首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphodynamics of the anastomosing channel system of upper Columbia River in southeastern British Columbia, Canada, is examined using an adaptation of conventional hydraulic geometry termed ‘interchannel hydraulic geometry’. Interchannel hydraulic geometry has some of the characteristics of downstream hydraulic geometry but differs in that it describes the general bankfull channel form and hydraulics of primary and secondary channels in the anastomosing channel system. Interchannel hydraulic geometry generalizes these relationships and as such becomes a model of the geomorphology of channel division and combination. Interchannel hydraulic geometry of upper Columbia River, based on ?eld measurements of ?ow velocity and channel form at 16 test sections, is described well by simple power functions: wbf = 3·24Qbf0·64; dbf = 1·04Qbf0·19; vbf = 0·30Qbf0·17. These results, with other related measurements of ?ow resistance, imply that channel splitting leads to hydraulic inef?ciency (higher ?ow resistance) on the anastomosing Columbia River. Because these ?ndings differ from those reported in studies elsewhere, we conclude that hydraulic ef?ciency does not provide a general explanation for anabranching in river channels. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Soil surface microtopography produces non‐uniform surface run‐off, in which narrow threads of relatively deep and fast ?ow move within broader, shallower, slower‐moving regions. This kind of ?ow is probably widespread, given that microtopography is itself common. Methods used to record the properties of surface run‐off include grid‐ or transect‐based depth observations, with a single mean ?ow speed derived by calculation from V = Q/WD, and the use of dye timing to estimate velocity, with an effective mean depth calculated from D = Q/WV. Because these methods allow only single, ?ow‐?eld mean values to be derived for V or D, neither is well suited to non‐uniform ?ows. The use of depth data to derive a ?ow‐?eld mean V furthermore implicitly applies area weighting to the depth data; likewise, the use of dye speeds for V inherently overestimates mean V because dye dominantly follows the faster ?ow threads. The associated errors in derived parameters such as friction coef?cients are not readily quanti?ed and appear not to have been addressed previously. New ?eld experiments made on untilled soil surfaces in arid western NSW, Australia, explore these circumstances and the implications for deriving meaningful measures of ?ow properties, including friction coef?cients. On surfaces deliberately chosen for their very subtle microtopography, average thread velocities are shown to be commonly 2·5 times greater than the ?ow‐?eld mean, and locally 6–7 times greater. On the other hand, non‐thread ?ow speeds lie below the ?ow‐?eld mean, on average reaching only 84 per cent of this value, and often considerably less. Flow‐?eld means conceal the existence of regions of the ?ow ?eld whose properties are statistically distinct. Results con?rm that a reliance on ?ow‐?eld average depths yields estimates of friction coef?cients that are biased toward the shallower, high‐roughness parts of the ?ow, while if dye speeds are relied upon the results are biased toward the deeper, smoother threads of ?ow. A new approach to the evaluation of friction coef?cients in non‐uniform ?ows is advanced, involving the determination of separate coef?cients for threads and non‐thread zones of the ?ow ?eld. In contrast, ?ow‐?eld friction coef?cients as they are customarily derived in run‐off plot experiments subsume these distinct coef?cients in proportions that are generally unknown. The value of such coef?cients is therefore questionable. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
During bed‐load transport by overland ?ow, momentum is transferred from the ?ow to the bed via grain collisions, resulting in a decrease in ?ow velocity and an increase in ?ow resistance, herein termed bed‐load transport resistance. In overland ?ow on mobile plane beds, total ?ow resistance f consists of grain resistance fg and bed‐load transport resistance fbt. In order to identify and evaluate the relative importance of the factors controlling fbt, 38 ?ume experiments were performed on slopes of 2·7 and 5·5° using sediment with median diameters of 0·74 and 1·16 mm. All ?ows were supercritical and turbulent. This study is an extension of a recent study by Gao and Abrahams (Earth Surface Processes and Landforms 2004, vol. 29, pp. 423–435). These authors found that fbt is controlled by three factors: sediment concentration C, dimensionless sediment diameter D*, and relative submergence h/D, where h is ?ow depth, D is median sediment diameter. However, a new dimensional analysis identi?es two additional factors: Froude number F and slope S. Multiple regression analyses reveal (1) that these ?ve factors together explain 97 per cent of the variance of fbt, and (2) that S controls fbt entirely through C. The variable C is therefore redundant, and a new functional equation relating fbt to D*, h/D, S and F is developed. This equation may be used to predict fbt. An advantage of this equation is that it may be used to predict fbt without measuring bed‐load transport rate. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Barchans, isolated crescent‐shaped bedforms, are believed to be formed under almost unidirectional wind or water ?ows and limited sand supply. The formation of barchan morphologies under the action of purely oscillatory wave motion has not yet been fully investigated. The present study attempted to form barchan topography in a wave ?ume and to compare this with barchans in the ?eld. Barchan morphologies of ripple size, called the barchan ripples, were generated from a ?at bed by the action of waves. The horn width, the distance between horn tips, of the barchan ripples increased linearly with an increase in the total length, the overall length projected on the centre line of the barchan, with a coef?cient common to barchan dunes in deserts. The ratio of horn length to horn width of the barchan ripples was smaller than that of barchan dunes, but similar to that of subaqueous barchans in the ?eld. The longer the wave period was, the larger the ratio of the body length to horn width became. Most subaqueous barchans formed under waves (in the laboratory) and unidirectional ?ows (in the ?eld) had blunter horns than subaerial barchans. The shape of the barchan ripples changed with wave period. The outer rim became rounder with increasing wave period. The relationship between the base area and the height of barchan morphologies seems to be linear, with a constant coef?cient for the scale from ripples to dunes. The barchan ripples showed a linear relationship between the height and the horn width, similar to that for barchan dunes. The migration speed of the barchan ripples was proportional to the cube of the ?ow velocity and was inversely proportional to height. The same relation with a different value of the coef?cient was obtained for barchan dunes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
This paper examines the processes responsible for the morphodynamics of an intertidal swash bar at Skallingen, Denmark, during seven successive storms (one with a large surge of +3·02 m DNN). During this period a subtidal bar migrated landward onto the foreshore and continued to migrate across the intertidal zone as a swash bar. The onshore migration of the inner subtidal bar resulted from the erosion of sediment from the upper foreshore and dune ramp during the large storm surge that was transported seaward, causing the landward displacement of the bar through accretion on the landward slope. The magnitude and direction of suspended sediment transport within the intertidal zone, and more specifically at and close to the crest of the swash bar, varied with the ratio of both the significant (Hs) and average (Havg) wave heights to the water depth (hcr) at the swash bar crest (the local depth minimum). The transition between onshore and offshore suspended sediment transport was associated with the average wave of the incident distribution breaking on the swash bar crest (Havgh ≈ 0·33). While the onshore‐directed transport was largest at infragravity frequencies, sediment resuspension was best explained by the skewed accelerations under the surf bores. Offshore transport was dominated by the cross‐shore mean currents (undertow) that developed when the significant wave of the distribution broke on the swash bar crest (Hsh ≈ 0·33) and weakened as the average wave of the distribution started to break at the crest (Havgh ≈ 0·33) and the surf zone approached saturation. In contrast to subtidal bars, the swash bar at Skallingen exhibited a divergent behaviour with respect to the cross‐shore position of the breaker zone, migrating onshore when the average wave broke seaward of the crest and migrating offshore when the average wave broke landward of the crest. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
