首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract

Abstract River discharge is traditionally acquired by measuring water stage and then converting the water stage to discharge by using a stage–discharge rating curve. The possibility of monitoring river discharge by satellite has not been adequately studied hitherto, because of the difficulty in making sufficiently precise measurements of the water surface. Since the successful launch of commercial satellites with very-high-resolution sensors, it has become possible to derive ground information from satellite data. To determine river discharge in a non-trapezoidal open channel, an efficient approach has been developed that uses mainly satellite data. The method, which focuses on the measurement of surface water width coupled with river width–stage and ?remote? stage–discharge rating curves, was applied to the Yangtze River (Changjiang) and an accurate estimate of river discharge was obtained. The method can be regarded as ancillary to traditional field measurement methods or other remote sensing methods.  相似文献   

2.
In order to determine material fluxes in rivers by non‐contact methods, it is essential to estimate river discharge first. Although developed and optimized for open oceans, satellite radar altimetry has the potential to monitor variations in the levels of inland waters such as lakes and rivers. Making use of the concept of an ‘assumed reference point’, we converted TOPEX/Poseidon satellite altimetry data on water level variations in the Yangtze River (Changjiang) to ‘water level’ data. We also used ‘water level’ time‐series data and in situ river discharge to establish a rating curve. By use of the rating curve, we converted data on ‘water level’ derived from 7 years (1993–99) of TOPEX/Poseidon data to actual river discharge. On the basis of statistical correlation between discharge and nutrient concentration data collected in 1987–88 and in 1998–99, we estimated the total amounts of freshwater and material fluxes transferred by the Yangtze River during the 1990s. The result reveals that an overall, but very slight, increase in freshwater and material fluxes occurred during the 1990s. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents an analytical method for establishing a stage–fall–discharge rating using hydraulic performance graphs (HPG). The rating curves derived from the HPG are used as the basis to establish the functional relation of stage, fall and discharge through regression analysis following the USGS procedure. In doing so, the conventional trial‐and‐error process can be avoided and the associated uncertainties involved may be reduced. For illustration, the proposed analytical method is applied to establish stage–fall–discharge relations for the Keelung River in northern Taiwan to examine its accuracy and applicability in an actual river. Based on the data extracted from the HPG for the Keelung River, one can establish a stage–fall–discharge relation that is more accurate than the one obtained by the conventionally used relation. Furthermore, the discharges obtained from the proposed rating method are verified through backwater analysis for measured high water level events. The results indicate that the analytical stage–fall–discharge rating method is capable of circumventing the shortcomings of those based on single‐station data and, consequently, enhancing the reliability of flood estimation and forecasting. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Uncertainty in discharge data must be critically assessed before data can be used in, e.g. water resources estimation or hydrological modelling. In the alluvial Choluteca River in Honduras, the river‐bed characteristics change over time as fill, scour and other processes occur in the channel, leading to a non‐stationary stage‐discharge relationship and difficulties in deriving consistent rating curves. Few studies have investigated the uncertainties related to non‐stationarity in the stage‐discharge relationship. We calculated discharge and the associated uncertainty with a weighted fuzzy regression of rating curves applied within a moving time window, based on estimated uncertainties in the observed rating data. An 18‐year‐long dataset with unusually frequent ratings (1268 in total) was the basis of this study. A large temporal variability in the stage‐discharge relationship was found especially for low flows. The time‐variable rating curve resulted in discharge estimate differences of ? 60 to + 90% for low flows and ± 20% for medium to high flows when compared to a constant rating curve. The final estimated uncertainty in discharge was substantial and the uncertainty limits varied between ? 43 to + 73% of the best discharge estimate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Remote estimation of river discharge from river width variations is an intriguing method for gauging rivers without conventional measurements. Entirely cloud‐free imagery of an entire river reach is often rare, but partial coverage is more frequent. Discharge is estimated from spatially discontinuous imagery via construction of multiple width–discharge rating curves within a 62‐km reach of the Tanana River, Alaska. The resulting discharge error is as low as 6.7% root mean squared error. Imagery covering <20% of the study reach can be used. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In order to quantify total error affecting hydrological models and predictions, we must explicitly recognize errors in input data, model structure, model parameters and validation data. This paper tackles the last of these: errors in discharge measurements used to calibrate a rainfall‐runoff model, caused by stage–discharge rating‐curve uncertainty. This uncertainty may be due to several combined sources, including errors in stage and velocity measurements during individual gaugings, assumptions regarding a particular form of stage–discharge relationship, extrapolation of the stage–discharge relationship beyond the maximum gauging, and cross‐section change due to vegetation growth and/or bed movement. A methodology is presented to systematically assess and quantify the uncertainty in discharge measurements due to all of these sources. For a given stage measurement, a complete PDF of true discharge is estimated. Consequently, new model calibration techniques can be introduced to explicitly account for the discharge error distribution. The method is demonstrated for a gravel‐bed river in New Zealand, where all the above uncertainty sources can be identified, including significant uncertainty in cross‐section form due to scour and re‐deposition of sediment. Results show that rigorous consideration of uncertainty in flow data results in significant improvement of the model's ability to predict the observed flow. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Defining and measuring braiding intensity   总被引:1,自引:0,他引:1  
