共查询到20条相似文献,搜索用时 15 毫秒
1.
Water and cation budgets were calculated for two sub-basins within a small low relief watershed in South-Central Ontario during a period of ephemeral runoff which was initiated by spring snow melt. The hydrology of one (upland) sub-basin was strongly influenced by seasonal fluctuations in the level of regional ground water. Saturated contributing areas formed in low lying regions adjacent to the stream channel where the water table rose to the surface, and stream discharge was a mixture of ground water and saturation overland flow. In the second sub-basin a wetland provided a large and spatially less variable saturated contributing area. Clay soils underlying the wetland resulted in a shallow perched water table, poorly drained and highly organic soils, and greatly reduced inputs of regional ground water. Stream discharge was largely the result of surface runoff from the wetland and adjacent areas of saturated soil.Inter-basin variations in water export were by far greater than variations in stream chemistry. As a result, inter-basin variations in cation export strongly reflected variations in water export over the time interval in which the majority of a given ion was lost from the watershed. Spatial differences in water export were least at the onset of runoff when basin saturation was greatest and overland flow made large contributions to the discharge from both sub-basins. Potassium and hydrogen had high concentrations at this time which caused these ions to show only small spatial differences in export. With decreases in the areal extent of soil saturation, and increases in the storage capacity of the wetland, the hydrologic contrast between sub-basins increased. Greater water loss from the upland area resulted from a greater discharge of regional ground water, and a more rapid expansion of the saturated contributing areas during storm events. Calcium, magnesium, and sodium concentrations increased steadily during the first 3 weeks of runoff, so that the peak export of these cations occurred later in the runoff period at times of higher concentration, but lower and spatially more variable discharges. Consequently, spatial differences in the loss of these ions was great and favoured the upland sub-basin, since the majority of export occurred when the hydrologic contrast between sub-basins was largest. 相似文献
2.
Paul W. Richardson Jayme E. Seehafer Elizabeth T. Keppeler Diane G. Sutherland Joseph W. Wagenbrenner Kevin D. Bladon Salli F. Dymond Ryan P. Cole 《水文研究》2021,35(6):e14207
The Caspar Creek Experimental Watersheds are the site of a long-term paired watershed study in the northern Coast Ranges of California. The watersheds are predominately forested with coast redwood and Douglas-fir. Old-growth forest was logged between 1860 and 1904. Two harvesting experiments have been completed since then and a third experiment is currently underway. Caspar Creek data are split into three phases corresponding to three experiments: Phase 1 (1962–1985) reports on a selection harvest (1971–1973) and initial recovery in the South Fork watershed; Phase 2 (1985–2017) includes clearcut harvesting of ~50% of the North Fork watershed (1985–1992) and recovery; and Phase 3 (2017 onward) corresponds to a second selection harvest in the South Fork watershed with a range of subwatershed harvest intensities (2017–2019) and recovery. All three experiments included harvest-related road-building and relied primarily on measurements of streamflow and sediment delivery from both treated and reference watersheds. Major findings include modest increases in post-harvest peak flows and cumulative flow volumes, post-harvest low flows that initially increased and then decreased 12 to 15 years after harvesting, and the consequences of different yarding techniques and road design on sediment yields. Some of the data for Phase 1 and Phase 2 are available in a USDA Forest Service online archive. The archived data include precipitation, streamflow, suspended sediment concentrations, turbidity, accumulated weir pond sediment volumes, bedload transport rates, water stable isotope data, and geospatial data. Archiving activities are ongoing. Phase 3 data are currently being collected and will be archived after a post-harvest monitoring period. 相似文献
3.
4.
Weathering rinds, zones of alteration on the exterior surfaces of rock outcrops and coarse unconsolidated surficial debris are widely used by geomorphologists and Quaternary geologists as indicators of the relative age of landforms and landscapes. Additionally they provide unique insights into the earliest stages of rock and mineral weathering, yet the origin of these alteration zones is relatively poorly understood. This lack of understanding applies especially to the initial stages of rind formation. The study reported in this paper has two principal objectives. The first is to use lightly polished granite discs inserted in soil profiles under several different plant communities in an Arctic alpine environment for a period of four or five years to investigate the nature of incipient weathering rind development. The second is to investigate the factors responsible for spatial variability in the nature and rates of rind formation. Incipient weathering rind development on the outer edges of the granite discs is observable and measurable over a period of time as short as four years in the mild Arctic alpine environment of Swedish Lapland. The earliest stages of rind development involve the development of a porous structure consisting of a combination of pits and fractures which have been solutionally enlarged and modified. Solution appears to be preferentially concentrated on the surfaces of feldspars and, to a lesser extent, quartz. In addition, iron oxides are present along grain boundaries and in grain interiors and are interpreted to have been derived from the oxidation of ferromagnesian minerals. Spatial variability in weathering rind development appears to be particularly driven by differences in moisture but is not related to soil pH. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
5.
