首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 777 毫秒
1.
The stability of the pool–rif?e sequence is one of the most fundamental features of alluvial streams. For several decades, the process of velocity, or shear stress, reversal has been proposed as an explanation for an increase in the amplitude of pool–rif?e sequence bars during high ?ows, offsetting gradual scour of rif?es and deposition in pools during low ?ows. Despite several attempts, reversal has rarely been recorded in ?eld measurements. We propose that, instead of being reversed, maxima and minima in shear stress are phase‐shifted with respect to the pool–rif?e sequence bedform pro?le, so that maximum shear stress occurs upstream of rif?e crests at high ?ow, and downstream at low ?ow. Such phase‐shifts produce gradients of shear stress that explain rif?e deposition, and pool scour, at high ?ow, in accord with sediment continuity. The proposal is supported by results of a one‐dimensional hydraulic model applied to the surveyed bathymetry of a pool–rif?e sequence in a straight reach of a gravel‐bed river. In the sequence studied, the upstream phase‐shift in shear stress at high ?ow was associated with variations in channel width, with width minima occurring upstream of rif?e crests, approximately coincident with shear stress maxima, and width maxima occurring downstream of rif?e crests. Assuming that the width variation is itself the result of ?ow de?ection by rif?e crests at low ?ow, and associated bank‐toe scour downstream, low and high ?ow can be seen to have complementary roles in maintaining alluvial pool–rif?e sequences. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
A computational study is presented on the hydraulics of a natural pool–rif?e sequence composed of mixed cobbles, pebbles and sand in the River Lune, northern England. A depth‐averaged two‐dimensional numerical model is employed, calibrated with observed data at the ?eld site. From the computational outputs, the occurrence of longitudinally double peak zones of bed shear stress and velocity is found. In particular, at low discharge there exists a primary peak zone of bed shear stress and velocity at the rif?e tail in line with the local maximum energy slope, in addition to a secondary peak at the pool head. As discharge increases, the primary peak at the rif?e tail at low ?ow moves toward the upstream side of the rif?e along with the maximum energy slope, showing progressive equalization to the surrounding hydraulic pro?les. Concurrently, the secondary peak, due to channel constriction, appears to stand at the pool head, with its value increasing with discharge and approaching or exceeding the primary peak over the rif?e. The existence of ?ow reversal is demonstrated for this speci?c case, which is attributable to channel constriction at the pool head. A dynamic equilibrium model is presented to reconstruct the pool–rif?e morphology. A series of numerical modelling exercises demonstrates that the pool–rif?e morphology is more likely produced by shallow ?ows concentrated with coarse sediments than deep ?ows laden with low concentrations of ?ne sediments. It is concluded that channel constriction can, but may not necessarily, lead to competence reversal, depending on channel geometry, ?ow discharge and sediment properties. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
The Butgenbach dam on the Warche River was built in 1932 in order to maintain a suf?cient supply of water to the Robertville reservoir situated 7 km downstream, for the production of hydroelectricity. During winter months, releases are made almost every day from the Butgenbach dam. From a hydrological point of view, this has resulted in signi?cantly reducing the number of discharges that are higher than bankfull. Despite the reduction in peak discharge, there is a signi?cant increase in the number of ef?cient discharges (0·6 bankfull). The impacts of these hydrological modi?cations on the bed morphology and sedimentology below the Butgenbach dam have been studied and the following geomorphological modi?cations have been identi?ed: a doubling of the width of the channel in 45 years, a reduction in the number of rif?es and pools, an increase in the number of gravel bars and islets and an increase in bedrock outcrops in the channel. Moreover, the ?nest bed particles are mobilized by the almost daily releases, inducing a signi?cant increase in bed‐material size sorting. The reduction of sinuosity and the disappearance of bed differentiation and rif?e/pool sequences have produced a diminution of bed roughness and an increase of the competence of the river. Thus relatively small ?oods can remove the armoured layer. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Numerous morphological changes can occur where two channels of distinct sediment and flow regimes meet, including abrupt shifts in channel slope, cross‐sectional area, planform style, and bed sediment size along the receiving channel. Along the Rio Chama between El Vado and Abiquiu Dams, northern New Mexico, arroyo tributaries intermittently deliver sediment from erodible sandstone and shale canyon walls to the mainstem channel. Much of the tributary activity occurs in flash floods and debris flows during summer thunderstorms, which often load the channel with sand and deposit coarser material at the mainstem confluence. In contrast, mainstem channel flow is dominated by snowmelt runoff. To examine tributary controls, we systematically collected cross‐section elevation and bed sediment data upstream and downstream of 26 tributary confluences along a 17 km reach. Data from 203 cross‐sections were used to build a one‐dimensional hydraulic model for comparing estimated channel parameters at bankfull and low‐flow conditions at these sites As compared to intermediate reaches, confluences primarily impact gradient and bed sediment size, reducing both parameters upstream of confluences and increasing them downstream. Cross‐section area is also slightly elevated above tributary confluences and reduced below. Major shifts in slope and bed sediment size at confluences appear to drive variations in sediment entrainment and transport capacity and the relative storage of sand along the channel bed. The data were analyzed and compared to models of channel organization based on lateral inputs, such as the Network Variance Model and the Sediment Link Concept. At a larger scale, hillslope ? channel coupling increases in the downstream third of the study reach, where the canyon narrows, resulting in steeper slopes and more continuous coarse bed material along the mainstem, and thus, limiting the contrast with tributary confluences. However, channel form and sediment characteristics are highly variable along the study reach, reflecting variations in the size and volume of sediment inputs related to the surface geology in tributary watersheds, morphology of the Rio Chama at the junction (i.e. bends, confinement), and the relative magnitude and location of past depositional events. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
We exploit a natural experiment caused by an extreme flood (~500 year recurrence interval) and sediment pulse derived from more than 2500 concurrent landslides to explore the influence of valley‐scale geomorphic controls on sediment slug evolution and the impact of sediment pulse passage and slug deposition and dispersion on channel stability and channel form. Sediment slug movement is a crucial process that shapes gravel‐bed rivers and alluvial valleys and is an important mechanism of downstream bed material transport. Further, increased bed material transport rates during slug deposition can trigger channel responses including increases in lateral mobility, channel width, and alluvial bar dominance. Pre‐ and post‐flood LiDAR and aerial photographs bracketing the 2007 flood on the Chehalis River in south‐western Washington State, USA, document the channel response with high spatial and temporal definition. The sediment slug behaved as a Gilbert Wave, with both channel aggradation and sequestration of large volumes of material in floodplains of headwaters' reaches and reaches where confined valleys enter into broad alluvial valleys. Differences between the valley form of two separate sub‐basins impacted by the pulse highlight the important role channel and channel‐floodplain connectivity play in governing downstream movement of sediment slug material. Finally, channel response to the extreme flood and sediment pulse illustrate the connection between bed material transport and channel form. Specifically, the channel widened, lateral channel mobility increased, and the proportion of the active channel covered by bars increased in all reaches in the study area. The response scaled tightly with the relative amount of bed material sediment transport through individual reaches, indicating that the amount of morphological change caused by the flood was conditioned by the simultaneous introduction of a sediment pulse to the channel network. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
H. Marttila  B. Kløve 《水文研究》2014,28(17):4756-4765
Lowland catchments in Finland are intensively managed, promoting erosion and sedimentation that negatively affects aquatic environments. This study quantified fine‐grained bed sediment in the main channel and upstream headwaters of the River Sanginjoki (399.93 km2) catchment, Northern Finland, using remobilization sediment sampling during the ice‐free period (May 2010–December 2011). Average bed sediment storage in river was 1332 g m?2. Storage and seasonal variations were greater in small headwater areas (total bed sediment storage mean 1527 g m?2, range 122–6700 g m?2 at individual sites; storage of organic sediment: mean 414 g m?2, range 27–3159 g m?2) than in the main channel (total bed sediment storage: mean 1137 g m?2, range 61–4945 g m?2); storage of organic sediment: mean 329 g m?2, range 13–1938 g m?2). Average reach‐specific bed sediment storage increased from downstream to upstream tributaries. In main channel reaches, mean specific storage was 8.73 t km?1, and mean specific storage of organic sediment 2.45 t km?1, whereas in tributaries, it was 126.94 and 34.05 t km?1, respectively. Total fine‐grained bed sediment storage averaged 563 t in the main channel and 6831 t in the catchment. The proportion of mean organic matter at individual sites was 15–47% and organic carbon 4–455 g C m?2, with both being highest in small headwater tributaries. Main channel bed sediment storage comprised 52% of mean annual suspended sediment flux and stored organic carbon comprised 7% of mean annual total organic carbon load. This indicates the importance of small headwater brooks for temporary within‐catchment storage of bed sediment and organic carbon and the significance of fine‐grained sediment stored in channels for the suspended sediment budget of boreal lowland rivers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