Geomorphological studies of braided rivers still lack a consistent measurement of the complexity of the braided pattern. Several simple indices have been proposed and two (channel count and total sinuosity) are the most commonly applied. For none of these indices has there been an assessment of the sampling requirements and there has been no systematic study of the equivalence of the indices to each other and their sensitivity to river stage. Resolution of these issues is essential for progress in studies of braided morphology and dynamics at the scale of the channel network. A series of experiments was run using small‐scale physical models of braided rivers in a 3 m ∞ 20 m flume. Sampling criteria for braid indices and their comparability were assessed using constant‐discharge experiments. Sample hydrographs were run to assess the effect of flow variability. Reach lengths of at least 10 times the average wetted width are needed to measure braid indices with precision of the order of 20% of the mean. Inherent variability in channel pattern makes it difficult to achieve greater precision. Channel count indices need a minimum of 10 cross‐sections spaced no further apart than the average wetted width of the river. Several of the braid indices, including total sinuosity, give very similar numerical values but they differ substantially from channel‐count index values. Consequently, functional relationships between channel pattern and, for example, discharge, are sensitive to the choice of braid index. Braid indices are sensitive to river stage and the highest values typically occur below peak flows of a diurnal (melt‐water) hydrograph in pro‐glacial rivers. There is no general relationship with stage that would allow data from rivers at different relative stage to be compared. At present, channel count indices give the best combination of rapid measurement, precision, and range of sources from which measurements can be reliably made. They can also be related directly to bar theory for braided pattern development. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Remote sensing of discharge and river stage from space provides us with a promising alternative approach to monitor watersheds, no matter if they are ungauged, poorly gauged, or fully gauged. One approach is to estimate river stage from satellite measured inundation area based on the inundation area – river stage relationship (IARSR). However, this approach is not easy to implement because of a lack of data for constructing the IARSR. In this study, an innovative and robust approach to construct the IARSR from digital elevation model (DEM) data was developed and tested. It was shown that the constructed IARSR from DEM data could be used to retrieve water level or river stage from satellite‐measured inundation area. To reduce the uncertainty in the estimated inundation area, a dual‐thresholding method was proposed. The first threshold is the lower limit of pixel value for classifying water body pixels with a relatively high‐level certainty. The second threshold is the upper limit of pixel value for classifying potentially flooded pixels. All pixels with values between the first threshold and the second threshold and adjacent to the classified water body pixels may be partially flooded. A linear interpolation method was used to estimate the wetted area of each partially flooded pixel. In applying the constructed IARSR to the estimated inundation areas from 11 Landsat TM images, 11 water levels were obtained. The root mean square error (RMSE) of the estimated water levels compared with the observed water levels at the US Geological Survey (USGS) gauging station on the Trinity River at Liberty in Liberty County, Texas, is about 0.38 m. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The discharge hydrograph estimation in rivers based on reverse routing modeling and using only water level data at two gauged sections is here extended to the most general case of significant lateral flow contribution, without needing to deploy rainfall–runoff procedures. The proposed methodology solves the Saint‐Venant equations in diffusive form also involving the lateral contribution using a “head‐driven” modeling approach where lateral inflow is assumed to be function of the water level at the tributary junction. The procedure allows to assess the discharge hydrograph at ends of a selected river reach with significant lateral inflow, starting from the stage recorded there and without needing rainfall data. Specifically, the MAST 1D hydraulic model is applied to solve the diffusive wave equation using the observed stage hydrograph at the upstream section as upstream boundary condition. The other required data are (a) the observed stage hydrograph at the downstream section, as benchmark for the parameter calibration, and (b) the bathymetry of the river reach, from the upstream section to a short distance after the downstream gauged section. The method is validated with different flood events observed in two river reaches with a significant intermediate basin, where reliable rating curves were available, selected along the Tiber River, in central Italy, and the Alzette River, in Luxembourg. Very good performance indices are found for the computed discharge hydrographs at both the channel ends and along the tributaries. The mean Nash‐Sutcliffe value (NSq) at the channel ends of two rivers is found equal to 0.99 and 0.86 for the upstream and downstream sites, respectively. The procedure is also validated on a longer stretch of the Tiber River including three tributaries for which appreciable results are obtained in terms of NSq for the computed discharge hydrographs at both the channel ends for three investigated flood events.  相似文献   

10.
