共查询到20条相似文献,搜索用时 15 毫秒
1.
Virgilio Fiorotto 《水文科学杂志》2013,58(5):966-975
Abstract The analysis of drought discharge is of utmost relevance in the design of water intake structures, management of water resources, and in coping with environmental issues. In this context, the master recession curve represents a tool in hydrological analysis, giving integrated information on long period drought flow rates. In this paper, a technique is developed for deriving a master recession curve directly from daily discharge series that takes into account the high variability in the behaviour of individual recession segments. The statistical framework developed allows us to explicitly represent uncertainty, and hence a novel interpretation of the master recession curve is derived. The method is successfully applied to three important Italian basins draining the southern slopes of the eastern Alps. Citation Fiorotto, V. and Caroni, E., 2013. A new approach to master recession curve analysis. Hydrological Sciences Journal, 58 (5), 966–975. 相似文献
2.
Abstract Discharge in most rivers consists mainly of baseflow exfiltrating from shallow groundwater reservoirs, while surface or other direct flows cease soon after rain storms or snowmelt. Analysis of observed baseflow recessions of two rivers in Turkey with intermittent flows and different geographical and climatic characteristics yielded nonlinear storage–outflow relationships of the highly seasonal aquifers. Baseflow separation was carried out using a nonlinear reservoir algorithm. Baseflow seasonality is related to the hydro-climatic conditions influencing groundwater recharge and evapotranspiration of groundwater. As intermittent streams generally have zero flows in the dry season, calibration of recession parameters is in many cases a complicated task. Citation Aksoy, H. & Wittenberg, H. (2011) Nonlinear baseflow recession analysis in watersheds with intermittent streamflow. Hydrol. Sci. J. 56(2), 226–237. 相似文献
3.
The effect of wildfire on peak streamflow and annual water yield has been investigated empirically in numerous studies. The effect of wildfire on baseflow recession rates, in contrast, is not well documented. The objective of this paper was to quantify the effect of wildfire on baseflow recession rates in California for both individual watersheds and for all the study watersheds collectively. Two additional variables, antecedent groundwater storage and potential evapotranspiration, were also investigated for their effect on baseflow recession rates and postfire baseflow recession rate response. Differences between prefire and postfire baseflow recession rates were modeled statistically in 8 watersheds using a mixed statistical model that accounted for fixed and random effects. For the all‐watershed model, antecedent groundwater storage, potential evapotranspiration, and wildfire were each found to be significant controls on baseflow recession rates. Wildfire decreased baseflow recession rates 52.5% (37.6% to 66.0%), implying that postfire reductions in above‐ground vegetation (e.g., decreased interception, decreased evapotranspiration) were a stronger control on baseflow recession rate change than hydrophobicity. At an individual watershed scale, baseflow recession rate response to wildfire was found to be sensitive to intraannual differences in antecedent groundwater storage in 2 watersheds, with the effect of wildfire on baseflow recession rates being greater with lower levels of antecedent groundwater storage. Examination of burn severity for a subset of the study watersheds pointed to riparian zone burn severity as a potential primary control on postfire recession rate change. This study demonstrates that wildfire may have a substantial impact on fluxes to and from groundwater storages, altering the rate at which baseflow recedes. 相似文献
4.
地震信号由于各种原因,往往是一种非线性、非平稳信号,基于平稳信号理论的常规傅立叶变化方法不能刻画任一时刻的频率成分.时频分析能同时保留时间与频率信息,目前已经出现了很多时频分析方法.本文介绍了Hilbert变换、Hilbert-Huang变换、正弦曲线拟合、雷克子波匹配、短时傅立叶变换、小波变换、S变换以及Cohen类这八种方法,并从时间分辨率、频率分辨率,以及对多频率成份信号适应能力等各方面阐述了各种方法的优缺点,对其中的一些方法结合了理论记录进行了试算,进一步阐述了这些方法的长处和不足之处. 相似文献
5.
