共查询到20条相似文献,搜索用时 15 毫秒
1.
An accurate simulation of snowmelt runoff is of much importance in arid alpine regions. Data availability is usually an obstacle to use energy‐based snowmelt models for the snowmelt runoff simulation, and temperature‐based snowmelt models are more appealing in these regions. The snow runoff model is very popular nowadays, especially in the data sparse regions, because only temperature, precipitation and snow cover data are required for inputs to the model. However, this model uses average temperature as index, which cannot reflect the snowmelt simulation in the high altitude band. In this study, the snow runoff model is modified on the basis of accumulated active temperature. Snow cover calculation algorithm is added and is no longer needed as input but output. This makes the model able to simulate long‐time runoff and long‐time snow cover variation in every band. An examination of the improved model in the Manas River basin showed that the model is effective. It can reproduce the behaviour of the hydrology and can reflect the actual snow cover fluctuation. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
2.
Arctic spring landscapes are usually characterized by a mosaic of coexisting snow‐covered and bare ground patches. This phenomenon has major implications for hydrological processes, including meltwater production and runoff. Furthermore, as indicated by aircraft observations, it affects land‐surface–atmosphere exchanges, leading to a high degree of variability in surface energy terms during melt. The heterogeneity and related differences when certain parts of the landscape become snow free also affects the length of the growing season and the carbon cycle. Small‐scale variability in arctic snowmelt is addressed here by combining a spatially distributed end‐of‐winter snow cover with simulations of variable snowmelt energy balance factors for the small arctic catchment of Trail Valley Creek (63 km2). Throughout the winter, snow in arctic tundra basins is redistributed by frequent blowing snow events. Areas of above‐ or below‐average end‐of‐winter snow water equivalents were determined from land‐cover classifications, topography, land‐cover‐based snow surveys, and distributed surface wind‐field simulations. Topographic influences on major snowmelt energy balance factors (solar radiation and turbulent fluxes of sensible and latent heat) were modelled on a small‐scale (40 m) basis. A spatially variable complete snowmelt energy balance was subsequently computed and applied to the distributed snow cover, allowing the simulation of the progress of melt throughout the basin. The emerging patterns compared very well visually to snow cover observations from satellite images and aerial photographs. Results show the relative importance of variable end‐of‐winter snow cover, spatially distributed melt energy fluxes, and local advection processes for the development of a patchy snow cover. This illustrates that the consideration of these processes is crucial for an accurate determination of snow‐covered areas, as well as the location, timing, and amount of meltwater release from arctic catchments, and should, therefore, be included in hydrological models. Furthermore, the study shows the need for a subgrid parameterization of these factors in the land surface schemes of larger scale climate models. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
3.
Snowmelt water is a vital freshwater resource in the Altai Mountains of northwestern China. Yet its seasonal hydrological cycle characteristics could change under a warming climate and more rapid spring snowmelt. Here, we simulated snowmelt runoff dynamics in the Kayiertesi River catchment, from 2000 to 2016, by using an improved hydrological distribution model that relied on high-resolution meteorological data acquired from the National Centers for Environmental Prediction (Fnl-NCEP) that were downscaled using the Weather Research Forecasting model. Its predictions were compared to observed runoff data, which confirmed the simulations' reliability. Our results show the model performed well, in general, given its daily validation Nash–Sutcliffe efficiency (NSE) of 0.62 (from 2013 to 2015) and a monthly NSE score of 0.68 (from 2000 to 2010) for the studied river basin of the Altai Mountains. In this river basin catchment, snowfall accounted for 64.1% of its precipitation and snow evaporation for 49.8% of its total evaporation, while snowmelt runoff constituted 29.3% of the annual runoff volume. Snowmelt's contribution to runoff in the Altai Mountains can extend into non-snow days because of the snowmelt water retained in soils. From 2000 to 2016, the snow-to-rain ratio decreased rapidly, however, the snowmelt contribution remained relatively stable in the study region. Our findings provide a sound basis for making snowmelt runoff predictions, which could be used prevent snowmelt-induced flooding, as well as a generalizable approach applicable to other remote, high-elevation locations where high-density, long-term observational data are currently lacking. How snowmelt contributes to water dynamics and resources in cold regions is garnering greater attention. Our proposed model is thus timely perhaps, enabling more comprehensive assessments of snowmelt contributions to hydrological processes in those alpine regions characterized by seasonal snow cover. 相似文献
4.