Nikolaos P. Nikolaidis Vicki S. Nikolaidis Jerald L. Schnoor 《Aquatic Sciences - Research Across Boundaries》1991,53(4):330-345
Monte-Carlo simulations were used to assess the extent of shortterm alkalinity depressions occuring in Sierra Nevada lakes due to acidic deposition events. The Episodic Event Model (EEM) was used to simulate spring snowmelt events. Snow course data, precipitation data and lake acidification surveys were used to derive values for the EEM parameters. Spring snowmelt events were shown to have great impacts on the water quality of Sierran lakes. Lakes are likely to be most affected by the early-spring snowmelt event because the epilimnion depth is at a minimum, which indicates minimum dilution. Under annual average loading conditions, no Sierran lake has been reported as acidic although 29% of the lakes have alkalinities less than 40 µeq/L indicating a sensitivity to acidification. In simulations of early-spring snowmelt events, using present-day acidic loading conditions, it was estimated 79% ± 9% of the lakes would experience shortterm lake alkalinity depressions to levels less than 40 µeq/L. The results provided by the model simulations are valuable in establishing upper and lower limits on the extent of possible episodic acidification to lake-resources-at-risk. The most critical parameters controlling the magnitude of lake alkalinity depressions during snowmelt episodic events are a) the lake area to watershed area ratio — a measure of input loading, and b) the epilimnion volume — a measure of dilution and mixing. 相似文献
6.
Norikazu Matsuoka 《地球表面变化过程与地形》2005,30(1):41-58
This paper describes up to ten years of continuous monitoring of frost heave, creep and associated parameters on high mountain crest slopes in the Japanese and Swiss Alps, aiming to evaluate spatial and interannual variations in the rates and controls of soil movement. Shallow frost creep re?ecting diurnal frost heave activity dominates the crest slopes that lack a vegetation mat and have a thin debris mantle with good drainage. Seasonal frost heave activity can induce slightly deeper movement where ?ne soil exists below the depth reached by diurnal freeze–thaw penetration, although the shallow bedrock impedes movements below 20 cm depth. As a result, downslope velocity pro?les display strong concavity with surface velocities of 2–50 cm a?1. The frost creep rates vary spatially, depending on the soil texture, slope gradient, frequency of temperature cycling across 0 °C and moisture availability during freeze–thaw periods. Soil movements recur in every freeze–thaw period, although with some interannual variations affected by the length of seasonal snow cover and the occurrence of precipitation during freeze–thaw periods. The Swiss Alps encounter more signi?cant interannual variations than the Japanese Alps, re?ecting the large variability of the annual snow regime. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
7.
Wetlands are now being integrated into oil sands mining landscape closure design plans. These wetland ecosystems will be constructed within a regional sub‐humid climate where snowfall represents ~25% of annual precipitation. However, few studies focus on the distribution of snow and, hence, the storage of winter precipitation in reclaimed oil sands landscapes. In this study, the distribution, ablation and fate of snowmelt waters are quantified within a constructed watershed in a post‐mining oil sands environment. Basin‐averaged peak SWE was 106 mm, with no significant difference between reclaimed slopes with vegetation and those that were sparsely vegetated or bare. Snow depth was greatest and more variable near the toe of slopes and became progressively shallower towards the crest. Snow ablation started first on the vegetated slope, which also exhibited the maximum observed ablation rates. This enhanced melt was attributed to increased absorption of short‐wave radiation by vegetation stems and branches. Recharge to reclaimed slopes and a constructed aquifer during the snowmelt period was minimal, as the presence of ground frost minimized infiltration. Accordingly, substantial surface run‐off was observed from all reclaimed slopes, despite being designed to reduce run‐off and increase water storage. This could result in increased flashiness of downstream watercourses during the spring freshet that receive run‐off from post‐mining landscapes where large reclaimed slopes are prolific. Run‐off ratios for the reclaimed slopes were between 0.7 and 0.9. Thus, it is essential to consider snow dynamics when designing landscape‐scale constructed ecosystems. This research demonstrates that the snowmelt period hydrology within reclaimed landscapes is fundamentally different from that reported for natural settings and represents one of the first studies on snow dynamics in constructed watershed systems in the post‐mined oil sands landscape. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
8.