Compared to hydrograph recession analysis, which is widely applied in engineering hydrology, the quantitative assessment of stream salinity with time (i.e. the salinograph) has received significantly less attention. In particular, while in many previous hydrological studies an inverse relationship between hydrograph and salinograph responses is apparent, the concept of salinity accession (the inversely related salinity counterpart to hydrograph recession) has not been introduced nor quantitatively evaluated in previous literature. In this study, we conduct a mathematical analysis of salinograph accession, and determine new quantitative relationships between salinity accession and hydrograph recession parameters. An equation is formulated that reproduces the general trend in salinity accession. A salinity accession parameter kc is then introduced and is shown to be the ratio of direct runoff to total stream flow recession parameters: kr/k. The groundwater recession parameter kg was estimated using a simple and rapid method that uses both salinograph and hydrograph data. Salinity accession type‐curves illustrate that under certain conditions, the relative steepness of individual salinographs is dependent upon the ratio of groundwater salinity to direct runoff salinity: Cg/Cr. The salinity accession algorithms are applied to two contrasting field settings: Scott Creek, South Australia and Sandy Creek, northern Queensland, Australia. It was found that kg > k during periods of obvious stream flow recession, for the events analysed. Salinograph accession behaviour was fairly similar for both sites, despite contrasting environments. Using assumed end‐member salinities for groundwater and direct runoff based upon field observations, the behaviour of kc from the Scott Creek site was approximately reproduced by varying the initial groundwater to runoff flow ratio: Qg0/Qr0, within reasonable parameter ranges. The use of salinograph information when used in addition to standard hydrograph analyses provided useful information on recession characteristics of stream components. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
6.
Since Brutsaert and Neiber (1977), recession curves are widely used to analyse subsurface systems of river basins by expressing ? dQ/dt as a function of Q, which typically take a power law form: ? dQ/dt = kQα, where Q is the discharge at a basin outlet at time t. Traditionally recession flows are modelled by single reservoir models that assume a unique relationship between ? dQ/dt and Q for a basin. However, recent observations indicate that ? dQ/dt ‐ Q relationship of a basin varies greatly across recession events, indicating the limitation of such models. In this study, the dynamic relationship between ? dQ/dt and Q of a basin is investigated through the geomorphological recession flow model which models recession flows by considering the temporal evolution of its active drainage network (the part of the stream network of the basin draining water at time t). Two primary factors responsible for the dynamic relationship are identified: (i) degree of aquifer recharge (ii) spatial variation of rainfall. Degree of aquifer recharge, which is likely to be controlled by (effective) rainfall patterns, influences the power law coefficient, k. It is found that k has correlation with past average streamflow, which confirms the notion that dynamic ? dQ/dt ‐ Q relationship is caused by the degree of aquifer recharge. Spatial variation of rainfall is found to have control on both the exponent, α, and the power law coefficient, k. It is noticed that that even with same α and k, recession curves can be different, possibly due to their different (recession) peak values. This may also happen due to spatial variation of rainfall. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
7.
In an earlier paper (Bako and Hunt, 1988), a method for the derivation of the baseflow recession constant (K) using one-way analysis of variance was presented. This paper presents the results of the field application of this method. The K values obtained by using the numerical equation of Bako and Hunt (1988) were inserted in the exponential recession equation (Barnes, 1939) to generate a series of baseflows. The fit between the model and the historical flows was found to be greater than 99 per cent thus confirming the applicability of the numerical method under field situation. The main advantage of this technique is its amenability for computerized application thus making it relatively faster than any of the existing techniques of fitting the recession equation. For this reason, the subjectivity inherent in most of the existing techniques is eliminated and a measure of procedural consistency can be guaranteed. Consistency is necessary if intercatchment comparison or interpolation of K values is to be meaningful. 相似文献
8.
《水文科学杂志》2013,58(1):192-205
Abstract Considering the geological conditions of the southwest of Boroujerd and northwest of Doroud, Iran, karst development is analysed with respect to the hydrodynamic behaviour of the main draining springs of the units and the karstic aquifers are classified as either those developed in Cretaceous limestone or those developed in Oligomiocene limestone. For this purpose, the yields of the main karstic springs of the region—Absardeh and Zoorabad (Cretaceous karstic limestone aquifer), Kalamsooz and Azizabad (Oligomiocene karstic limestone aquifer)—were measured and analysed. Analysis of the recession curve is used for hydrodynamical analysis and to construct the conceptual model for estimation of karst development in the selected aquifers. Based on the results, the dynamic storage capacity of the saturated zone in Cretaceous limestone is evaluated as low to medium and that in Oligomiocene limestone as medium to high. The dynamic storage capacity of the unsaturated zone in Cretaceous limestone is evaluated as high and that in Oligomiocene limestone as low to medium. Moreover, the contribution of quickflow in karstic aquifers developed in the Cretaceous limestone drained by the Absardeh and Zoorabad springs is 23.5 and 82.2%, respectively, and that for the Kalamsooz and Azizabad springs (Oligomiocene limestone) is 5.7 and 22.5%, respectively. Flow in the Cretaceous limestone aquifer drained by the Zoorabad Spring is of concentrated type and the main flow occurs in the well-developed karstic conduits. The main flow in the Oligomiocene limestone aquifer, drained by the Kalamsooz Spring, occurs in a network of joints and fractures and the contribution of concentrated flow is very low. The transmissivity of the saturated zone in the karstic aquifer drained by the Zoorabad and Absardeh springs is medium to high and that for the Kalamsooz and Azizabad springs is found to be low. 相似文献
9.