Multiple segmented rating curves have been proposed to better capture the variability of the physical and hydraulic characteristics of river–floodplain systems. We evaluate the accuracy of one- and two-segmented rating curves by exploiting a large and unique database of direct measurements of stage and discharge data in more than 200 Swedish catchments. Such a comparison is made by explicitly accounting for the potential impact of measurement uncertainty. This study shows that two-segmented rating curves did not fit the data significantly better, nor did they generate fewer errors than one-segmented rating curves. Two-segmented rating curves were found to be slightly beneficial for low flow when there were strong indications of segmentation, but predicted the rating relationship worse in cases of weak indication of segmentation. Other factors were found to have a larger impact on rating curve errors, such as the uncertainty of the discharge measurements and the type of regression method.  相似文献   

11.
Discharge, especially during flood periods, is among the most important information necessary for flood control, water resources planning and management. Owing to the high flood velocities, flood discharge usually cannot be measured efficiently by conventional methods, which explains why records of flood discharge are scarce or do not exist for the watersheds in Taiwan. A fast method of flood discharge estimation is presented. The greatest advantage of the proposed method is its application to estimate flood discharge that cannot be measured by conventional methods. It has as its basis the regularity of open‐channel flows, i.e. that nature maintains a constant ratio of mean to maximum velocities at a given channel section by adjusting the velocity distribution and the channel geometry. The maximum velocity at a given section can be determined easily over a single vertical profile, which tends to remain invariant with time and discharge, and can be converted to the mean velocity of the entire cross‐section by multying by the constant ratio. Therefore the mean velocity is a common multiple of maximum velocity and the mean/maximum velocity ratio. The channel cross‐sectional area can be determined from the gauge height, the water depth at the y‐axis or the product of the channel width multiplied by the water depth at the y‐axis. Then the most commonly used method, i.e. the velocity–area method, which determines discharge as the product of the cross‐sectional area multiplied by mean velocity, is applied to estimate the flood discharge. Only a few velocity measurements on the y‐axis are necessary to estimate flood discharge. Moreover the location of the y‐axis will not vary with time and water stage. Once the relationship of mean and maximum velocities is established, the flood estimation can be determined efficiently. This method avoids exposure to hazardous environments and sharply reduces the measurement time and cost. The method can be applied in both high and low flows in rivers. Available laboratory flume and stream‐flow data are used to illustrate accuracy and reliability, and results show that this method can quickly and accurately estimate flood discharges. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
《国际泥沙研究》2016,(2):139-148
Applications of sediment transport and water flow characteristics based sediment transport simulation models for a river system are presented in this study. An existing water–sediment model and a new sediment–water model are used to formulate the simulation models representing water and sediment movement in a river system. The sediment–water model parameters account for water flow characteristics embodying sediment transport properties of a section. The models are revised formulations of the multiple water inflows model describing water movement through a river system as given by the Muskingum principle. The models are applied to a river system in Mississippi River basin to estimate downstream sediment concentration, sediment discharge, and water discharge. River system and the river section parameters are estimated using a revised and the original multiple water inflows models by applying the genetic algorithm. The models estimate downstream sediment transport rates on the basis of upstream sediment/water flow rates to a system. Model performance is evaluated by using standard statistical criteria;downstream water discharge resulting from the original multiple water inflows model using the estimated river system parameters indicate that the revised models satisfactorily describe water movement through a river system. Results obtained in the study demonstrate the applicability of the sediment transport and water flow characteristics-based simulation models in predicting downstream sediment transport and water flow rates in a river system.  相似文献   

13.
