 roughness element heights into the array. This matches the value predicted using an empirical design model and provides confidence that it can be effectively used to engineer roughness arrays to meet sand flux reduction targets. Measurements of the saltation flux characteristics in the vertical dimension, including: saltation layer decay (e‐folding) height and particle size, revealed that with increasing distance into the array, the rate of mass flux change with increasing height decreased notably, and (geometric) mean particle diameter decreased. The distribution of the saltation mass flux in the vertical remains exponential in form with increasing distance into the roughness array, and the e‐folding height increases as well as increasing at a greater rate as particle diameter diminishes. The increase in e‐folding height suggests the height of saltating particles is increasing along with their mean speed. This apparent increase in mean speed is likely due to the preferential removal, or sequestration, of the slower moving particles across the size spectrum, as they travel through the roughness array. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

3.
Active microwave remote sensing observations of backscattering, such as C‐band vertically polarized synthetic aperture radar (SAR) observations from the second European remote sensing (ERS‐2) satellite, have the potential to measure moisture content in a near‐surface layer of soil. However, SAR backscattering observations are highly dependent on topography, soil texture, surface roughness and soil moisture, meaning that soil moisture inversion from single frequency and polarization SAR observations is difficult. In this paper, the potential for measuring near‐surface soil moisture with the ERS‐2 satellite is explored by comparing model estimates of backscattering with ERS‐2 SAR observations. This comparison was made for two ERS‐2 overpasses coincident with near‐surface soil moisture measurements in a 6 ha catchment using 15‐cm time domain reflectometry probes on a 20 m grid. In addition, 1‐cm soil moisture data were obtained from a calibrated soil moisture model. Using state‐of‐the‐art theoretical, semi‐empirical and empirical backscattering models, it was found that using measured soil moisture and roughness data there were root mean square (RMS) errors from 3·5 to 8·5 dB and r2 values from 0·00 to 0·25, depending on the backscattering model and degree of filtering. Using model soil moisture in place of measured soil moisture reduced RMS errors slightly (0·5 to 2 dB) but did not improve r2 values. Likewise, using the first day of ERS‐2 backscattering and soil moisture data to solve for RMS surface roughness reduced RMS errors in backscattering for the second day to between 0·9 and 2·8 dB, but did not improve r2 values. Moreover, RMS differences were as large as 3·7 dB and r2 values as low as 0·53 between the various backscattering models, even when using the same data as input. These results suggest that more research is required to improve the agreement between backscattering models, and that ERS‐2 SAR data may be useful for estimating fields‐scale average soil moisture but not variations at the hillslope scale. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
A commonly used measure to prevent soil wind erosion is to cover the surface with gravel. Gravel can inhibit soil erosion by covering the surface directly, changing the airflow field near the surface and sharing the shear stress of wind. Similar to other roughness elements, the protective effect of gravel on soil is usually expressed in terms of the ratio of the shear stress on the exposed soil surface to the total shear stress on the rough surface due to wind, i.e. through a shear-stress partitioning model. However, the existing shear-stress partitioning models, represented by Raupach's model (RM93), are only applicable when the lateral coverage of the roughness elements, λ < 0.10, and the applicability of the models to flat-shaped roughness elements is unclear. The purpose of this study is to verify the applicability of RM93 for dense and flat-shaped gravel roughness elements by using shear-stress data from wind-tunnel measurements pertaining to roughness elements with different densities (0.013 ≤ λ ≤ 0.318) and flat shapes (height-to-width ratios in the range 0.20 ≤ H/W ≤ 0.63), and to modify RM93 to enhance its predictive ability. The results indicate that RM93 cannot accurately predict the shear-stress partitioning for surfaces covered by densely distributed and flat-shaped gravel roughness elements. This phenomenon occurs because, when roughness elements are distributed densely or are flat-shaped, the proportion of the shear stress on the top surface of the roughness elements (τc) to the total shear stress (τ) is large; in this case, τc plays a dominant role and serves as an essential component in the shear-stress partitioning model. Consequently, RM93 is modified by incorporating τc into the calculation of τ. Under conditions of λ < 0.32 and H/W > 0.2, the modified RM93 can yield satisfactory predictions regarding the shear-stress partitioning.  相似文献   

5.