Snow variability is an integrated indicator of climate change, and it has important impacts on runoff regimes and water availability in high‐altitude catchments. Remote sensing techniques can make it possible to quantitatively detect the snow cover changes and associated hydrological effects in those poorly gauged regions. In this study, the spatial–temporal variations of snow cover and snow melting time in the Tuotuo River basin, which is the headwater of the Yangtze River, were evaluated based on satellite information from the Moderate Resolution Imaging Spectroradiometer snow cover product, and the snow melting equivalent and its contribution to the total runoff and baseflow were estimated by using degree–day model. The results showed that the snow cover percentage and the tendency of snow cover variability increased with rising altitude. From 2000 to 2012, warmer and wetter climate change resulted in an increase of the snow cover area. Since the 1960s, the start time for snow melt has become earlier by 0.9–3 days/10a and the end time of snow melt has become later by 0.6–2.3 days/10a. Under the control of snow cover and snow melting time, the equivalent of snow melting runoff in the Tuotuo River basin has been fluctuating. The average contributions of snowmelt to baseflow and total runoff were 19.6% and 6.8%, respectively. Findings from this study will serve as a reference for future research in areas where observational data are deficient and for planning of future water management strategies for the source region of the Yangtze River. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
5.
Bijay Kumar Pokhrel Pierre Chevallier Vazken Andréassian Adnan Ahmad Tahir Yves Arnaud Luc Neppel 《水文科学杂志》2013,58(8):1507-1518
AbstractThe glaciers in the Nepalese Himalayas are retreating due to rising temperatures. Lack of data and information on Nepal’s cryosphere has impeded scientific studies and field investigations in the Nepalese Himalayas. Therefore, IRD France and Ev-K2 CNR Italy have conducted the PAPRIKA (CryosPheric responses to Anthropogenic PRessures in the HIndu Kush-Himalaya regions: impacts on water resources and society adaptation in Nepal) project in Nepal with the financial support of the French and Italian scientific agencies. This project aims to address the current and future evolution of the cryosphere in response to overall environmental changes in South Asia, and its consequences for water resources in Nepal. Thus, two hydrological models, the GR4J lumped precipitation–runoff model and the snowmelt runoff model (SRM), were used in the Dudh Koshi basin. The GR4J model has been successfully applied in different parts of Europe. To obtain better results in such a harsh and rugged topography, modifications needed to be made, particularly in the snow module. The runoff pattern is analysed herein both for past years and, in a sensitivity analysis, for possible future climatic conditions (i.e. precipitation and temperature) using the SRM and GR4J modelling approaches. The results reveal a significant contribution of snow- and glacier-melt to runoff, and the SRM model shows better performance in Nepalese catchments than the GR4J model.
Editor D. Koutsoyiannis; Associate editor D. Gerten 相似文献
6.
Melted snow volume control in the snowmelt runoff model using a snow water equivalent statistically based model 总被引:1,自引:0,他引:1
Snowmelt is an important component of the river discharge in mountain environments. In the past 40 years, the snowmelt dynamics has been mostly evaluated using degree‐day‐based models like the snowmelt runoff model (SRM). This model has no control on the volume of the melting snow, even if SRM includes as data input the snow‐covered area. This lack explains why the application of SRM may lead to inaccurate snowmelt volume estimations, even if the discharge volumes are accurately reproduced. Here we introduce in SRM the control on the melted snow volume and consider it in the determination of SRM parameters. The total snow volume, accumulated at the end of winter season, is evaluated by a snow water equivalent statistically based model, SWE‐SEM, and used as an estimate of the melting snow during the summer season. The benefit derived from the introduction of the control on the melting snow volume was investigated in the Mallero basin (northern Italy) for the 2003 and 2004 snow melting seasons. The analysis compares the model's results adopting different parameter sets, both considering and ignoring the control on the melting snow volume. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
7.
