首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Riverbanks along the Arno River have been investigated with the aims of de?ning the main mechanisms of failure and retreat, their spatial distribution, and their causes. Geomorphological aspects were investigated by a reconnaissance of riverbank processes, for a number (26) of representative sites. Laboratory and in situ tests were then performed on a selected number of riverbanks (15). Based on the material characteristics, six main typologies of riverbanks have been de?ned, with homogeneous ?ne‐grained and composite banks representing the most frequent types. Slab‐type failures are the most frequent mechanism observed on ?ne‐grained banks, while cantilever failures prevail on composite banks. The role of river stage and related pore water pressure distributions in triggering the main observed mechanisms of failure has been investigated using two different types of stability analysis. The ?rst was conducted for 15 riverbanks, using the limit equilibrium method and considering simpli?ed hypotheses for pore water pressure distribution (annulment of negative pore pressures in the portion of the bank between low water stage and peak stage). Stability conditions and predicted mechanisms of failure are shown to be in reasonably good agreement with ?eld observations. Three riverbanks, representative of the main alluvial reaches of the river, were then selected for a more detailed bank stability analysis, consisting of: (a) de?nition of characteristic hydrographs of the reach with different return periods; (b) modelling of saturated and unsaturated ?ow using ?nite element seepage analysis; and (c) stability analysis with the limit equilibrium method, by adopting pore water pressure values derived from the seepage analysis. The results are compared to those obtained from the previous simpli?ed analysis, and are used to investigate the different responses, in terms of stability, to different hydrological and riverbank conditions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Riverbank retreat along a bend of the Cecina River, Tuscany (central Italy) was monitored across a near annual cycle (autumn 2003 to summer 2004) with the aim of better understanding the factors influencing bank changes and processes at a seasonal scale. Seven flow events occurred during the period of investigation, with the largest having an estimated return period of about 1·5 years. Bank simulations were performed by linking hydrodynamic, fluvial erosion, groundwater flow and bank stability models, for the seven flow events, which are representative of the typical range of hydrographs that normally occur during an annual cycle. The simulations allowed identification of (i) the time of onset and cessation of mass failure and fluvial erosion episodes, (ii) the contributions to total bank retreat made by specific fluvial erosion and mass‐wasting processes, and (iii) the causes of retreat. The results show that the occurrence of bank erosion processes (fluvial erosion, slide failure, cantilever failure) and their relative dominance differ significantly for each event, depending on seasonal hydrological conditions and initial bank geometry. Due to the specific planimetric configuration of the study bend, which steers the core of high velocity fluid away from the bank at higher flow discharges, fluvial erosion tends to occur during particular phases of the hydrograph. As a result fluvial erosion is ineffective at higher peak discharges, and depends more on the duration of more moderate discharges. Slide failures appear to be closely related to the magnitude of peak river stages, typically occurring in close proximity to the peak phase (preferentially during the falling limb, but in some cases even before the peak), while cantilever failures more typically occur in the late phase of the flow hydrograph, when they may be induced by the cumulative effects of any fluvial erosion. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
利用新研制的土工静力-动力液压三轴-扭转多功能剪切仪,在5种初始主应力方向角与5种中主应力系数相组合的初始固结条件下,对饱和松砂进行了不排水循环扭剪试验。讨论了初始固结条件对不排水条件下饱和松砂孔隙水压力变化规律及对剪胀、剪缩、卸荷体缩等体积变化过程的影响。试验研究表明:(1)分别以稳定残余孔隙水压力和破坏时循环次数归一化后的残余孔隙水压力比和循环次数比之间的关系可以用双曲线模式表达。其参数主要依赖于初始主应力方向,中主应力系数对参数的影响并不显著。归一化后的孔隙水压力比与广义剪应变之间的关系也可以用双曲线模式表达,其中的2个待定参数依赖于初始主应力方向,与中主应力系数无关;(2)在三向非均等固结条件下的不排水循环扭剪试验中,饱和松砂表现出卸荷体缩特性,不同初始主应力方向时,饱和松砂剪缩、剪胀、卸荷体缩呈现出不同的交替变化模式。  相似文献   

4.
Floods have become increasingly important in fluvial export of water, sediment and carbon (C). Using high-frequency sampling, the export of water, sediment and C was examined in the Wuding River catchment on the Chinese Loess Plateau. With groundwater as an important contributor to runoff all year round, floods were relatively less important in the export of water. However, large floods were disproportionately important in exporting sediment and inorganic C (DIC) and organic C (DOC and POC). The three largest floods in each year transported 53.6–97.3 and 41.4–77% of the annual sediment and C fluxes, respectively. An extreme flood in 2017 alone contributed 94.6 and 73.1% of the annual sediment and C fluxes, respectively, in just 7 days, which included 20.3, 92.1 and 35.7% of the annual DOC, POC and DIC fluxes, respectively. A stable carbon isotope (δ13C) analysis of POC indicated that modern soils and C3 plants were its primary source. Furthermore, floods greatly accelerated CO2 degassing due to elevated gas transfer velocity, although stream water CO2 partial pressure (pCO2) exhibited a decreasing trend with flow discharge. Although these results illustrated that increasing runoff diluted pCO2, the timing and magnitude of floods were found to be critical in determining the response of pCO2 to flow dynamics. Low-magnitude floods in the early wet season increased pCO2 because of enhanced organic matter input, while subsequent large floods caused a lower pCO2 due to greatly reduced organic matter supply. Finally, continuous monitoring of a complete flood event showed that the CO2 efflux during the flood (2348 ± 664 mg C m–2 day–1) was three times that under low-flow conditions (808 ± 98 mg C m–2 day–1). Our study suggests that infrequent, heavy storm events, which are predicted to increase under climate change, will greatly alter the transport regimes of sediment and C. © 2020 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号