Aeolian sand transport is a complicated process that is affected by many factors (e.g. wind velocity, sand particle size, surface microtopography). Under different experimental conditions, erosion processes will therefore produce different results. In this study, we conducted a series of wind tunnel experiments across a range of wind velocities capable of entraining sand particles (8.0, 10.0, 12.0, and 14.0 m s-1) to study the dynamic changes of the shear velocity, aerodynamic roughness length, and sand transport. We found that the shear velocity and aerodynamic roughness length are not constant; rather, they change dynamically over time, and the rules that describe their changes depend on the free-stream air velocity. For wind tunnel experiments without feeding sand into the airflow, the sand bed elevation decreases with increasing erosion time, and this change significantly affected the values of shear velocity and aerodynamic roughness length. A Gaussian distribution function described the relationships between the sand transport rate (qT) and the duration of wind erosion (T). It is therefore necessary for modelers to consider both deflation of the bed and the time scale used when calculating sand transport or erosion rates. © 2018 John Wiley & Sons, Ltd.  相似文献   

6.
Aerodynamic roughness length (z0), the height above the ground surface at which the extrapolated horizontal wind velocity profile drops to zero, is one of the most poorly parameterised elements of the glacier surface energy balance equation. Microtopographic methods for estimating z0 have become prominent in the literature in recent years, but are rarely validated against independent measures and are yet to be comprehensively analysed for scale or data resolution dependency. Here, we present the results of a field investigation conducted on the debris covered Khumbu Glacier during the post‐monsoon season of 2015. We focus on two sites. The first is characterised by gravels and cobbles supported by a fine sandy matrix. The second comprises cobbles and boulders separated by voids. Vertical profiles of wind speed recorded by a tower comprising five cup anemometers and deployed over both sites enable us to derive measurements of aerodynamic roughness that reflect their observed surface characteristics (0.0184 m and 0.0243 m, respectively). At the second site, z0 also varied through time following snowfall (0.0055 m) and during its subsequent melt (0.0129 m), showing the importance of fine resolution topography for near‐surface airflow. To compare the wind profile data with microtopographic methods, we conducted structure from motion multi‐view stereo (SfM‐MVS) surveys across each patch and calculated z0 using three previously published approaches. The fully three‐dimensional cloud‐based approach is shown to be most stable across different scales and these z0 values are most correct in relative order when compared with the wind tower data. Popular profile‐based methods perform less well providing highly variable values across different scales and when using data of differing resolution. These findings hold relevance for all studies using microtopographic methods to estimate aerodynamic roughness lengths, including those in non‐glacial settings. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
The Schmidt Hammer (SH) method is used to quantify the rock weathering degree and has been proposed as a relative dating tool. Terrestrial Cosmogenic Nuclide (TCN) methods provide absolute exposure ages for erosive surfaces. Few works combine both methods for surfaces older than the Holocene. We compare data obtained by both methods for c. 150 ka bp glacial and fluvial erosive granite surfaces from northwest Spain. Rebound values (R) have been firstly compared with the rock density to assess the correlation with the rock strength, independently from influence of factors such as wetness and roughness in the R‐values. For erosive glacial surfaces older than 100 ka R‐values are confined in a narrow range, with no differences within errors. Stepped fluvial surfaces of 700 m to 70 m above present sea level show an inverse correspondence between TCN ages and R‐values, although no age predictions can be done on the basis of the R‐values. Thus, age inferences exclusively based on R‐values may not be realistic, but SH studies could be a useful tool for selecting surfaces for TCN dating. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Linear plots of log N against log G, where N is the number of steps of length G to span a transit, are conventionally used as evidence that geomorphic surfaces are self-similar fractals (i.e. the surfaces have a constant fractal dimension). In this study 42 transits on talus slope surfaces in Niagara and Letchworth Gorges, western New York, are investigated to ascertain whether they are self-similar. Log N-log G plots, which r2 values in excess of 0·99 suggest are linear, are found upon more rigorous testing to be curvilinear. It is concluded that the talus slope surfaces are not self-similar, and that log N-log G plots are relatively insensitive to departures from self-similarity. The curvilinearity of the log N-log G plots is explained with the aid of a randomized square-wave model of the talus slope surfaces. This model is used to extend the range of measurement beyond that which was possible in the empirical analysis. The negative of the gradient of the log N -log G relation at a point is the fractal dimension D. Measurements made upon the randomized square-wave model indicate that the relation between D and scale of measurement has an asymmetrical wave shape with a peak (i.e. maximum D) where the scale of measurement is equal to the characteristic scale of roughness. In other words the value of D for a surface is not absolute but depends on the scale of measurement relative to the scale of roughness. Linear regression analysis reveals that at the scale of measurement employed in this study, D is positively correlated with particle size. This is because the values of D fall on the right-hand tail of the wave-shaped relation between D and scale of measurement. Transects (normal to the direction of slope) are found to have higher values of D than profiles (parallel to the direction of slope), and this is explained in terms of particle orientation, shape, and juxtaposition. Because D varies continuously with scale of measurement, there are considerable difficulties in using it to characterize and compare the surface roughness of talus slopes. Generalizing from talus slopes to other ground surfaces, it is evident that to the extent that any natural ground surface has a characteristic scale of roughness, it will depart from self-similarity, and D should be used with caution in quantifying the roughness of the surface. Geomorphologists are therefore urged to be more rigorous in their testing of self-similarity before employing D to characterize surface roughness.  相似文献   

9.
During the last decade, the widely distributed shrublands in northern China have shown significant signs of recovery from desertification, the result of widespread conservation practices. However, to support the current efforts in conservation, more knowledge is needed on surface energy partitioning and its biophysical controls. Using eddy‐covariance measurements made over a semi‐arid shrubland in northwest China in 2012, we examined how surface energy‐balance components vary on diurnal and seasonal scales, and how biophysical factors control bulk surface parameters and energy exchange. Sensible heat flux (H) exceeded latent heat flux (λE) during most of the year, resulting in an annual Bowen ratio (β, i.e. H/λE) of 2.0. λE exceeded H only in mid‐summer when frequent rainfall co‐occurred with the seasonal peak in leaf area index (LAI). Evapotranspiration reached a daily maximum of 3.3 mm day?1, and summed to 283 mm yr?1. The evaporative fraction (EF, i.e. λE/Rn), Priestley–Taylor coefficient (α), surface conductance (gs) and decoupling coefficient (Ω) were all positively correlated with soil water content (SWC) and LAI. The direct enhancement of λE by high vapour pressure deficit (VPD) was buffered by a concurrent suppression of gs. The gs played a direct role in controlling EF and α by mediating the effects of LAI, SWC and VPD. Our results highlight the importance of adaptive plant responses to water scarcity in regulating ecosystem energy partitioning, and suggest an important role for revegetation in the reversal of desertification in semi‐arid areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Hydraulic roughness accounts for energy dissipated as heat and should exert an important control on rates of subglacial conduit enlargement by melting. Few studies, however, have quantified how subglacial conduit roughness evolves over time or how that evolution affects models of conduit enlargement. To address this knowledge gap, we calculated values for two roughness parameters, the Darcy–Weisbach friction factor (f) and the Manning roughness coefficient (n), using dye tracing data from a mapped subglacial conduit at Rieperbreen, Svalbard. Values of f and n calculated from dye traces were compared with values of f and n calculated from commonly used relationships between surface