In gravel‐bed rivers with well‐de?ned pool–bar morphology, the path length of transported bed particles must be, at least during ‘channel‐forming’ ?ows, equal to the length scale of the morphology. This is the basis for some methods for estimating bed material transport rates. However, previous data, especially from ?eld tests, are often strongly positively skewed with mean much shorter than the pool–bar spacing. One possible explanation is that positively skewed distributions occur only in channels lacking distinct pool–bar topography or only at lower discharges in pool–bar channels. A series of ?ume experiments using ?uorescent tracers was used to measure path length distributions in low‐sinuosity meandering channels to assess the relation with channel morphology and ?ow conditions. At channel‐forming ?ows, 55 to 75 per cent of the tracer grains were deposited on the ?rst point bar downstream of the point of tracer input, with 15 per cent passing beyond the ?rst bar. Path length distributions are symmetrical with mean equal to the pool–bar spacing and can be described with a Cauchy distribution. In some cases there was a secondary mode close to the point of tracer introduction; this bimodal distribution ?ts a combined gamma–Cauchy distribution. Only when discharge was reduced below the channel‐forming ?ow were frequency distributions unimodal and positively skewed with no relation to the pool–bar spacing. Thus, path length distributions become more symmetrical, and mean path length increases to coincide with pool–bar spacing, as ?ow approaches channel‐forming conditions. This is a substantial modi?cation of existing models of particle transfer in gravel‐bed rivers. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
The composition, grain‐size, and flux of stream sediment evolve downstream in response to variations in basin‐scale sediment delivery, channel network structure, and diminution during transport. Here, we document downstream changes in lithology and grain size within two adjacent ~300 km2 catchments in the northern Rocky Mountains, USA, which drain differing mixtures of soft and resistant rock types, and where measured sediment yields differ two‐fold. We use a simple erosion–abrasion mass balance model to predict the downstream evolution of sediment flux and composition using a Monte Carlo approach constrained by measured sediment flux. Results show that the downstream evolution of the bed sediment composition is predictably related to changes in underlying geology, influencing the proportion of sediment carried as bedload or suspended load. In the Big Wood basin, particle abrasion reduces the proportion of fine‐grained sedimentary and volcanic rocks, depressing bedload in favor of suspended load. Reduced bedload transport leads to stronger bed armoring, and coarse granitic rocks are concentrated in the stream bed. By contrast, in the North Fork Big Lost basin, bedload yields are three times higher, the stream bed is less armored, and bed sediment becomes dominated by durable quartzitic sandstones. For both basins, the geology‐based mass balance model can reproduce within ~5% root‐mean‐square error the composition of the bed substrate using realistic erosion and abrasion parameters. As bed sediment evolves downstream, bedload fluxes increase and decrease as a function of the abrasion parameter and the frequency and size of tributary junctions, while suspended load increases steadily. Variable erosion and abrasion rates produce conditions of variable bed‐material transport rates that are sensitive to the distribution of lithologies and channel network structure, and, provided sufficient diversity in bedrock geology, measurements of bed sediment composition allow for an assessment of sediment source areas and yield using a simple modeling approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Source rock lithology and immediate modifying processes, such as chemical weathering and mechanical erosion, are primary controls on fluvial sediment supply. Sand composition and Chemical Index of Alteration (CIA) of parent rocks, soil and fluvial sand of the Savuto River watershed, Calabria (Italy), were used to evaluate the modifications of source rocks through different sections of the basin, characterized by different geomorphic processes, in a sub‐humid Mediterranean climate. The headwaters, with gentle topography, produce a coarse‐grained sediment load derived from deeply weathered gneiss, having sand of quartzofeldspathic composition, compositionally very different from in situ degraded bedrock. Maximum estimated CIA values suggest that source rock has been affected significantly by weathering, and it testifies to a climatic threshold on the destruction of the bedrock. The mid‐course has steeper slopes and a deeply incised valley; bedrock consists of mica‐schist and phyllite with a very thin regolith, which provides large cobble to very coarse sand sediments to the main channel. Slope instability, with an areal incidence of over 40 per cent, largely supplies detritus to the main channel. Sand‐sized detritus of soil and fluvial sand is lithic. Estimated CIA value testifies to a significant weathering of the bedrock too, even if in this part of the drainage basin steeper slopes allow erosion to exceed chemical weathering. The lower course has a braided pattern and sediment load is coarse to medium–fine grained. The river cuts across Palaeozoic crystalline rocks and Miocene siliciclastic deposits. Sand‐sized detritus, contributed from these rocks and homogenized by transport processes, has been found in the quartzolithic distal samples. Field and laboratory evidence indicates that landscape development was the result of extensive weathering during the last postglacial temperature maximum in the headwaters, and of mass‐failure and fluvial erosional processes in the mid‐ and low course. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