Jane Assini 《水文科学杂志》2013,58(4):738-755
Abstract This study examined the end-of-winter snow storage, its distribution and the spatial and temporal melt patterns of a large, low gradient wetland at Polar Bear Pass, Bathurst Island, Nunavut, Canada. The project utilized a combination of field observations and a physically-based snowmelt model. Topography and wind were the major controls on snow distribution in the region, and snow was routinely scoured from the hilltop regions and deposited into hillslopes and valleys. Timing and duration of snowmelt at Polar Bear Pass were similar in 2008 and 2009. The snowmelt was initiated by an increase in air temperature and net radiation receipt. Inter-annual variability in spatial snowmelt patterns was evident at Polar Bear Pass and was attributed to a non-uniform snow cover distribution and local microclimate conditions. In situ field studies and modelling remain important in High Arctic regions for assessing wetland water budgets and runoff, in addition to model parameterization and validation of satellite imagery. Editor Z.W. Kundzewicz Citation Assini, J. and Young, K.L., 2012. Snow cover and snowmelt of an extensive High Arctic wetland: spatial and temporal seasonal patterns. Hydrological Sciences Journal, 57 (4), 738–755. 相似文献
8.
Rainfall–runoff modelling, as a surface hydrological process, on large‐scale data‐poor basins is currently a major topic of investigation that requires the model parameters be identified by using basin physical characteristics rather than calibration. This paper describes the application of the TOPMODEL framework accompanied by a kinematic wave model to the Karun River sub‐basins in southwestern Iran with just one conceptual parameter for calibration. ISLSCP1, HYDRO1K and Reynolds data sets are presented in a geographical information system and used as data sources for meteorological information, hydrological features and soil characteristics of the study area respectively. The results show that although the model developed can adequately predict flood runoff in the catchment with only one calibrated parameter, it is suggested that the effect of surface reservoirs be considered in the proposed model. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
9.
《水文科学杂志》2013,58(4):725-740
Abstract Appropriate representation of landscape heterogeneity at small to medium scales is a central issue for hydrological modelling. Two main hydrological modelling approaches, deductive and inductive, are generally applied. Here, snow-cover ablation and basin snowmelt runoff are evaluated using a combined modelling approach that includes the incorporation of detailed process understanding along with information gained from observations of basin-wide streamflow phenomena. The study site is Granger Basin, a small sub-arctic basin in the mountains of the Yukon Territory, Canada. The analysis is based on the comparison between basin-aggregated and distributed landscape representations. Results show that the distributed model based on “hydrological response” landscape units best describes the observed magnitudes of both snow-cover ablation and basin runoff, whereas the aggregated approach fails to represent the differential snowmelt rates and to describe both runoff volumes and dynamics when discontinuous snowmelt events occur. 相似文献
10.