roughness heights and conduit hydraulic diameters. Roughness values calculated from dye tracing ranged from 75–0.97 for f and from 0.68–0.09 s m‐1/3 for n. Equations that calculate roughness parameters from surface roughness heights underpredicted values of f by as much as a factor of 326 and values of n by a factor of 17 relative to values obtained from the dye tracing study. We argue these large underpredictions occur because relative roughness in subglacial conduits during the early stages of conduit enlargement exceeds the 5% range of relative roughness that can be used to directly relate values of f and n to flow depth and surface roughness heights. Simple conduit hydrological models presented here show how parameterization of roughness impacts models of conduit discharge and enlargement rate. We used relationships between conduit relative roughness and values of f and n calculated from our dye tracing study to parameterize a model of conduit enlargement. Assuming a fixed hydraulic gradient of 0.01 and ignoring creep closure, it took conduits 9.25 days to enlarge from a diameter of 0.44 m to 3 m, which was 6–7‐fold longer than using common roughness parameterizations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Estimates of the wind shear stress exerted on Earth's surface using the fully rough form of the law‐of‐the‐wall are a function of the aerodynamic roughness length, z0. Accurate prediction of aeolian sediment transport rates, therefore, often requires accurate estimates of z0. The value of z0 is determined by the surface roughness and the saltation intensity, both of which can be highly dynamic. Here we report field measurements of z0 values derived from velocity profiles measured over an evolving topography (i.e. sand ripples). The topography was measured by terrestrial laser scanning and the saltation intensity was measured using a disdrometer. By measuring the topographic evolution and saltation intensity simultaneously and using available formulae to estimate the topographic contribution to z0, we isolated the contribution of saltation intensity to z0 and document that this component dominates over the topographic component for all but the lowest shear velocities. Our measurements indicate that the increase in z0 during periods of saltation is approximately one to two orders of magnitude greater than the increase attributed to microtopography (i.e. evolving sand ripples). Our results also reveal differences in transport as a function of grain size. Each grain‐size fraction exhibited a different dependence on shear velocity, with the saltation intensity of fine particles (diameters ranging from 0.125 to 0.25 mm) saturating and eventually decreasing at high shear velocities, which we interpret to be the result of a limitation in the supply of fine particles from the bed at high shear velocities due to bed armoring. Our findings improve knowledge of the controls on the aerodynamic roughness length and the grain‐size dependence of aeolian sediment transport. The results should contribute to the development of improved sediment transport and dust emission models. © 2018 John Wiley & Sons, Ltd.  相似文献   

12.
Wind tunnel simulations of the effect of non-erodible roughness elements on sediment transport show that the flux ratio q/qs, shear velocity U*, and roughness density λ are co-dependent variables. Initially, the sediment flux is enhanced by kinetic energy retention in relatively elastic collisions that occur at the roughness element surfaces, but at the same time, the rising surface coverage of the immobile elements reduces the probability of grain ejection. A zone of strong shearing stress develops within 0·03 to 0·04 m of the rough bed because of a relative straightening of velocity profiles which are normally convex with saltation drag. This positive influence on fluid entrainment is opposed by declining shear stress partitioned to the sand bed. Similarly, because the free stream velocity Uf is fixed while U* increases, velocity at height z and particle momentum gain from the airstream decline, leading eventually to lower numbers of particles ejected on average at each impact. When the ratio of the element basal area to frontal area σ is approximately equal to 3·5, secondary flow effects appear to become significant, so that the dimensionless aerodynamic roughness parameter Z0/h and shear stress on the exposed sand bed Ts decrease. It is at this point that grain supply to the airstream and saltation drag appear to be significantly reduced, thereby intensifying the reduction in U*. The zone of strong fluid shear near the bed dissipates.  相似文献   

13.