A two‐dimensional shallow water hydro‐sediment‐morphodynamic model is applied to investigate alternate bar formation, development and sediment sorting in straight channels. The model is coupled, explicitly incorporating the flow–sediment–bed interactions by using the full mass and momentum conservation equations, which are numerically solved by a well‐balanced version of the finite volume Slope Limiter Centred (SLIC) scheme. The model is first tested against a flume experiment on alternate bars formed over a uniform sediment bed, which clearly exhibits processes of bar formation, migrating and finally approaching an equilibrium state. Then it is applied to another flume experiment on alternate bars due to non‐uniform sediment transport. The computational results are evaluated, with a focus on the longitudinal and vertical sediment sorting. It is argued for the first time that the inconsistent sediment sorting patterns observed in previous studies are determined by different sediment transport conditions, i.e. full versus partial transport. When a condition of full transport is achieved, under which all size fractions are fully mobilized and transported, the longitudinal surface sediment shows a sorting pattern of coarse‐on‐head and fine‐in‐pool, and the vertical substrate sediment exhibits an immobile‐fine‐coarse structure upwards. In contrast, for a partial transport condition, under which only finer fraction participates in the transport process, an opposite longitudinal pattern (i.e. fine‐on‐head and coarse‐in‐pool) and a different vertical structure (i.e. immobile‐coarse‐fine) are observed. Concurrently, numerical experiments with specified conditions show that the critical aspect ratio for the formation of migrating alternate bars is approximately equal to 12. With the increase of the aspect ratio, the bar length grows gradually, while the bar height increases rapidly for moderate values of the aspect ratio and then keeps nearly stable. The bar celerity, however, is weakly sensitive to the variation of this ratio. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
A record spanning almost 20 years of suspended sediment and discharge measurements on two reaches of an agricultural watershed is used to assess the influence of in‐channel sediment supplies and bed composition on suspended sediment concentrations (SSC). We analyse discharge‐SSC relationships from two small streams of similar hydrology, climate and land use but widely different bed compositions (one dominated by sand, the other by gravel). Given that sand‐dominated systems have more fine sediment available for transport, we use bed composition and the relative proportion of surface sand and gravel to be representative of in‐channel sediment supply. Both high flow events and lower flows associated with onset and late recessional storm flow (‘low flows’) are analysed in order to distinguish external from in‐channel sources of sediment and to assess the relationship between low flows and sediment supply. We find that SSC during low flows is affected by changes to sediment supply, not just discharge capacity, indicated by the variation in the discharge‐SSC relationship both within and between low flows. Results also demonstrate that suspended sediment and discharge dynamics differ between reaches; high bed sand fractions provide a steady supply of sediment that is quickly replenished, resulting in more frequent sediment‐mobilizing low flow and relatively constant SSC between floods. In contrast, SSC of a gravel‐dominated reach vary widely between events, with high SSC generally associated with only one or two high‐flow events. Results lend support to the idea that fine sediment is both more available and more easily transported from sand‐dominated streambeds, especially during low flows, providing evidence that bed composition and in‐channel sediment supplies may play important roles in the mobilization and transport of fine sediment. In addition, the analysis of low‐flow conditions, an approach unique to this study, provides insight into alternative and potentially significant factors that control fine sediment dynamics. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