Regional variability in dust‐on‐snow processes and impacts in the Upper Colorado River Basin 下载免费PDF全文
S. McKenzie Skiles Thomas H. Painter Jayne Belnap Lacey Holland Richard L. Reynolds Harland L. Goldstein John Lin 《水文研究》2015,29(26):5397-5413
Dust deposition onto mountain snow cover in the Upper Colorado River Basin frequently occurs in the spring when wind speeds and dust emission peaks on the nearby Colorado Plateau. Dust loading has increased since the intensive settlement in the western USA in the mid 1880s. The effects of dust‐on‐snow have been well studied at Senator Beck Basin Study Area (SBBSA) in the San Juan Mountains, CO, the first high‐altitude area of contact for predominantly southwesterly winds transporting dust from the southern Colorado Plateau. To capture variability in dust transport from the broader Colorado Plateau and dust deposition across a larger area of the Colorado River water sources, an additional study plot was established in 2009 on Grand Mesa, 150 km to the north of SBBSA in west central, CO. Here, we compare the 4‐year (2010–2013) dust source, deposition, and radiative forcing records at Grand Mesa Study Plot (GMSP) and Swamp Angel Study Plot (SASP), SBBSA's subalpine study plot. The study plots have similar site elevations/environments and differ mainly in the amount of dust deposited and ensuing impacts. At SASP, end of year dust concentrations ranged from 0.83 mg g?1 to 4.80 mg g?1, and daily mean spring dust radiative forcing ranged from 50–65 W m?2, advancing melt by 24–49 days. At GMSP, which received 1.0 mg g?1 less dust per season on average, spring radiative forcings of 32–50 W m?2 advanced melt by 15–30 days. Remote sensing imagery showed that observed dust events were frequently associated with dust emission from the southern Colorado Plateau. Dust from these sources generally passed south of GMSP, and back trajectory footprints modelled for observed dust events were commonly more westerly and northerly for GMSP relative to SASP. These factors suggest that although the southern Colorado Plateau contains important dust sources, dust contributions from other dust sources contribute to dust loading in this region, and likely account for the majority of dust loading at GMSP. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
11.
Spatio‐temporal controls of snowmelt and runoff generation during rain‐on‐snow events in a mid‐latitude mountain catchment 下载免费PDF全文
A network of 30 standalone snow monitoring stations was used to investigate the snow cover distribution, snowmelt dynamics, and runoff generation during two rain‐on‐snow (ROS) events in a 40 km2 montane catchment in the Black Forest region of southwestern Germany. A multiple linear regression analysis using elevation, aspect, and land cover as predictors for the snow water equivalent (SWE) distribution within the catchment was applied on an hourly basis for two significant ROS flood events that occurred in December 2012. The available snowmelt water, liquid precipitation, as well as the total retention storage of the snow cover were considered in order to estimate the amount of water potentially available for the runoff generation. The study provides a spatially and temporally distributed picture of how the two observed ROS floods developed in the catchment. It became evident that the retention capacity of the snow cover is a crucial mechanism during ROS. It took several hours before water was released from the snowpack during the first ROS event, while retention storage was exceeded within 1 h from the start of the second event. Elevation was the most important terrain feature. South‐facing terrain contributed more water for runoff than north‐facing slopes, and only slightly more runoff was generated at open compared to forested areas. The results highlight the importance of snowmelt together with liquid precipitation for the generation of flood runoff during ROS and the large temporal and spatial variability of the relevant processes. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
12.
For a better management of water resources, the information on water stored in a basin in the form of snow is of immense use. Changes in the snow water storage with time influence the recession characteristics of the hydrographs. Recession is found to be slower in a basin when it contains higher snow water storage and becomes faster as the volume of stored water reduces. In other words, the recession coefficient is not constant throughout the melt season, it changes with time. In the present study, the possibility of assessing snow water storage at any time during the melt season using recession coefficients is examined. The hydrograph analyses have been made for the Glatzbach watershed in the Hohe Tauern region of the Austrian Alps. For this purpose, a relationship between snow water storage and the recession coefficients is developed. This study suggests a simple and useful approach to assess the snow water storage in a basin at any time during the snowmelt season. The information on the snow water storage of a basin can be obtained using a readily derived single parameter, the recession coefficient. The results are based on limited data, but they are sufficient to illustrate how the changes in snow water storage control the recession characteristics of the hydrographs. These investigations set the pace for further research in this area. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
13.