Soil water is an important limiting factor for restoring alpine meadows on the northern Tibetan Plateau. Field studies of soil‐water content (SWC), however, are rare due to the harsh environment, especially in a mesoscale alpine‐meadow ecosystem. The objective of this study was to assess the spatial variability of SWC and the temporal variation of the spatial variability in a typical alpine meadow using a geostatistical approach. SWC was measured using a neutron probe to a depth of 50 cm at 113 locations on 22 sampling occasions in a 33.5‐hm2 alpine meadow during the 2015 and 2016 growing seasons. Mean SWC in the study plot for the two growing seasons was 18.7, 14.0, 13.9, 14.3, and 14.8% for depths of 10, 20, 30, 40, and 50 cm, respectively, and SWC was significantly larger at 10 cm than at other depths. SWC was negatively correlated with its spatial variability, and the spatial variability was higher when SWC was lower. Thirty‐three sampling locations in this study plot met the requirement of accuracy of the central limit theorem. A Gaussian model was the best fit for SWC semivariance at depths of 10, 20, and 30 cm, and the spatial structural ratio was between 0.997 and 1, indicating a strong spatial dependence of SWC. The sill and range fluctuated temporally, and the nugget and spatial structural ratio did not generally vary with time. The sill was significantly positively correlated with SWC and was initially stable and then tend to increase with SWC. The nugget, range, and spatial structure ratio, however, were not correlated with SWC. These results contribute to our understanding of SWC spatial distribution and variation in alpine meadows and provide basic empirical SWC data for mesoscale model simulations, optimizing sampling strategies and managing meadows on the Tibetan Plateau. 相似文献
9.
Seasonal water storage in high-elevation alpine catchments are critical sources of water for mountainous regions like the western U.S. The spatial distribution of snow in these topographically complex catchments is primarily governed by orography, solar radiation, and wind redistribution. While the effect of solar shading is relatively consistent from year-to-year, the redistribution of snow due to wind is more variable – capable of producing snowpacks that have varying degrees of uniformity across these hydrologically-important catchments. A reasonable hypothesis is that a warmer climate will cause snowfall to become more dense (i.e. wetter and heavier), possibly leading to less wind redistribution and thus produce a more uniformly distributed snowpack across the landscape. In this study, we investigate the role of increasingly uniform spatial snowpack distributions on streamflow generation in the Green Lakes Valley Niwot Ridge Long Term Ecological Research station, within the headwaters of the Boulder Creek watershed in Colorado. A set of idealized hydrologic simulation experiments driven by reconstructed snowpacks spanning 2001–2014 show that more a more uniform spatial snowpack distribution leads to an earlier melt-out of 31 days on average and tends to produce less total streamflow, with maximum decreases as large as 7.5%. Isolating the role of snowpack heterogeneity from melt-season precipitation, we find that snowpack uniformity reduces total streamflow by as much as 13.2%. Reductions in streamflow are largely explained by greater exposure to solar radiation in the uniformly distributed case relative to a more heterogeneous snowpack, with this exposure driving shifts towards earlier snowmelt and changes in soil water storage. Overall, we find that the runoff efficiency from shallower snowpacks is more sensitive to the effects of uniformity than deeper snowpacks, which has potential implications for a warming climate where shallower snowpacks and enhanced sensitivities may be present. 相似文献
10.