A better understanding of bedrock incision mechanisms and processes is essential to the study of long‐term landscape evolution. Yet, little is known about flow dynamics in bedrock rivers, limiting our ability to make realistic predictions of local bedrock incision rates. A recent investigation of flow through bedrock canyons of the Fraser River revealed that plunging flows, defined by the downward‐directed movement of near surface flow toward the channel bed, occur in channels that have low width‐to‐depth ratios. Plunging flows occur into deep scour pools, which are often coincident with lateral constrictions and channel spanning submerged ridges (sills). A phenomenological investigation was undertaken to reproduce the flow fields observed in the Fraser canyons and to explore morphological controls on the occurrence and relative strength of plunging flow in bedrock canyons. Our observations show that the plunging flow structure can be produced along a scour pool entrance slope by accelerating the flow at the canyon entrance either over submerged sills or through lateral constrictions. Plunging flow appears to be a function of convective deceleration into a scour pool which can be enhanced by sill height, the amount of the channel width that is constricted, pool entrance slope, discharge, and a reduction in channel width‐to‐depth ratio. Plunging flow greatly enhances the potential for incision to occur along the channel bed and is an extreme departure from the assumptions of steady, uniform flow in bedrock incision models, highlighting the need for improved formulations that account for fluid flow. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
Current global warming projections suggest a possible increase in wildfire and drought, augmenting the need to understand how drought following wildfire affects the recovery of stream channels in relation to sediment dynamics. We investigated post‐wildfire geomorphic responses caused by storms during a prolonged drought following the 2013 Springs Fire in southern California (USA), using multi‐temporal terrestrial laser scanning and detailed field measurements. After the fire, a dry‐season dry‐ravel sediment pulse contributed sand and small gravel to hillslope‐channel margins in Big Sycamore Creek and its tributaries. A small storm in WY 2014 generated sufficient flow to mobilize a portion of the sediment derived from the dry‐ravel pulse and deposited the fine sediment in the channel, totaling ~0.60 m3/m of volume per unit length of channel. The sediment deposit buried step‐pool habitat structure and reduced roughness by over 90%. These changes altered sediment transport characteristics of the bed material present before and after the storm; the ratio of available to critical shear stress (τoc) increased by five times. Storms during WY 2015 contributed additional fine sediment from tributaries and lower hillslopes and hyperconcentrated flow transported and deposited additional sediment in the channel. Together these sources delivered sediment on the order of six times that in 2014, further increasing τo/τc. These storms during multi‐year drought following wildfire transformed channel dynamics. The increased sediment transport capacity persisted during the drought period characterized by the longer residence time of relatively fine‐grained post‐fire channel sedimentation. This contrasts with wetter years, when post‐fire sediment is transported from the fluvial system during the same season as the post‐fire sediment pulse. Results of this short‐term study highlight the complex and substantial effects of multi‐year drought on geomorphic responses following wildfire. These responses influence pool habitat that is critical to longer‐term post‐wildfire riparian ecosystem recovery. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
Streambank erosion is a primary source of suspended sediments in many waterways of the US Atlantic Piedmont. This problem is exacerbated where banks are comprised of fine sediment produced by the intensive land use practices of early European settlers. A stream in this region, Richland Creek incises into banks comprised of three stratigraphic layers associated with historic land use: pre‐European settlement, early European agriculture and development, and water‐powered milldam operation. This study aims to identify the bank processes along a reach of Richland Creek that is eroding towards its pre‐disturbance elevation. The volume of material that has eroded along this stream since the milldam breached was calculated by differencing a reconstructed surface of the pond bed and an aerial lidar digital terrain model (DTM). Immediately downstream from the study reach, the channel is floored by bedrock and immediately upstream the rate of channel erosion approximately doubled along the longitudinal profile of Richland Creek, which indicate that the study reach spans the transition from a channel dominated by vertical incision in the upstream direction to horizontal widening in the downstream direction. The combined hydrometeorological conditions and dominant processes causing reach‐scale cut bank erosion were investigated with analyses of stream stage, precipitation, and streambank volumetric and surfaces change that was measured during nine terrestrial lidar surveys in 2010–2012. The spatial variability of erosion during a simulated precipitation event was examined in a field‐based experiment. Erosion was greatest where mill pond sediment columns detached along vertical desiccation and horizontal seepage cracks. This sediment accumulated on the bank toe throughout the study and was a source of readily‐entrained fine sediment contrary to the upper reaches where depositional accommodation space is more limited. Findings suggest that hotspots of sediment excavation progress upstream, indicating that restoration efforts should focus upon stabilizing banks at these locations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we present a methodology to