The potential of surface roughness to quantify geomorphological landforms and processes has been enhanced with the availability of high‐resolution digital terrain models (DTM). Recent studies that attempt to identify landslide features with surface roughness have suggested that this measure of topographic heterogeneity may also be applied to estimate the relative age of landslides. This is a provisional study that explores the potential of this relationship by assessing the ability of surface roughness to act as a proxy for relative landslide age. The surface roughness for a set of 12 dated landslides in the Swabian Alb that occurred between 1789 and 1985 was calculated from a 1 m2 spatial resolution LiDAR DTM with three algorithms: root‐mean‐square‐height (RMSH), standard deviation of slope (SDS), and direction cosine eigenvalue ratios (DCE). Scale‐dependence was analysed by calculating surface roughness for a range of moving window sizes (3 × 3, 5 × 5, 9 × 9 and 15 × 15), and surface roughness for each landslide was summarized by the median and upper quartile. Only weak correlations (best Spearman's rho 0.58) were present between landslide age and surface roughness. This correlation becomes weaker with increasing moving window size. Given weak observed associations and discussed challenges pertaining to the complexities of landslide morphology change over time, we currently find that surface roughness alone may not be justifiable to act as a proxy for landslide age for our study region. Furthermore, we recommend future studies should focus on addressing possible natural and anthropogenic factors such as land use change that may alter surface roughness. These studies may focus on one of the three roughness measures used here as they are strongly correlated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
In several empirical and modelling studies on river hydraulics, dispersion was negatively correlated to surface roughness. In this study, it was aimed to investigate the influence of surface roughness on longitudinal dispersion under controlled conditions. In artificial flow channels with a length of 104 m, tracer experiments with variations in channel bed material were performed. By use of measured tracer breakthrough curves, average flow velocity, mean longitudinal dispersion, and mean longitudinal dispersivity were calculated. Longitudinal dispersion coefficients ranged from 0·018 m2 s?1 in channels with smooth bed surface up to 0·209 m2 s?1 in channels with coarse gravel as bed material. Longitudinal dispersion was linearly related to mean flow velocity. Accordingly, longitudinal dispersivities ranged between 0·152 ± 0·017 m in channels with smooth bed surface and 0·584 ± 0·015 m in identical channels with a coarse gravel substrate. Grain size and surface roughness of the channel bed were found to correlate positively to longitudinal dispersion. This finding contradicts several existing relations between surface roughness and dispersion. Future studies should include further variation in surface roughness to derive a better‐founded empirical equation forecasting longitudinal dispersion from surface roughness. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
In this study, we examined the year 2011 characteristics of energy flux partitioning and evapotranspiration of a sub‐alpine spruce forest underlain by permafrost on the Qinghai–Tibet Plateau (QPT). Energy balance closure on a half‐hourly basis was H + λE = 0.81 × (Rn ? G ? S) + 3.48 (W m?2) (r2 = 0.83, n = 14938), where H, λE, Rn, G and S are the sensible heat, latent heat, net radiation, soil heat and air‐column heat storage fluxes, respectively. Maximum H was higher than maximum λE, and H dominated the energy budget at midday during the whole year, even in summer time. However, the rainfall events significantly affected energy flux partitioning and evapotranspiration. The mean value of evaporative fraction (Λ = λE/(λE + H)) during the growth period on zero precipitation days and non‐zero precipitation days was 0.40 and 0.61, respectively. The mean daily evapotranspiration of this sub‐alpine forest during summer time was 2.56 mm day?1. The annual evapotranspiration and sublimation was 417 ± 8 mm year?1, which was very similar to the annual precipitation of 428 mm. Sublimation accounted for 7.1% (30 ± 2 mm year?1) of annual evapotranspiration and sublimation, indicating that the sublimation is not negligible in the annual water balance in sub‐alpine forests on the QPT. The low values of the Priestley–Taylor coefficient (α) and the very low value of the decoupling coefficient (Ω) during most of the growing season suggested low soil water content and conservative water loss in this sub‐alpine forest. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Conventional roughness–resistance relationships developed for pipe and open‐channel flows cannot accurately describe shallow overland flows over natural rough surfaces. This paper develops a new field methodology combining terrestrial laser scanning (TLS) and overland flow simulation to provide a high‐resolution dataset of surface roughness and overland flow hydraulics as simulated on natural bare soil surfaces. This method permits a close examination of the factors controlling flow velocity and a re‐evaluation of the relationship between surface roughness and flow resistance. The aggregate effect of flow dynamics, infiltration and depression storage on retarding the passage of water over a surface is important where runoff‐generating areas are distant from well‐defined channels. Experiments to separate these effects show that this ‘effective resistance’ is dominated by surface roughness. Eight measurements of surface roughness are found to be related to flow resistance: standard deviation of elevations, inundation ratio, pit density (measured both perpendicular and parallel to the flow direction), slope, median depth, skewness of the depth distribution and frontal area. Hillslope position is found to affect the significant roughness measures. In contrast, infiltration rate has little effect on the velocity of water fronts advancing over the soil surfaces examined here and the effect of depression storage is limited. Overland flow resistance is depth dependent where complex microtopographic structures are progressively inundated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Soil erosion in sloping cropland is a key water and soil conservation issue in the Loess Plateau region, China. How surface roughness influences soil detachment remains unclear due to the inconsistent results obtained from existing studies. The objectives of the present study were to evaluate the effects of tillage practices on soil detachment rate in sloping cropland and establish an accurate empirical model for the prediction of soil detachment rates. A series of movable bed experiments were conducted on sloping surfaces under three different tillage practices (manual dibbling, manual hoeing, and contour drilling), with a smooth surface (non-tillage) as a control. The research indicated that soil detachment rate significantly increased with roughness (p < 0.05) since the average soil detachment rate was the highest under the contour drilling treatment (6.762 g m−2 s−1), followed by manual hoeing (4.180 g m−2 s−1), and manual dibbling (3.334 g m−2 s−1); the lowest detachment rate was observed under the non-tillage treatment (3.214 g m−2 s−1). Slope gradient and unit discharge rate were positively correlated with soil detachment rate and proved to be more influential than soil surface roughness. Four composite hydraulic parameters were introduced to estimate soil detachment rate on tilled surfaces. Regression analyses revealed that stream power was the most effective predictor of soil detachment rate compared with unit length shear force, shear stress, and unit stream power. By integrating surface roughness as a variable, the detachment rate could be accurately described as a nonlinear function of stream power and surface roughness. The results of the present study indicate that tillage practice could influence soil loss on sloping cropland, considering the higher soil detachment rates under all tillage practices tested compared with non-tillage. The results are attributed mainly to concentrated flow caused by the high water storage levels on tilled surfaces, which could damage surface microtopography and, subsequently, the development of headcuts.  相似文献   

18.
19.
Peatlands globally are at risk of degradation through increased susceptibility to erosion as a result of climate change. Quantification of peat erosion and an understanding of the processes responsible for their degradation is required if eroded peatlands are to be protected and restored. Owing to the unique material properties of peat, fine‐scale microtopographic expressions of surface processes are especially pronounced and present a potentially rich source of geomorphological information, providing valuable insights into the stability and dominant surface process regimes. We present a new process‐form conceptual framework to rigorously describe bare peat microtopography and use Structure‐from‐Motion (SfM) surveys to quantify roughness for different peat surfaces. Through the first geomorphological application of a survey‐grade structured‐light hand‐held 3D imager (HhI), which can represent sub‐millimetre topographic variability in field conditions, we demonstrate that SfM identifies roughness signatures reliably over bare peat plots (<1 m2), although some smoothing is observed. Across 55 plots, the roughness of microtopographic types is quantified using a suite of roughness metrics and an objective classification system derived from decision tree analysis with 98% success. This objective classification requires just five roughness metrics, each of which quantifies a different aspect of the surface morphology. We show that through a combination of roughness metrics, microtopographic types can be identified objectively from high resolution survey data, providing a much‐needed geomorphological process‐perspective to observations of eroded peat volumes and earth surface change. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

20.
Field studies conducted at Owens Lake, California, provide direct measurements of sand flux on sand sheets with zero to 20 per cent cover of salt grass. Results from 12 different sand transport events show that aerodynamic roughness length and threshold wind shear velocity increase with vegetation cover as measured by vertically projected cover and roughness density (λ). This results in a negative exponential decrease in sediment flux with increasing vegetation cover such that sand transport is effectively eliminated when the vertically projected cover of salt grass is greater than 15 per cent. A general empirical model for the relation between sand flux and vegetation cover has been derived and can be used to predict the amount of vegetation required to stabilize sand dune areas. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号