Continuous wavelet analyses of hourly time series of air temperature, stream discharge, and precipitation are used to compare the seasonal and inter‐annual variability in hydrological regimes of the two principal streams feeding Bow Lake, Banff National Park, Alberta: the glacial stream draining the Wapta Icefields, and the snowmelt‐fed Bow River. The goal is to understand how water sources and flow routing differ between the two catchments. Wavelet spectra and cross‐wavelet spectra were determined for air temperature and discharge from the two streams for summers (June–September) 1997–2000, and for rainfall and discharge for the summers of 1999 and 2000. The diurnal signal of the glacial runoff was orders of magnitude higher in 1998 than in other years, indicating that significant ice exposure and the development of channelized glacial drainage occurred as a result of the 1997–98 El Niño conditions. Early retreat of the snowpack in 1997 and 1998 led to a significant summer‐long input of melt runoff from a small area of ice cover in the Bow River catchment; but such inputs were not apparent in 1999 and 2000, when snow cover was more extensive. Rainfall had a stronger influence on runoff and followed quicker flow paths in the Bow River catchment than in the glacial catchment. Snowpack thickness and catchment size were the primary controls on the phase relationship between temperature and discharge at diurnal time scales. Wavelet analysis is a fast and effective means to characterize runoff, temperature, and precipitation regimes and their interrelationships and inter‐annual variability. The technique is effective at identifying inter‐annual and seasonal changes in the relative contributions of different water sources to runoff, and changes in the time required for routing of diurnal meltwater pulses through a catchment. However, it is less effective at identifying changes/differences in the type of the flow routing (e.g. overland flow versus through flow) between or within catchments. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
11.
Bacteria‐sediment associations in an alpine,freshwater environment and their effects on particle size,density and settling velocity 下载免费PDF全文
This study measures the presence of bacteria‐sediment associations (BSAs) in an alpine, glacier‐fed watershed in the Southern Coast Mountains of British Columbia, Canada. The impact of BSAs on the creation of flocculated particles and their settling velocity are quantified using a laser transmissometer. Results from the study indicate that BSAs are present in the watershed and vary over both space and time. The percentage of bacteria associated with sediment particles was found to range from < 1% to 40%. Major sources of planktonic bacteria such as agricultural land and wastewater treatment outflow co‐occur with large decreases in the BSA ratio. Laboratory analysis demonstrates that an increase in the concentration of bacteria was associated with a decrease in the volume concentration of small particles, and a decrease in both estimated density and measured settling velocity for particles in larger size classes; consistent with flocculated particles of increasing complexity arising from combinations of primary particles and/or BSAs. Paleoenvironmental reconstructions using laminated lake sediments in alpine, glacier‐fed systems benefit from a fuller understanding of the geomorphologic processes by which they formed. While bacteria are noted to enhance formation of flocculated particles in laboratory systems, their impact upon geomorphic processes in natural systems have yet to be fully explored. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd. 相似文献
12.
In this study, the Cold Regions Hydrological Modelling platform was used to create an alpine snow model including wind redistribution of snow and energy balance snowmelt to simulate the snowpack over the period 1996–2009 in a small (33 ha) snow‐dominated basin in the Spanish Pyrenees. The basin was divided into three hydrological response units (HRUs), based on contrasting physiographic and aerodynamic characteristics. A sensitivity analysis was conducted to calculate the snow water equivalent regime for various combinations of temperature and precipitation that differed from observed conditions. The results show that there was large inter‐annual variability in the snowpack in this region of the Pyrenees because of its marked sensitivity to climatic conditions. Although the basin is small and quite homogeneous, snowpack seasonality and inter‐annual evolution of the snowpack varied in each HRU. Snow accumulation change in relation to temperature change was approximately 20% for every 1 °C, and the duration of the snowpack was reduced by 20–30 days per °C. Melting rates decreased with increased temperature, and wind redistribution of snow was higher with decreased temperature. The magnitude and sign of changes in precipitation may markedly affect the response of the snowpack to changes in temperature. There was a non‐linear response of snow to individual and combined changes in temperature and precipitation, with respect to both the magnitude and sign of the change. This was a consequence of the complex interactions among climate, topography and blowing snow in the study basin. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
13.