The stability of the pool–rif?e sequence is one of the most fundamental features of alluvial streams. For several decades, the process of velocity, or shear stress, reversal has been proposed as an explanation for an increase in the amplitude of pool–rif?e sequence bars during high ?ows, offsetting gradual scour of rif?es and deposition in pools during low ?ows. Despite several attempts, reversal has rarely been recorded in ?eld measurements. We propose that, instead of being reversed, maxima and minima in shear stress are phase‐shifted with respect to the pool–rif?e sequence bedform pro?le, so that maximum shear stress occurs upstream of rif?e crests at high ?ow, and downstream at low ?ow. Such phase‐shifts produce gradients of shear stress that explain rif?e deposition, and pool scour, at high ?ow, in accord with sediment continuity. The proposal is supported by results of a one‐dimensional hydraulic model applied to the surveyed bathymetry of a pool–rif?e sequence in a straight reach of a gravel‐bed river. In the sequence studied, the upstream phase‐shift in shear stress at high ?ow was associated with variations in channel width, with width minima occurring upstream of rif?e crests, approximately coincident with shear stress maxima, and width maxima occurring downstream of rif?e crests. Assuming that the width variation is itself the result of ?ow de?ection by rif?e crests at low ?ow, and associated bank‐toe scour downstream, low and high ?ow can be seen to have complementary roles in maintaining alluvial pool–rif?e sequences. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Topographic interactions generate multidirectional and unsteady air?ow that limits the application of velocity pro?le approaches for estimating sediment transport over dunes. Results are presented from a series of wind tunnel simulations using Irwin‐type surface‐mounted pressure sensors to measure shear stress variability directly at the surface over both isolated and closely spaced sharp‐crested model dunes. Findings complement existing theories on secondary air?ow effects on stoss transport dynamics and provide new information on the in?uence of lee‐side air?ow patterns on dune morphodynamics. For all speeds investigated, turbulent unsteadiness at the dune toe indicates a greater, more variable surface shear, despite a signi?cant drop in time‐averaged measurements of streamwise shear stress at this location. This effect is believed suf?cient to inhibit sediment deposition at the toe and may be responsible for documented intermittency in sand transport in the toe region. On the stoss slope, streamline compression and ?ow acceleration cause an increase in ?ow steadiness and shear stress to a maximum at the crest that is double that at the toe of the isolated dune and 60–70 per cent greater than at ?ow reattachment on the lower stoss of closely spaced dunes. Streamwise ?ow accelerations, rather than turbulence, have greater in?uence on stress generation on the stoss and this effect increases with stoss slope distance and with incident wind speed. Reversed ?ow within the separation cell generates signi?cant surface shear (30–40 per cent of maximum values) for both spacings. This supports ?eld studies that suggest reversed ?ow is competent enough to return sediment to the dune directly or in a de?ected direction. High variability in shear at reattachment indicates impact of a turbulent shear layer that, despite low values of time‐averaged streamwise stress in this region, would inhibit sediment accumulation. Downwind of reattachment, shear stress and ?ow steadiness increase within 6 h (h = dune height) of reattachment and approach upwind values by 25 h. A distance of at least 30 h is suggested for full boundary layer recovery, which is comparable to ?uvial estimates. The Irwin sensor used in this study provides a reliable means to measure skin friction force responsible for sand transport and its robust, simple, and cost‐effective design shows promise for validating these ?ndings in natural dune settings. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
The study concerns sand deposition within a regular array of vertical cylinders placed in the path of a sand-laden wind. Twelve wind tunnel experiments using three preselected shear velocities (28·78, 32·86 and 45·1 cm s−1), with associated rates of sand feed (0·3, 2·0 and 3·8 g cm−1 s−1), and four roughness element concentrations (λ = 0·046, 0·092, 0·184 and 0·369) were carried out to evaluate the factors that affect sand deposition and sand flux in the presence of immobile rough elements. The measurements showed that as the concentration of non-erodible elements increased, the percentage reduction in the initial sand flux increased and a particularly sharp reduction occurred when λ ≥ 0·18. The pattern of reduction was found to be qred = qeq (d/H) [Δy/(Δyd)](0·68 −3·5λ) when λ ≤ 0·18, and qred = qeq(d/H)[Δy/(Δyd)](0·025) when λ > 0·18, where qeq is the equilibrium rate of sand transport arriving at the best bed, d is the diameter of the cylinder, H is the height of the cylinder, and Δy is the width of unit area associated with a cylinder. The experimenal results also showed that the sand flux downstream of the array started to increase immediately upon the commencement of burial of the array's cylinders. Thus the sand deposition and sand flux along an array consisting of regularly distributed, non-erodible elements were shown to be neither uniform nor steady. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