ABSTRACTThis study assesses the sensitivity to model fitting methods and segment selection of the estimated parameters A and B of the model dQ/dt = ?AQB for individual events. We investigated about 750 recession events observed at 25 US Geological Survey gauges in the Iowa and Cedar river basins in the United States, with drainage areas ranging from 7 to 17 000 km2. The parameters of these recession events were estimated using three commonly adopted methods and recession segments with different extraction criteria. The results showed that the variations of the parameter estimates for the same recession event were comparable to the variations of parameters between different events due to using different model fitting methods and recession segments. This raises cautions for comparative analysis of individual recessions. The result also implies that the nonlinear direct fitting method is the most robust among the three model fitting methods compared.
EDITOR Z.W. Kundzewicz ASSOCIATE EDITOR T. Okruszko 相似文献
10.
A comparison of high‐resolution specific conductance‐based end‐member mixing analysis and a graphical method for baseflow separation of four streams in hydrologically challenging agricultural watersheds 下载免费PDF全文
Quantifying the relative contributions of different sources of water to a stream hydrograph is important for understanding the hydrology and water quality dynamics of a given watershed. To compare the performance of two methods of hydrograph separation, a graphical program [baseflow index (BFI)] and an end‐member mixing analysis that used high‐resolution specific conductance measurements (SC‐EMMA) were used to estimate daily and average long‐term slowflow additions of water to four small, primarily agricultural streams with different dominant sources of water (natural groundwater, overland flow, subsurface drain outflow, and groundwater from irrigation). Because the result of hydrograph separation by SC‐EMMA is strongly related to the choice of slowflow and fastflow end‐member values, a sensitivity analysis was conducted based on the various approaches reported in the literature to inform the selection of end‐members. There were substantial discrepancies among the BFI and SC‐EMMA, and neither method produced reasonable results for all four streams. Streams that had a small difference in the SC of slowflow compared with fastflow or did not have a monotonic relationship between streamflow and stream SC posed a challenge to the SC‐EMMA method. The utility of the graphical BFI program was limited in the stream that had only gradual changes in streamflow. The results of this comparison suggest that the two methods may be quantifying different sources of water. Even though both methods are easy to apply, they should be applied with consideration of the streamflow and/or SC characteristics of a stream, especially where anthropogenic water sources (irrigation and subsurface drainage) are present. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
11.
The characterization of a stream's low-flow regime is required for ecological purposes, water quality studies and various other water projects. If observed stream flow records are insufficient, low-flow characteristics may need to be estimated from simulated daily stream flow time-series. The model employed should conceptualize low-flow generation mechanisms and surface–subsurface interactions adequately. The ability of the model to simulate low-flow regimes may be assessed by means of various low-flow analysis techniques. This paper illustrates the approach using the example of the physically based, semi-distributed VTI daily rainfall–runoff model. The model has been applied to five perennial headwater catchments in South Africa, which are located in different parts of the country, represent different physiographical environments and are characterized by different baseflow responses. The model simulations are evaluated in terms of both conventional goodness-of-fit criteria and several low-flow measures such as recession characteristics, baseflow volumes, flow duration curves and continuous low-flow events below specified threshold discharges. For all the catchments considered the model has been found to perform successfully in terms of conventional fit statistics and flow duration curves. However, its ability to reproduce recession characteristics and continuous low-flow spells appears to be less satisfactory. This suggests that daily model simulations should be evaluated by low-flow criteria, which are frequently ignored in water resource assessment practices. © 1998 John Wiley & Sons, Ltd. 相似文献
12.
Y. -K. Tung K. -C. Yeh J. -C. Yang 《Stochastic Environmental Research and Risk Assessment (SERRA)》1997,11(2):145-171
Hydrologic regionalization is a useful tool that allows for the transfer of hydrological information from gaged sites to ungaged
sites. This study developed regional regression equations that relate the two parameters in Nash's IUH model to the basin
characteristics for 42 major watersheds in Taiwan. In the process of developing the regional equations, different regression
procedures including the conventional univariate regression, multivariate regression, and seemingly unrelated regression were
used. Multivariate regression and seeming unrelated regression were applied because there exists a rather strong correlation
between the Nash's IUH parameters. Furthermore, a validation study was conducted to examine the predictability of regional
equations derived by different regression procedures. The study indicates that hydrologic regionalization involving several
dependent variables should consider their correlations in the process of establishing the regional equations. The consideration
of such correlation will enhance the predictability of resulting regional equations as compared with the ones from the conventional
univariate regression procedure. 相似文献
13.