Alpine/subalpine basins may exhibit substantial variability in solute fluxes despite many apparent similarities in basin characteristics. An evaluation of controls on spatial patterns in solute fluxes may allow development of predictive tools for assessing basin sensitivity to outside perturbations such as climate change or deposition of atmospheric pollutants. Relationships between basin physical characteristics, determined from geographical information system (GIS) tools, and solute fluxes and mineral weathering rates were explored for nine alpine/subalpine basins in Rocky Mountain National Park, Colorado, using correlation analyses for 1993 and 1994 data. Stream‐water nitrate fluxes were correlated positively with basin characteristics associated with the talus environment; i.e., the fractional amounts of steep slopes (≥ 30°), unvegetated terrain and young debris (primarily Holocene till) in the basins, and were correlated negatively with fractional amounts of subalpine meadow terrain. Correlations with nitrate indicate the importance of the talus environment in promoting nitrate flux and the mitigating effect of areas with established vegetation, such as subalpine meadows. Total mineral weathering rates for the basins ranged from about 300 to 600 mol ha?1 year?1. Oligoclase weathering accounted for 30 to 73% of the total mineral weathering flux, and was positively correlated with the amount of old debris (primarily Pleistocene glacial till) in the basins. Although calcite is found in trace amounts in bedrock, calcite weathering accounted for up to 44% of the total mineral weathering flux. Calcite was strongly correlated with steep slope, unvegetated terrain, and young debris—probably because physical weathering in steep‐gradient areas exposes fresh mineral surfaces that contain calcite for chemical weathering. Oligoclase and calcite weathering are the dominant sources of alkalinity in the basins. However, atmospherically deposited acids consume much of the alkalinity generated by weathering of calcite and other minerals in the talus environment. Published in 2001 by John Wiley & Sons, Ltd. 相似文献
14.
Eric E. Small Robert S. Anderson James L. Repka Robert Finkel 《Earth and Planetary Science Letters》1997,150(3-4):413-425
We have measured the concentration of in situ produced cosmogenic 10Be and 26Al from bare bedrock surfaces on summit flats in four western U.S. mountain ranges. The maximum mean bare-bedrock erosion rate from these alpine environments is 7.6 ± 3.9 m My−1. Individual measurements vary between 2 and 19 m My−1. These erosion rates are similar to previous cosmogenic radionuclide (CRN) erosion rates measured in other environments, except for those from extremely arid regions. This indicates that bare bedrock is not weathered into transportable material more rapidly in alpine environments than in other environments, even though frost weathering should be intense in these areas. Our CRN-deduced point measurements of bedrock erosion are slower than typical basin-averaged denudation rates ( 50 m My−1). If our measured CRN erosion rates are accurate indicators of the rate at which summit flats are lowered by erosion, then relief in the mountain ranges examined here is probably increasing.
We develop a model of outcrop erosion to investigate the magnitude of errors associated with applying the steady-state erosion model to episodically eroding outcrops. Our simulations show that interpreting measurements with the steady-state erosion model can yield erosion rates which are either greater or less than the actual long-term mean erosion rate. While errors resulting from episodic erosion are potentially greater than both measurement and production rate errors for single samples, the mean value of many steady-state erosion rate measurements provides a much better estimate of the long-term erosion rate. 相似文献
15.
Jill S. Baron David W. Clow Isabella A. Oleksy Timothy Weinmann Caitlin Charlton Amanda Jayo 《水文研究》2021,35(3):e14107
Loch Vale watershed was instrumented in 1983 with initial support from the National Acid Precipitation Assessment Program to ask whether ecosystems of Rocky Mountain National Park (RMNP) were affected by acidic atmospheric deposition. Research and monitoring activities were expanded in 1991 by the U.S. Geological Survey Water, Energy, and Biogeochemical Budgets program to understand the processes, and their interactions, controlling water, energy, and biogeochemical fluxes. With help from many collaborators we have characterized trends and patterns in atmospheric deposition, climate, and hydrology, including glaciers and other ice features. Instead of acidic deposition, we documented high atmospheric inputs of reactive nitrogen (Nr), and have studied the ecological consequences in soils, surface water, and vegetation. Using paleolimnology, we documented the onset of human-caused change to lake primary producers ca. 1950 in response to increased Nr deposition and warming. Our results provided the basis for the Colorado Nitrogen Deposition Reduction Plan, a state policy that aims to reduce Nr emissions to protect resources in RMNP by 2032. Carbon cycle research revealed mountain wetlands now release more carbon than they store, and respiration and methane flux occurs even during winter through deep snow packs. Trend analyses found export of Nr to be closely tied to atmospheric inputs, but can lag in response to drought. Current research explores consequences of the combination of warming, changes in precipitation dynamics, and atmospheric deposition of Nr and dust on stream and lake CO2 dynamics, lake biology and trophic state, and soil carbon composition. Dramatic increases in park visitors have prompted studies on the effects of recreational use on water quality. New tools such as remote sensing and high frequency instream water quality sensors are being applied to lake and stream studies. Monitoring, combined with experiments, models, and spatial comparisons is an essential foundation for science-based resource management. 相似文献
16.