A catastrophic lahar began on 30 October 1998, as hurricane precipitation triggered a small ?ank collapse of Casita volcano, a complex and probably dormant stratovolcano. The initial rockslide‐debris avalanche evolved on the ?ank to yield a watery debris ?ood with a sediment concentration less than 60 per cent by volume at the base of the volcano. Within 2·5 km, however, the watery ?ow entrained (bulked) enough sediment to transform entirely to a debris ?ow. The debris ?ow, 6 km downstream and 1·2 km wide and 3 to 6 m deep, killed 2500 people, nearly the entire populations of the communities of El Porvenir and Rolando Rodriguez. These ‘new towns’ were developed in a prehistoric lahar pathway: at least three ?ows of similar size since 8330 14C years bp are documented by stratigraphy in the same 30‐degree sector. Travel time between perception of the ?ow and destruction of the towns was only 2·5–3·0 minutes. The evolution of the ?ow wave occurred with hydraulic continuity and without pause or any extraordinary addition of water. The precipitation trigger of the Casita lahar emphasizes the need, in volcano hazard assessments, for including the potential for non‐eruption‐related collapse lahars with the more predictable potential of their syneruption analogues. The ?ow behaviour emphasizes that volcano collapses can yield not only volcanic debris avalanches with restricted runouts, but also mobile lahars that enlarge by bulking as they ?ow. Volumes and hence inundation areas of collapse‐runout lahars can increase greatly beyond their sources: the volume of the Casita lahar bulked to at least 2·6 times the contributing volume of the ?ank collapse and 4·2 times that of the debris ?ood. At least 78 per cent of the debris ?ow matrix (sediment < ?1·0Φ; 2 mm) was entrained during ?ow. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents an evaluation of the feasibility and the reliability of a visual characterization technique for gravel–cobble river bed surface substrate. Based on principal axis regressions, using phi scale (ϕ), comparisons of visual estimation and grid sampling techniques show that useful predictive relations (R2 = 0·78–0·88) exist between visual estimates of the surface d16, d50 and d84 and estimates obtained for the same percentiles with the grid sampling technique. Comparisons of visual estimation and the surface‐bulk sampling technique also indicate a predictive relation (R2 = 0·70) between the d50 of the two methods. Trained operators can visually estimate gravel–cobble bed surface d16 to uncertainties of 41 per cent, d50 to 15 per cent and d84 to 11 per cent (for example, there is a 5·5 mm error on a d84 size of 50 mm). Furthermore, evidence shows that if operators are properly trained, a calibration relation for each percentile can be applied independently of operators. This visual characterization allows effective detailed mapping of spatial patterns in substrate size distribution along extensive reaches of gravel‐bed rivers. The technique can be very useful in creating terrain models for various geomorphological, hydrological and biological applications such as the determination of entrainment thresholds, hydraulic roughness and substrate suitability for benthic insects or salmonid habitat. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
In wind‐driven rains, wind velocity and direction are expected to affect not only energy input of rains but also shallow ?ow hydraulics by changing roughness induced by raindrop impacts with an angle on ?ow and the unidirectional splashes in the wind direction. A wind‐tunnel study under wind‐driven rains was conducted to determine the effects of horizontal wind velocity and direction on sediment transport by the raindrop‐impacted shallow ?ow. Windless rains and the rains driven by horizontal wind velocities of 6 m s?1, 10 m s?1, and 14 m s?1 were applied to three agricultural soils packed into a 20 by 55 cm soil pan placed on both windward and leeward slopes of 7 per cent, 15 per cent, and 20 per cent. During each rainfall application, sediment and runoff samples were collected at 5‐min intervals at the bottom edge of the soil pan with wide‐mouth bottles and were determined gravimetrically. Based on the interrill erosion mechanics, kinetic energy ?ux (Ern) as a rainfall parameter and product of unit discharge and slope in the form of qbSco as a ?ow parameter were used to explain the interactions between impact and ?ow parameters and sediment transport (qs). The differential sediment transport rates occurred depending on the variation in raindrop trajectory and rain intensity with the wind velocity and direction. Flux of rain energy computed by combining the effects of wind on the velocity, frequency, and angle of raindrop impact reasonably explained the characteristics of wind‐driven rains and acceptably accounted for the differences in sediment delivery rates to the shallow ?ow transport (R2 ≥ 0·78). Further analysis of the Pearson correlation coef?cients between Ern and qSo and qs also showed that wind velocity and direction signi?cantly affected the hydraulics of the shallow ?ow. Ern had a smaller correlation coef?cient with the qs in windward slopes where not only reverse splashes but also reverse lateral raindrop stress with respect to the shallow ?ow direction occurred. However, Ern was as much effective as qSo in the sediment transport in the leeward slopes where advance splashes and advance lateral raindrop stress on the ?ow occurred. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Velocity measurements carried out by an acoustic doppler velocimeter (ADV) in a rectangular laboratory ?ume having a gravel bed are presented. The velocity pro?les are measured in six verticals of the channel cross‐section having an increasing distance (from 4 to 38·5 cm) from the ?ume wall. The experimental runs are carried out for ?ve different bed arrangements, characterized by different concentrations of coarser elements, and for the two conditions of small‐ and large‐scale roughness. For both hydraulic conditions, the velocity measurements are ?rst used to test the applicability of the Dean pro?le and of the logarithmic pro?le corrected by a divergence function proposed in this paper. Then, for each value of the depth sediment ratio h/d84, the non‐dimensional friction factor parameter is calculated by integration of the measured velocity distributions in the different verticals of the cross‐section. Finally a semi‐logarithmic ?ow resistance equation is empirically deduced. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
M. Z. Iqbal 《水文研究》2008,22(23):4609-4619
Oxygen and deuterium isotopes in precipitation were analysed to define local isotopic trends in Iowa, US. The area is far inland from an oceanic source and the observed averages of δ18O and δ D are ? 6·43‰ and ? 41·35‰ for Ames, ? 7·53‰ and ? 51·33‰ for Cedar Falls, and ? 6·01‰ and ? 38·19‰ for Iowa City, respectively. Although these data generally follow global trends, they are different when compared to a semi‐arid mid‐continental location in North Platt, Nebraska. The local meteoric water lines of Iowa are δ D = 7·68 δ18O + 8·0 for Ames, δ D = 7·62 δ18O + 6·07 for Cedar Falls, and δ D = 7·78 δ18O + 8·61 for Iowa City. The current Iowa study compares well with a study conducted in Ames, Iowa, 10 years earlier. The differences between Iowa and Nebraska studies are attributed to a variable climate across the northern Great Plains ranging from sub‐humid in the east to semi‐arid in the west. Iowa being further east in the region is more strongly influenced by a moist sub‐humid to humid climate fed by the tropical air stream from the Gulf of Mexico. The average d‐excess values are 10·06‰ for Ames, 8·92‰ for Cedar Falls and 9·92‰ for Iowa City. Eighty seven percent of the samples are within the global d‐excess range of 0‰ and 20‰. The results are similar to previous studies, including those by National Atmospheric Deposition Programs and International Atomic Energy Agency. It appears that the impact of recycled water or secondary evaporation on δ18O values of area precipitation is minimal. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Lee-side windspeed and sediment transport were measured over a small (1·2 m) transverse ridge in the Silver Peak dunefield, west-central Nevada, USA, using an intensive array of 25 cup anemometers and seven total flux traps. During crest-transverse and transporting flow conditions (u0·3crest ≈ 8·4 m s−1), windspeed near the surface of the lee slope averaged half (48 per cent) that of crest speeds. Dimensionless speeds in the separation zone ranged from 0·2 to 0·8 that of the outer flow (u12). Along the boundary of the separation cell, windspeed increased by 10 per cent of the crest speed before separation. Equilibrium of upper and lower wake regions was not observed by the documented eight dune heights, suggesting that wake recovery may not occur over closely spaced dunes. Sediment transport measured directly on both the lee slope and interdune surfaces averaged approximately 15 per cent of crest inputs. This suggests that a significant amount (c. 70–95 per cent) of sediment transported over the crest moved as fallout. For this data set, flux was approximately proportional to the cube of the near-surface windspeed (u0·3) and in general there was an order of magnitude difference between flux measured at the crest and that measured within the separation zone. Transport direction in the separation zone was acutely oblique to the incident direction owing to secondary flow deflection. Beyond the interdune, transport direction progressed from oblique to crest-transverse. This indicates that an appreciable amount of sediment may move laterally along the lee slope and interdune corridor under crest-transverse flows. Regarding the grain size and sorting properties of transported sediment, there was no significant difference in mean grain size over the dune, although in general particles were finer and more poorly sorted in the lee. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Winter‐forest processes affect global and local climates. The interception‐sublimation fraction (F) of snowfall in forests is a substantial part of the winter water budget (up to 40%). Climate, weather‐forecast and hydrological modellers incorporate increasingly realistic surface schemes into their models, and algorithms describing snow accumulation and snow‐interception sublimation are now finding their way into these schemes. Spatially variable data for calibration and verification of wintertime dynamics therefore are needed for such modelling schemes. The value of F was determined from snow courses in open and forested areas in Hokkaido, Japan. The value of F was related to species and canopy‐structure measures such as closure, sky‐view fraction (SVF) and leaf‐area index (LAI). Forest structure was deduced from fish‐eye photographs. The value of F showed a strong linear correlation to structure: F = 0·44 ? 0·6 × SVF for SVF < 0·72 and F = 0 for SVF > 0·72, and F = 0·11 LAI. These relationships seemed valid for evergreen conifers, larch trees, alder, birch and mixed deciduous stands. Forest snow accumulation (SF) could be estimated from snowfall in open fields (So) and to LAI according to SF = So (1 ? 0·11 LAI) as well as from SVF according to SF = So (0·56 + 0·6 SVF) for SVF < 0·72. The value of SF was equal to So for SVF values above 0·72. The value of sky‐view fraction was correlated to the normalized difference snow index (NDSI) using a Landsat‐TM image for observation plots exceeding 1 ha. Variables F and SF were related to NDSI for these plots according to: F = ?0·37NDSI + 0·29 and SF = So (0·81 + 0·37NDSI). These relationships are somewhat hypothetical because plot‐size limitation only allowed one sparse‐forest observation of NDSI to be used. There is, therefore, a need to confirm these relationships with further studies. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
Surface soil hydraulic properties are key factors controlling the partition of rainfall and snowmelt into runoff and soil water storage, and their knowledge is needed for sound land management. The objective of this study was to evaluate the effects of three land uses (native grass, brome grass and cultivated) on surface soil hydraulic properties under near‐saturated conditions at the St Denis National Wildlife Area, Saskatchewan, Canada. For each land use, water infiltration rates were measured using double‐ring and tension infiltrometers at ?0·3, ?0·7, ?1·5 and ?2·2 kPa pressure heads. Macroporosity and unsaturated hydraulic properties of the surface soil were estimated. Mean field‐saturated hydraulic conductivity (Kfs), unsaturated hydraulic conductivity at ?0·3 kPa pressure head, inverse capillary length scale (α) and water‐conducting macroporosity were compared for different land uses. These parameters of the native grass and brome grass sites were significantly (p < 0·1) higher than that of the cultivated sites. At the ?0·3 kPa pressure head, hydraulic conductivity of grasslands was two to three times greater than that of cultivated lands. Values of α were about two times and values of Kfs about four times greater in grasslands than in cultivated fields. Water‐conducting macroporosity of grasslands and cultivated fields were 0·04% and 0·01% of the total soil volume, respectively. Over 90% of the total water flux at ?0·06 kPa pressure head was transmitted through pores > 1·36 × 10?4 m in diameter in the three land uses. Land use modified near‐saturated hydraulic properties of surface soil and consequently may alter the water balance of the area by changing the amount of surface runoff and soil water storage. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Little Kickapoo Creek (LKC), a low‐gradient stream, mobilizes its streambed–fundamentally altering its near‐surface hyporheic zone–more frequently than do higher‐gradient mountain and karst streams. LKC streambed mobility was assessed through streambed surveys, sediment sampling, and theoretical calculations comparing basal shear stress (τb) with critical shear stress (τc). Baseflow τb is capable of entraining a d50 particle; bankfull flow could entrain a 51·2 mm particle. No particle that large occurs in the top 30 cm of the substrate, suggesting that the top 30 cm of the substrate is mobilized and redistributed during bankfull events. Bankfull events occur on average every 7·6 months; flows capable of entraining d50 and d85 particles occur on average every 0·85 and 2·1 months, respectively. Streambed surveys verify streambed mobility at conditions below bankfull. While higher gradient streams have higher potential energy than LKC, they achieve streambed‐mobilization thresholds less frequently. Heterogeneous sediment redistribution creates an environment where substrate hydraulic conductivity (K) varies over four orders of magnitude. The frequency and magnitude of the substrate entrainment has implications on hyporheic zone function in fluid, solute and thermal transport models, interpretations of hyporheic zone stability, and understanding of LKC's aquatic ecosystem. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Schmidt‐hammer exposure‐age dating (SHD) was applied to the problem of dating the diachronous surfaces of five distal river‐bank boulder ramparts deposited by snow avalanches plunging into the Jostedøla and Sprongdøla rivers in the Jostedalsbreen region of southern Norway. Approaches to local high‐precision linear age calibration, which controlled in different ways for boulder roundness, were developed. The mean age (SHDmean) and the maximum age (SHDmax) of surface boulders were estimated for whole ramparts, crests and distal fringes. Interpretation was further assisted by reference to R‐value distributions. SHDmean ages (with 95% confidence intervals) ranged from 520 ± 270 years to 5375 ± 965 years, whereas SHDmax ages (expected to be exceeded by <5% of surface boulders) ranged from 675 to 9065 years. SHD ages from the Jostedøla ramparts tended to be older than those associated with the Sprongdøla, rampart crests were younger than the respective distal fringes, and use of relatively rounded boulders yielded more consistent SHD ages than angular boulders. The SHDmean ages indicate differences in recent levels of snow‐avalanche activity between ramparts and provide insights into rampart dynamics as boulders are deposited on rampart crests and, in smaller numbers, on the distal fringes. SHDmax ages provide minimum age estimates of rampart age (i.e. the time elapsed since the ramparts began to form) and suggest that at least some of the ramparts have been developing since the early Holocene. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A previously published mixing length (ML) model for evaluating the Darcy–Weisbach friction factor for a large‐scale roughness condition (depth to sediment height ratio ranging from 1 to 4) is brie?y reviewed and modi?ed (MML). Then the MML model and a modi?ed drag (MD) model are experimentally tested using laboratory measurements carried out for gravel‐bed channels and large‐scale roughness condition. This analysis showed that the MML gives accurate estimates of the Darcy–Weisbach coef?cient and for Froude number values greater than 0·5 the MML model coincides with the ML one. Testing of the MD model shows limited accuracy in estimating ?ow resistance. Finally, the MML and MD models are compared with the performance of a quasi‐theoretical (QT) model deduced applying the P‐theorem of the dimensional analysis and the incomplete self‐similarity condition for the depth/sediment ratio and the Froude number. Using the experimental gravel‐bed data to calibrate the QT model, a constant value of the exponent of the Froude number is determined while two relationships are proposed for estimating the scale factor and the exponent of the depth/sediment ratio. This indirect estimate procedure of the coef?cients (b0, b1 and b2) of the QT model can produce a negligible overestimation or underestimation of the friction factor. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
Evapotranspiration (ET) is one of the basic components of the hydrologic cycle and is essential for estimating irrigation water requirements. In this study, an artificial neural network (ANN) model for reference evapotranspiration (ET0) calculation was investigated. ANNs were trained and tested for arid (west), semi‐arid (middle) and sub‐humid (east) areas of the Inner Mongolia district of China. Three or four climate factors, i.e. air temperature (T), relative humidity (RH), wind speed (U) and duration of sunshine (N) from 135 meteorological stations distributed throughout the study area, were used as the inputs of the ANNs. A comparison was conducted between the estimates provided by the ANNs and by multilinear regression (MLR). The results showed that ANNs using the climatic data successfully estimated ET0 and the ANNs simulated ET0 better than the MLRs. The ANNs with four inputs were more accurate than those with three inputs. The errors of the ANNs with four inputs were lower (with RMSE of 0·130 mm d?1, RE of 2·7% and R2 of 0·986) in the semi‐arid area than in the other two areas, but the errors of the ANNs with three inputs were lower in the sub‐humid area (with RMSE of 0·21 mm d?1, RE of 5·2% and R2 of 0·961. For the different seasons, the results indicated that the highest errors occurred in September and the lowest in April for the ANNs with four inputs. Similarly, the errors were higher in September for the ANNs with three inputs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号