Application and evaluation of a snowmelt runoff model in the Tamor River basin,Eastern Himalaya using a Markov Chain Monte Carlo (MCMC) data assimilation approach 总被引:2,自引:0,他引:2 下载免费PDF全文
Previous studies have drawn attention to substantial hydrological changes taking place in mountainous watersheds where hydrology is dominated by cryospheric processes. Modelling is an important tool for understanding these changes but is particularly challenging in mountainous terrain owing to scarcity of ground observations and uncertainty of model parameters across space and time. This study utilizes a Markov Chain Monte Carlo data assimilation approach to examine and evaluate the performance of a conceptual, degree‐day snowmelt runoff model applied in the Tamor River basin in the eastern Nepalese Himalaya. The snowmelt runoff model is calibrated using daily streamflow from 2002 to 2006 with fairly high accuracy (average Nash–Sutcliffe metric ~0.84, annual volume bias < 3%). The Markov Chain Monte Carlo approach constrains the parameters to which the model is most sensitive (e.g. lapse rate and recession coefficient) and maximizes model fit and performance. Model simulated streamflow using an interpolated precipitation data set decreases the fractional contribution from rainfall compared with simulations using observed station precipitation. The average snowmelt contribution to total runoff in the Tamor River basin for the 2002–2006 period is estimated to be 29.7 ± 2.9% (which includes 4.2 ± 0.9% from snowfall that promptly melts), whereas 70.3 ± 2.6% is attributed to contributions from rainfall. On average, the elevation zone in the 4000–5500 m range contributes the most to basin runoff, averaging 56.9 ± 3.6% of all snowmelt input and 28.9 ± 1.1% of all rainfall input to runoff. Model simulated streamflow using an interpolated precipitation data set decreases the fractional contribution from rainfall versus snowmelt compared with simulations using observed station precipitation. Model experiments indicate that the hydrograph itself does not constrain estimates of snowmelt versus rainfall contributions to total outflow but that this derives from the degree‐day melting model. Lastly, we demonstrate that the data assimilation approach is useful for quantifying and reducing uncertainty related to model parameters and thus provides uncertainty bounds on snowmelt and rainfall contributions in such mountainous watersheds. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
14.
Xuejiao Wu Yongping Shen Ninglian Wang Xiaoduo Pan Wei Zhang Jianqiao He Guoya Wang 《水文研究》2016,30(21):3967-3977
Snowmelt water is an important freshwater resource in the Altay Mountains in north‐west China; however, warming climate and rapid spring snowmelt can cause floods that endanger both public and personal property and safety. This study simulates snowmelt in the Kayiertesi River catchment using a temperature index model based on remote sensing coupled with high‐resolution meteorological data obtained from National Centers for Environmental Prediction (NCEP) reanalysis fields that were downscaled using the Weather Research Forecasting model and then bias corrected using a statistical downscaled model. Validation of the forcing data revealed that the high‐resolution meteorological fields derived from the downscaled NCEP reanalysis were reliable for driving the snowmelt model. Parameters of the temperature index model based on remote sensing were calibrated for spring 2014, and model performance was validated using Moderate Resolution Imaging Spectroradiometer snow cover and snow observations from spring 2012. The results show that the temperature index model based on remote sensing performed well, with a simulation mean relative error of 6.7% and a Nash–Sutcliffe efficiency of 0.98 in spring 2012 in the river of Altay Mountains. Based on the reliable distributed snow water equivalent simulation, daily snowmelt run‐off was calculated for spring 2012 in the basin. In the study catchment, spring snowmelt run‐off accounts for 72% of spring run‐off and 21% of annual run‐off. Snowmelt is the main source of run‐off for the catchment and should be managed and utilized effectively. The results provide a basis for snowmelt run‐off predictions, so as to prevent snowmelt‐induced floods, and also provide a generalizable approach that can be applied to other remote locations where high‐density, long‐term observational data are lacking. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
15.