为揭示太湖流域降雨和湖水酸根阴离子长期变化特征及环境意义,通过历史数据收集和采样分析,对太湖流域降雨和湖水中的SO42-、NO3-变化特征和来源进行了研究.结果表明:自1990s以来太湖流域降雨中SO42-呈显著下降趋势,年平均下降率为0.28 mg/(L·a);NO3-浓度却呈显著上升趋势,年平均增长率为0.05 mg/(L·a),降雨中氮污染呈现加重的趋势.与之相反,湖水中SO42-呈显著上升趋势,年平均增长率为1.24 mg/(L·a);NO3-浓度却呈显著下降趋势,年平均下降率为0.02 mg/(L·a).30年以来,太湖水体SO42-/NO3-比值不断升高,远高于降水SO42-/NO3-比值.研究认为:流域SO2排放引起的酸沉降是湖水SO42-浓度增长的最重要原因,但氮氧化物排放并未引起湖水NO3-浓度升高,说明太湖流域对大气沉降的氮氧化物有滞留作用,而太湖水体是流域大气沉降硫酸盐的重要汇.综合治理太湖流域酸性物质排放对防止太湖水体酸化和治理富营养化都具有重要意义. 相似文献
17.
Surface water and groundwater interactions in an extensively mined watershed,upper Schuylkill River,Pennsylvania, USA 下载免费PDF全文
Charles A. Cravotta III Daniel J. Goode Michael D. Bartles Dennis W. Risser Daniel G. Galeone 《水文研究》2014,28(10):3574-3601
Streams crossing underground coal mines may lose flow, whereas abandoned mine drainage (AMD) restores flow downstream. During 2005–2012, discharge from the Pine Knot Mine Tunnel, the largest AMD source in the upper Schuylkill River Basin, had near‐neutral pH and elevated concentrations of iron, manganese and sulphate. Discharge from the tunnel responded rapidly to recharge but exhibited a prolonged recession compared with nearby streams, consistent with rapid infiltration of surface water and slow release of groundwater from the mine complex. Dissolved iron was attenuated downstream by oxidation and precipitation, whereas dissolved CO2 degassed and pH increased. During high flow conditions, the AMD and downstream waters exhibited decreased pH, iron and sulphate with increased acidity that were modelled by mixing net‐alkaline AMD with recharge or run‐off having low ionic strength and low pH. Attenuation of dissolved iron within the river was least effective during high flow conditions because of decreased transport time coupled with inhibitory effects of low pH on oxidation kinetics. A numerical model of groundwater flow was calibrated by using groundwater levels in the Pine Knot Mine and discharge data for the Pine Knot Mine Tunnel and West Branch Schuylkill River during a snowmelt event in January 2012. Although the calibrated model indicated substantial recharge to the mine complex took place away from streams, simulation of rapid changes in mine pool level and tunnel discharge during a high flow event in May 2012 required a source of direct recharge to the Pine Knot Mine. Such recharge produced small changes in mine pool level and rapid changes in tunnel flow rate because of extensive unsaturated storage capacity and high transmissivity within the mine complex. Thus, elimination of stream leakage could have a small effect on the annual discharge from the tunnel, but a large effect on peak discharge and associated water quality downstream. Published 2013. This article is a U.S. Government work and is in the public domain in the USA. 相似文献
18.