construct a sediment budget for meso‐scale catchments. We combine extensive field surveys and expert knowledge of the catchment with a sediment delivery model. The meso‐scale Mediterranean drainage basin of the Dragonja (91 km2), southwest Slovenia, was chosen as case study area. During the field surveys, sheet wash was observed on sloping agricultural fields during numerous rainfall events, which was found to be the main source of sediment. With the sediment yield model WATEM/SEDEM the estimated net erosion on the hillslopes 4·1 t ha–1 y–1 (91% of inputs). The second source, bank erosion (4·2%; 0·25 t ha–1 y–1) was monitored during several years with erosion pins and photogrammetric techniques. The last source, channel incision, was derived from geomorphological mapping and lichenomery and provided 3·8% (0·17 t ha–1 y–1) of the sediment input. The river transports its suspended sediment mainly during high‐flow events (sampled with automated water samplers). About 27% (1·2 t ha–1 y–1) of the sediment delivered to the channel is deposited on floodplains and low terraces downstream (estimated with geomorphological mapping, coring and cesium‐137 measurements). The sediment transported as bedload disintegrates during transport to the outlet due to the softness of the bedrock material. As a result, the river carries no bedload when it reaches the sea. The results imply a build‐up of sediment in the valleys catchment. However, extreme flood events may flush large amounts of sediment stored in the lower parts of the system. Geomorphological evidence exists in the catchment that such high magnitude, low frequency events have happened in the past. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The nature of catchment‐scale sediment (dis)connectivity is the primary influence on sediment delivery to trunk streams and controls the particle size distribution of channel bed sediments. Here, we examine the distribution of major sediment buffers (floodplains, terraces, alluvial fans, trapped tributary fills), barriers (weirs), and effective catchment area (i.e. sediment contributing area) to characterize the potential for coarse sediment (dis)connectivity in 20 tributaries of Lockyer Creek, in the Lockyer Valley, SEQ. We then analyse the distribution of trunk stream sedimentary links to determine how certain tributaries or disconnecting features (buffers and barriers) influence downstream patterns of bed sediment fining along Lockyer Creek. We find that buffering increases downstream in the Lockyer Valley, and that tributary position and shape influence the space available for sediment buffering. Correspondingly, the spatial extent of sediment buffers impacts the distribution of effective catchment area, which influences the sedimentological significance of individual tributaries. Tributary sediment connectivity, the extent of overbank flows (floodwater zones), and weir locations all exert an additional influence on the distribution of sediment links along the trunk stream. These controls are related to the physiographic and climatic setting of the Lockyer Valley, and anthropogenic influences in this system. We conclude that controls on sediment connectivity and bed load sediment characteristics are highly variable between catchments, and that sediment (dis)connectivity merits equal consideration with tributary basin/channel size when determining controls on tributary–trunk stream relationships and channel sediment regime. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
The dynamics of sediment transport capacity in gravel‐bed rivers is critical to understanding the formation and preservation of fluvial landforms and formulating sediment‐routing models in drainage systems. We examine transport‐storage relations during cycles of aggradation and degradation by augmenting observations of three events of channel aggradation and degradation in Cuneo Creek, a steep (3%) gravel‐bed channel in northern California, with measurements from a series of flume runs modeling those events. An armored, single‐thread channel was formed before feed rates were increased in each aggradation run. Output rates increased as the channel became finer and later widened, steepened, and braided. After feed rates were cut, output rates remained high or increased in early stages of degradation as the incising channel remained fine‐grained, and later decreased as armoring intensified. If equilibrium was not reached before sediment feed rate was cut, then a rapid transition from a braided channel to a single‐thread channel caused output rates for a given storage volume to be higher during degradation than during aggradation. Variations in channel morphology, and surface bed texture during runs that modeled the three cycles of aggradation and degradation were similar to those observed in Cuneo Creek and provide confidence in interpretations of the history of change: Cuneo Creek aggraded rapidly as it widened, shallowed, and braided, then degraded rapidly before armoring stabilized the channel. Such morphology‐driven changes in transport capacity may explain the formation of flood terraces in proximal channels. Transport‐storage relations can be expected to vary between aggradation and degradation and be influenced by channel conditions at the onset of changes in sediment supply. Published in 2011. This article is a US Government work and is in the public domain in the USA.  相似文献   

18.