This study documented the spatial and temporal variability of outflow from a forested hillslope segment during snowmelt at a small mountain catchment in south coastal British Columbia, Canada. A pit 5 m wide was established just upslope from the stream channel. Outflow from the organic horizon was intercepted and measured by a single trough, and outflow from the mineral horizons was measured separately for three adjacent sections. Throughflow exhibited non‐steady‐state behaviour involving shifting allocations of flow amongst different sections of the outflow pit, as well as threshold effects and hysteresis in the relationship between pit outflow and water table elevation. Most of the pit outflow originated from the mineral horizons, indicating that throughflow was the dominant pathway by which water was delivered to the stream channel. Direct precipitation and snowmelt onto near‐stream saturated areas can account for less than 20% of the total outflow from the hillslope segment. Throughflow from the mineral sections consistently peaked either at the same time as or earlier than stream flow from the 150‐ha catchment during diurnal snowmelt cycles, indicating that throughflow appears to respond rapidly enough to contribute to snowmelt‐induced peak stream flow. Pit outflow cannot be extrapolated reliably to the catchment scale on the basis of simple length‐ or area‐based ratios. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
16.
Simulated soil water storage effects on streamflow generation in a mountainous snowmelt environment,Idaho, USA 总被引:1,自引:0,他引:1
Although soil processes affect the timing and amount of streamflow generated from snowmelt, they are often overlooked in estimations of snowmelt‐generated streamflow in the western USA. The use of a soil water balance modelling approach to incorporate the effects of soil processes, in particular soil water storage, on the timing and amount of snowmelt generated streamflow, was investigated. The study was conducted in the Reynolds Mountain East (RME) watershed, a 38 ha, snowmelt‐dominated watershed in southwest Idaho. Snowmelt or rainfall inputs to the soil were determined using a well established snow accumulation and melt model (Isnobal). The soil water balance model was first evaluated at a point scale, using periodic soil water content measurements made over two years at 14 sites. In general, the simulated soil water profiles were in agreement with measurements (P < 0·05) as further indicated by high R2 values (mostly > 0·85), y‐intercept values near 0, slopes near 1 and low average differences between measured and modelled values. In addition, observed soil water dynamics were generally consistent with critical model assumptions. Spatially distributed simulations over the watershed for the same two years indicate that streamflow initiation and cessation are closely linked to the overall watershed soil water storage capacity, which acts as a threshold. When soil water storage was below the threshold, streamflow was insensitive to snowmelt inputs, but once the threshold was crossed, the streamflow response was very rapid. At these times there was a relatively high degree of spatial continuity of satiated soils within the watershed. Incorporation of soil water storage effects may improve estimation of the timing and amount of streamflow generated from mountainous watersheds dominated by snowmelt. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
17.
The level of complexity, and the number of parameters, to include in a hydrological model is a relatively contentious issue in hydrological modelling. However, it can be argued that explicitly representing important run‐off generation processes can improve the practical value of a model's outputs. This paper explores the benefits of including a new function into an existing semi‐distributed hydrological model (the Pitman model) that is widely used in the sub‐Saharan Africa region. The new function was designed to represent saturation‐excess surface run‐off processes at subcatchment scales and was motivated by the evidence of dambo (low topography riparian areas) type features in many sub‐Saharan river basins. The results for uncertainty versions of the model, with and without the new function, were compared for 25 catchments, which were divided up into those where evidence of dambos exists and those where there is no such evidence. The results suggest that the new function certainly improves the model results for the catchments where dambos exist, but not in situations where saturation‐excess surface run‐off is not expected to occur. The overall conclusion is therefore that the addition of the new function is justified. 相似文献
18.