This paper reports on a study analysing the spatial distribution functions, the correlation structures, and the power spectral densities of high‐resolution LIDAR snow depths (~1 m) in two adjacent 500 m × 500 m areas in the Colorado Rocky Mountains, one a sub‐alpine forest the other an alpine tundra. It is shown how and why differences in the controlling physical processes induced by variations in vegetation cover and wind patterns lead to the observed differences in spatial organization between the snow depth fields of these environments. In the sub‐alpine forest area, the mean of snow depth increases with elevation, while its standard deviation remains uniform. In the tundra subarea, the mean of snow depth decreases with elevation, while its standard deviation varies over a wide range. The two‐dimensional correlations of snow depth in the forested area indicate little spatial memory and isotropic conditions, while in the tundra they indicate a marked directional bias that is consistent with the predominant wind directions and the location of topographic ridges and depressions. The power spectral densities exhibit a power law behaviour in two frequency intervals separated by a break located at a scale of around 12 m in the forested subarea, and 65 m in the tundra subarea. The spectral exponents obtained indicate that the snow depth fields are highly variable over scales larger than the scale break, while highly correlated below. Based on the observations and on synthetic snow depth fields generated with one‐ and two‐dimensional spectral techniques, it is shown that the scale at which the break occurs increases with the separation distance between snow depth maxima. In addition, the breaks in the forested area coincide with those of the corresponding vegetation height field, while in the tundra subarea they are displaced towards larger scales than those observed in the corresponding vegetation height field. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
19.
高山湖泊吉仁错位于川西高原树线以上,受现代冰川融水补给影响.通过吉仁错沉积钻孔~(210)Pb/~(137)Cs定年和沉积枝角类和多环境代用指标分析,结合主成分分析和冗余分析等方法,高分辨率重建了近200 a来吉仁错枝角类组合和环境变化的过程.结果表明,尽管过去200 a来吉仁错枝角类组合一直以沿岸种为主,但仍经历了3个明显的变化阶段.1850 AD后,枝角类组合中Alonella nana、Chydorus sphaericus和Pleuroxus sp.的增加、以及Alona rustica和Alona guttata丰度的下降指示了水温和水体pH值的上升.1900 AD后枝角类通量的增高并不同步于组合的变化,指示了湖泊营养开始增加,这种不一致的变化分别代表了大气氮沉降和区域气候变暖的影响结果.多指标综合分析得出,过去150 a来,气候变暖和大气污染沉降通过直接和间接作用(流域冰川融水过程和植被土壤过程),较深刻地影响了湖泊物理过程(水温升高和无冰期加长)、营养过程(氮、磷营养升高)和酸碱平衡过程(碱性增强),改变了湖泊生物的生长季节,并通过促进藻类发育,最终引起了湖泊枝角类群落组合的变化和生物量的增加.1945 AD前后吉仁错枝角类与藻类群落结构和湖泊环境的同步变化,响应于持续增温背景下多环境过程的相互作用. 相似文献
20.
泸沽湖近代沉积环境时空变化特征及原因分析 总被引:1,自引:0,他引:1
通过对泸沽湖沉积岩芯粒度、磁化率(χ_(lf))、化学蚀变指数(CIA)等沉积指标的分析,结合~(210)Pb和~(137)Cs定年结果以及区域降水和人类活动等资料,研究了近150年来泸沽湖沉积环境的时空变化特征与主要影响因素.泸沽湖沉积物粒度组成以黏土与细粉砂为主(80%),细颗粒组分(如黏土)含量与χ_(lf)、CIA之间具有显著相关性.各岩芯沉积指标垂向变化规律相似,1920s之前,沉积指标较为稳定,为人类活动影响较弱的准自然沉积阶段;1920s以来,χ_(lf)、CIA值与黏土含量逐渐升高,反映了风化与成壤作用较强的细颗粒表土物质侵蚀开始加强,可能与流域农业发展及森林砍伐等人类活动影响有关;约1970年以来,χ_(lf)、CIA值与黏土含量进一步升高,指示了流域内表土侵蚀与上述人类活动影响的进一步增强,与文献记录的1970s—1980s两次大规模的森林砍伐吻合;约2002年以来,χ_(lf)、CIA值与黏土含量降低,反映了表土侵蚀减弱,与近年来流域植被逐渐恢复及降水减少有关.与器测资料对比研究表明,降水等气候因素对近代泸沽湖沉积环境演变的影响相对较弱.空间上,各沉积指标表现出一定的异质性.黏土含量在南部和北部湖区两侧靠近洪积扇及冲积平原的湖区沉积物中较高;近50年以来,各沉积岩芯所反映的平均沉积通量为0.020~0.043 g/(cm~2·a),南部湖区高于北部湖区,主要受入湖水系分布及流域南部地区高强度人类活动导致的土壤侵蚀的影响. 相似文献