14.
Hydrologic regionalization is a useful tool that allows for the transfer of hydrological information from gaged sites to ungaged
sites. This study developed regional regression equations that relate the two parameters in Nash's IUH model to the basin
characteristics for 42 major watersheds in Taiwan. In the process of developing the regional equations, different regression
procedures including the conventional univariate regression, multivariate regression, and seemingly unrelated regression were
used. Multivariate regression and seeming unrelated regression were applied because there exists a rather strong correlation
between the Nash's IUH parameters. Furthermore, a validation study was conducted to examine the predictability of regional
equations derived by different regression procedures. The study indicates that hydrologic regionalization involving several
dependent variables should consider their correlations in the process of establishing the regional equations. The consideration
of such correlation will enhance the predictability of resulting regional equations as compared with the ones from the conventional
univariate regression procedure. 相似文献
15.
Flow from artificial subsurface (tile) drainage systems may be contributing to increasing baseflow in Midwestern rivers and increased losses of nitrate‐nitrogen. Standard hydrograph analysis techniques were applied to model simulation output and field monitoring from tile‐drained landscapes to explore how flow from drainage tiles affects stream baseflow and streamflow recession characteristics. DRAINMOD was used to simulate hydrologic response from drained (24 m tile spacing) and undrained agricultural systems. Hydrograph analysis was conducted using programs PART and RECESS. Field monitoring data were obtained from several monitoring sites in Iowa typical of heavily drained and less‐drained regions. Results indicate that flow from tile drainage primarily affects the baseflow portion of a hydrograph, increasing annual baseflow in streams with seasonal increases primarily occurring in the late spring and early summer months. Master recession curves from tile‐drained watersheds appear to be more linear than less‐tiled watersheds although comparative results of the recession index k were inconsistent. Considering the magnitude of non‐point source pollutant loads coming from tile‐drained landscapes, it is critical that more in‐depth research and analysis be done to assess the effects of tile drainage on watershed hydrology if water quality solutions are to be properly evaluated. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
16.
采用四阶基数B-样条小波模拟地震动加速度时程,进而建立一种求地震反应的通用方法,解的误差仅来自于对地震动加速度时程的模拟。并用小波分解,将地震波分解为不同周期成分之和,以各分量最大加速度值的大小来衡量其在原波中的比重,可以清楚看到距震中不同远近地震波的性态,并做定量分析和观察各分量卓越周期的变化。求地震波及各分量的反应谱,从各分量的标准加速度反应谱中,可以看到地震波不同周期分量对体系固有周期的影响,这是以往做不到的。将上述方法应用于汶川8.0级地震加速度记录,研究不同地震记录的性态。 相似文献
17.
磁暴可能对电网、油气管线等技术系统的安全运行造成影响,分析磁暴的时频特征对研究技术系统的影响有重要意义.本研究采用多尺度小波变换,分析广东肇庆地磁台的磁暴地磁数据,将磁暴地磁分量数据分解为高频和低频,研究了磁暴地磁分量的时域特征,得到了一些有价值的结论. 相似文献
18.
André Gustavo da Silva Melo Honorato Gustavo Barbosa Lima da Silva Celso Augusto Guimarães Santos 《水文科学杂志》2013,58(15-16):2060-2075
ABSTRACTCombinations of low-frequency components (also known as approximations) resulting from the wavelet decomposition are tested as inputs to an artificial neural network (ANN) in a hybrid approach, and compared to classical ANN models for flow forecasting for 1, 3, 6 and 12 months ahead. In addition, the inputs are rewritten in terms of the flow, revealing what type of information was being provided to the network, in order to understand the effect of the approximations on the forecasting performance. The results show that the hybrid approach improved the accuracy of all tested models, especially for 1, 3 and 6 months ahead. The input analyses show that high-frequency components are more important for shorter forecast horizons, while for longer horizons, they may worsen the model accuracy. 相似文献
19.
20.
基于小波分析的结构损伤检测研究进展 总被引:17,自引:1,他引:17
近10几年来,在土木和机械领域结构损伤识别方法已引起不同领域的相关学者的极大研究兴趣。小波分析是一种新的数学分析和信号处理工具,可以对非稳态信号进行详细的时频分析,是传统傅里叶分析所不能及的,已广泛应用于土木、机械和航空工程领域中,特别是在结构损伤识别和健康监测中的应用尤为突出。本文回顾和总结了小波分析理论及其在结构损伤识别、损伤定位和损伤程度确定中的应用,对今后的研究进行了讨论和展望。 相似文献