Natural bedrock rivers flow in self‐formed channels and form diverse erosional morphologies. The parameters that collectively define channel morphology (e.g. width, slope, bed roughness, bedrock exposure, sediment size distribution) all influence river incision rates and dynamically adjust in poorly understood ways to imposed fluid and sediment fluxes. To explore the mechanics of river incision, we conducted laboratory experiments in which the complexities of natural bedrock channels were reduced to a homogenous brittle substrate (sand and cement), a single sediment size primarily transported as bedload, a single erosion mechanism (abrasion) and sediment‐starved transport conditions. We find that patterns of erosion both create and are sensitive functions of the evolving bed topography because of feedbacks between the turbulent flow field, sediment transport and bottom roughness. Abrasion only occurs where sediment impacts the bed, and so positive feedback occurs between the sediment preferentially drawn to topographic lows by gravity and the further erosion of these lows. However, the spatial focusing of erosion results in tortuous flow paths and erosional forms (inner channels, scoops, potholes), which dissipate flow energy. This energy dissipation is a negative feedback that reduces sediment transport capacity, inhibiting further incision and ultimately leading to channel morphologies adjusted to just transport the imposed sediment load. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
This paper uses numerical simulation of flood inundation based on a coupled one‐dimensional–two‐dimensional treatment to explore the impacts upon flood extent of both long‐term climate changes, predicted to the 2050s and 2080s, and short‐term river channel changes in response to sediment delivery, for a temperate upland gravel‐bed river. Results show that 16 months of measured in‐channel sedimentation in an upland gravel‐bed river cause about half of the increase in inundation extent that was simulated to arise from climate change. Consideration of the joint impacts of climate change and sedimentation emphasized the non‐linear nature of system response, and the possibly severe and synergistic effects that come from combined direct effects of climate change and sediment delivery. Such effects are likely to be exacerbated further as a result of the impacts of climate change upon coarse sediment delivery. In generic terms, these processes are commonly overlooked in flood risk mapping exercises and are likely to be important in any river system where there are high rates of sediment delivery and long‐term transfer of sediment to floodplain storage (i.e. alluviation involving active channel aggradation and migration). Similarly, attempts to reduce channel migration through river bank stabilization are likely to exacerbate this process as without bank erosion, channel capacity cannot be maintained. Finally, many flood risk mapping studies rely upon calibration based upon combining contemporary bed surveys with historical flood outlines, and this will lead to underestimation of the magnitude and frequency of floodplain inundation in an aggrading system for a flood of a given magnitude. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
On December 26, 2015 (Boxing Day), an exceptional flood event occurred in the Irwell catchment, United Kingdom, when the neighbouring Mersey catchment experienced a much more typical winter run‐off event. This provided an opportunity to examine the influence of high‐magnitude hydrological processes on the behaviour of fine‐grained metal‐contaminated bed sediments. Forty sites across the two catchments were sampled for channel bed fine sediment storage and sediment‐associated metal(loid) concentrations prior to, and following, the flooding. Sediments were analysed for total As, Cr, Cu, Pb, and Zn and then subjected to a five‐step sequential extraction procedure. Despite a significant reorganisation of fine‐grained (<63 μm) sediment storage, metal(loid) concentrations demonstrated markedly conservative behaviour with no significant difference observed between pre‐flooding and post‐flooding values across both catchments. Estimates of the channel bed storage of sediment‐associated metal(loid)s also showed minimal change as a result of the flooding. The metal partitioning data reveal only minor changes in the mobility of bed sediment‐associated metal(loid)s, indicating that such flood events do not increase the availability of sorbed contaminants in these catchments. Post‐flooding bed sediment metal(loid) loadings remain high, indicating persistent and long‐lasting sources of contamination within the Irwell and upper Mersey fluvial network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号