Satellite altimetry is routinely used to provide levels for oceans or large inland water bodies from space. By utilizing retracking schemes specially designed for inland waters, meaningful river stages can also be recovered when standard techniques fail. Utilizing retracked waveforms from ERS‐2 and ENVISAT along the Mekong, comparisons against observed stage measurements show that the altimetric measurements have a root mean square error (RMSE) of 0·44–0·65 m for ENVISAT and 0·46–0·76 m for ERS‐2. For many applications, however, stage is insufficient because discharge is the primary requirement. Investigations were therefore undertaken to estimate discharges at a downstream site (Nakhon Phanom (NP)) assuming that in situ data are available at a site 400 km upstream (Vientiane). Two hypothetical, but realistic scenarios were considered. Firstly, that NP was the site of a de‐commissioned gauge and secondly, that the site has never been gauged. Using both scenarios, predictions were made for the daily discharge using methods with and without altimetric stage data. In the first scenario using a linear regression approach the altimetry data improved the Nash‐Sutcliffe r2 value from 0·884 to 0·935. The second scenario used known river cross‐sections while lateral inflows were inferred from a hydrological model: this scenario gave an increase in the r2 value from 0·823 to 0·893. The use of altimetric stage data is shown to improve estimated discharges and further applications are discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
To estimate the spatial distribution of groundwater discharge from the bottom of a small lake of Kumamoto in Japan, we applied continuous radon measurements with a dual loop system and verified the results obtained using the radon method by visual diving surveys. Time‐shifting correction in the dual‐loop system is reasonable to obtain the true radon activity in water. Distributions of radon activity and water temperature in the study area reveal the effects on groundwater discharge and mixing situation of lake water. The estimated discharge zone ascertained using the radon method agrees with the groundwater discharge distribution observed through diving surveys. Although the data resolution of the radon method is much greater than the width of observed discharge zones, the general distribution of groundwater discharge is recognizable. The dual loop system of radon measurement is useful for smaller areas.  相似文献   

15.
Hydro‐geomorphological assessments are an essential component for riverine management plans. They usually require costly and time‐consuming field surveys to characterize the spatial variability of key variables such as flow depth, width, discharge, water surface slope, grain size and unit stream power throughout the river corridor. The objective of this research is to develop automated tools for hydro‐geomorphological assessments using high‐resolution LiDAR digital elevation models (DEMs). More specifically, this paper aims at developing geographic information system (GIS) tools to extract channel slope, width and discharge from 1 m‐resolution LiDAR DEMs to estimate the spatial distribution of unit stream power in two contrasted watersheds in Quebec: a small agricultural stream (Des Fèves River) and a large gravel‐bed river (Matane River). For slope, the centreline extracted from the raw LiDAR DEM was resampled at a coarser resolution using the minimum elevation value. The channel width extraction algorithm progressively increased the centerline from the raw DEM until thresholds of elevation differences and slopes were reached. Based on the comparison with over 4000 differential global positioning system (GPS) measurements of the water surface collected in a 50 km reach of the Matane River, the longitudinal profile and slope estimates extracted from the raw and resampled LiDAR DEMs were in very good agreement with the field measurements (correlation coefficients ranging from 0 · 83 to 0 · 87) and can thus be used to compute stream power. The extracted width also corresponded very well to the channel as seen from ortho‐photos, although the presence of bars in the Matane River increased the level of error in width estimates. The estimated maximum unit stream power spatial patterns corresponded well with field evidence of bank erosion, indicating that LiDAR DEMs can be used with confidence for initial hydro‐geomorphological assessments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The purpose of this paper is to determine uncertainty in the gauged range of the stage–gauged discharge relationship for 622 rating curves from 171 Australian Bureau of Meteorology Hydrologic Reference streamgauging Stations (HRS). Water agencies use many methods to establish rating curves. Here we adopt a consistent method across all stations and develop rating curves based on Chebyshev polynomials, and estimate uncertainties from standard regression errors in which residuals from the polynomials are adjusted to ensure they are homoscedastic and normally distributed. Uncertainty in input water level is also taken into account. The median uncertainties in mean response of the available gauged discharge relationship at median daily discharges for the HRS dataset range from +4.5 to ?4.2% (95% confidence band) and for individual gaugings from +29 to ?22% incorporating a water level uncertainty of ±4 mm. The uncertainties estimated are consistent with values estimated in Australia and elsewhere.  相似文献   

17.
One of the most important problems in hydrology is the establishment of rating curves. The statistical tools that are commonly used for river stage‐discharge relationships are regression and curve fitting. However, these techniques are not adequate in view of the complexity of the problems involved. Three different neural network techniques, i. e., multi‐layer perceptron neural network with Levenberg‐Marquardt and quasi‐Newton algorithms and radial basis neural networks, are used for the development of river stage‐discharge relationships by constructing nonlinear relationships between stage and discharge. Daily stage and flow data from three stations, Yamula, Tuzkoy and Sogutluhan, on the Kizilirmak River in Turkey were used. Regression techniques are also applied to the same data. Different input combinations including the previous stages and discharges are used. The models' results are compared using three criteria, i. e., root mean square errors, mean absolute error and the determination coefficient. The results of the comparison reveal that the neural network techniques are much more suitable for setting up stage‐discharge relationships than the regression techniques. Among the neural network methods, the radial basis neural network is found to be slightly better than the others.  相似文献   

18.