To improve simulations of regional‐scale snow processes and related cold‐season hydroclimate, the Community Land Model version 3 (CLM3), developed by the National Center for Atmospheric Research (NCAR), was coupled with the Pennsylvania State University/NCAR fifth‐generation Mesoscale Model (MM5). CLM3 physically describes the mass and heat transfer within the snowpack using five snow layers that include liquid water and solid ice. The coupled MM5–CLM3 model performance was evaluated for the snowmelt season in the Columbia River Basin in the Pacific Northwestern United States using gridded temperature and precipitation observations, along with station observations. The results from MM5–CLM3 show a significant improvement in the SWE simulation, which has been underestimated in the original version of MM5 coupled with the Noah land‐surface model. One important cause for the underestimated SWE in Noah is its unrealistic land‐surface structure configuration where vegetation, snow and the topsoil layer are blended when snow is present. This study demonstrates the importance of the sheltering effects of the forest canopy on snow surface energy budgets, which is included in CLM3. Such effects are further seen in the simulations of surface air temperature and precipitation in regional weather and climate models such as MM5. In addition, the snow‐season surface albedo overestimated by MM5–Noah is now more accurately predicted by MM5–CLM3 using a more realistic albedo algorithm that intensifies the solar radiation absorption on the land surface, reducing the strong near‐surface cold bias in MM5–Noah. The cold bias is further alleviated due to a slower snowmelt rate in MM5–CLM3 during the early snowmelt stage, which is closer to observations than the comparable components of MM5–Noah. In addition, the over‐predicted precipitation in the Pacific Northwest as shown in MM5–Noah is significantly decreased in MM5–CLM3 due to the lower evaporation resulting from the longer snow duration. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
19.
Elliot M. Schneiderman Tammo S. Steenhuis Dominique J. Thongs Zachary M. Easton Mark S. Zion Andrew L. Neal Guillermo F. Mendoza M. Todd Walter 《水文研究》2007,21(25):3420-3430
Many water quality models use some form of the curve number (CN) equation developed by the Soil Conservation Service (SCS; U.S. Depart of Agriculture) to predict storm runoff from watersheds based on an infiltration-excess response to rainfall. However, in humid, well-vegetated areas with shallow soils, such as in the northeastern USA, the predominant runoff generating mechanism is saturation-excess on variable source areas (VSAs). We reconceptualized the SCS–CN equation for VSAs, and incorporated it into the General Watershed Loading Function (GWLF) model. The new version of GWLF, named the Variable Source Loading Function (VSLF) model, simulates the watershed runoff response to rainfall using the standard SCS–CN equation, but spatially distributes the runoff response according to a soil wetness index. We spatially validated VSLF runoff predictions and compared VSLF to GWLF for a subwatershed of the New York City Water Supply System. The spatial distribution of runoff from VSLF is more physically realistic than the estimates from GWLF. This has important consequences for water quality modeling, and for the use of models to evaluate and guide watershed management, because correctly predicting the coincidence of runoff generation and pollutant sources is critical to simulating non-point source (NPS) pollution transported by runoff. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
20.
Development of hydrological models for seasonal and real-time runoff forecast in rivers of high alpine catchments is useful for management of water resources. The conceptual models for this purpose are based on a temperature index and/or energy budget and can be either lumped or distributed over the catchment area. Remote sensing satellite data are most useful to acquire near real-time geophysical parameters in order to input to the distributed forecasting models. In the present study, integration of optical satellite remote sensing-derived information was made with ground meteorological and hydrological data, and predetermined catchment morphological parameters, to study the feasibility of application of a distributed temperature index snowmelt runoff model to one of the high mountainous catchments in the Italian Alps, known as Cordevole River Basin. Five sets of Landsat Multispectral Scanning System (MSS) and Thematic Mapper (TM) computer-compatible tapes (CCTs) were processed using digital image processing techniques in order to evaluate the snow cover variation quantitatively. Digital elevation model, slope and aspect parameters were developed and used during satellite data processing. The satellite scenes were classified as snow, snow under transition and snow free areas. A second-order polynomial fit has been attempted to approximate the snow depletion and to estimate daily snow cover areal extent for three elevation zones of the catchment separately. Model performance evaluation based on correlation coefficient, Nash–Sutcliffe coefficient and percentage volume deviation indicated very good simulation between measured and computed discharges for the entire snowmelt period. The use of average temperature values computed from the maximum and minimum temperatures into the model was studied and a suitable algorithm was proposed. © 1997 John Wiley & Sons, Ltd. 相似文献