Correct estimation of sediment volume carried by a river is very important for many water resources projects. Conventional sediment rating curves, however, are not able to provide sufficiently accurate results. In this paper, a fuzzy logic approach is proposed to estimate suspended sediment concentration from streamflow. This study provides forecasting benchmarks for sediment concentration prediction in the form of a numerical and graphical comparison between fuzzy and rating‐curve models. Benchmarking was based on a 5‐year period of continuous streamflow and sediment concentration data of Quebrada Blanca Station operated by the United States Geological Survey. The benchmark results showed that the fuzzy model was able to produce much better results than rating‐curve models. The fuzzy model proposed in the study is site specific and does not simulate the hysteresis effects. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Complete daily water budget information was assembled for a 105 km segment of the South Platte River in the plains region below Denver, CO, for the period 1983–1993. The data were used in testing the possibility that dependence of alluvial exchange mechanisms on stage height, as shown by models of alluvial exchange, allows alluvial exchange to be predicted continuously over a given reach through use of statistical information on river discharge. The study segment was divided into an upper and a lower reach; daily alluvial exchanges for each reach were estimated by the method of residuals. The two reaches show small (15%) but statistically significant annual differences in rates of exchange. For each reach, there is a seasonal pattern (2·5‐fold oscillation) in alluvial discharge to the channel, reflecting seasonality in recharge of the alluvium by irrigation. At discharges up to 40 m3/s (82nd percentile), alluvial discharge to the channel occurs at a rate independent of river discharge. Above 40 m3/s, net alluvial discharge into the channel is progressively reduced; at 60 m3/s (92nd percentile) there is no net alluvial exchange. At still higher river discharges, water is lost to the alluvium through bank storage at a rate that is linearly related to the logarithm of discharge. Annually, alluvial discharge accounts for 15–18% of water entering the study segment, and alluvial recharge through bank storage accounts for 2–4% of water leaving the segment. Alluvial recharge through bank storage at the highest discharges can, however, exceed low‐flow alluvial discharge rates by five‐fold over short intervals. Even though daily alluvial exchanges vary widely, they can be estimated at r2 values above 80% on the basis of reach, season, and river discharge. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
Bankfull discharge is a key parameter in the context of river engineering and geomorphology, as an indicator of flood discharge capacity in alluvial rivers, and varying in response to the incoming flow and sediment regimes. Bankfull channel dimensions have significantly adjusted along the Lower Yellow River (LYR) due to recent channel degradation, caused by the operation of the Xiaolangdi Reservoir, which has led to longitudinal variability in cross‐sectional bankfull discharges. Therefore, it is more representative to describe the flood discharge capacity of the LYR, using the concept of reach‐averaged bankfull discharge. Previous simple mean methods to estimate reach‐scale bankfull discharge cannot meet the condition of flow continuity or account for the effect of different spacing between two sections. In this study, a general method to calculate cross‐sectional bankfull discharge using the simulated stage‐discharge relation is outlined briefly, and an integrated method is then proposed for estimating reach‐scale bankfull discharge. The proposed method integrates a geometric mean based on the log‐transformation with a weighted average based on the spacing between two consecutive sections, which avoids the shortcomings of previous methods. The post‐flood reach‐scale bankfull discharges in three different channel‐pattern reaches of the LYR were estimated annually during the period from 1999 to 2010 using the proposed method, based on surveyed post‐flood profiles at 91 sedimentation sections and the measured hydrological data at seven hydrometric sections. The calculated results indicate that: (i) the estimated reach‐scale bankfull discharges can effectively represent the flood discharge capacity of different reaches, with their ranges of variation being less than those of typical cross‐sectional bankfull discharges; and (ii) the magnitude of the reach‐scale bankfull discharge in each reach can respond well to the accumulative effect of incoming flow and sediment conditions. Finally, empirical relationships for different reaches in the LYR were developed between the reach‐scale bankfull discharge and the previous four‐year average discharge and incoming sediment coefficient during flood seasons, with relatively high correlation coefficients between them being obtained, and the reach‐scale bankfull discharges in different reaches predicted by the delayed response model were also presented for a comparison. These relations for the prediction of reach‐scale bankfull discharges were validated using the cross‐sectional profiles and hydrological data measured in 2011. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号