首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the shake‐table tests of a 2/3‐scale, three‐story, two‐bay, reinforced concrete frame infilled with unreinforced masonry walls. The specimen is representative of the construction practice in California in the 1920s. The reinforced concrete frame had nonductile reinforcement details and it was infilled with solid masonry walls in one bay and infill walls with window openings in the other bay. The structure was subjected to a sequence of dynamic tests including white‐noise base excitations and 14 scaled historical earthquake ground motion records of increasing intensity. The performance of the structure was satisfactory considering the seismic loads it was subjected to. The paper summarizes the design of the specimen and the major findings from the shake‐table tests, including the dynamic response, the load resistance, the evolution of damage, and the final failure mechanism. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A full‐scale shake table test on a six‐story reinforced concrete wall frame structure was carried out at E‐Defense, the world's largest three‐dimensional earthquake simulation facility, in January 2006. Story collapse induced from shear failure of shear critical members (e.g., short columns and shear walls) was successfully produced in the test. Insights gained into the seismic behavior of a full‐scale specimen subjected to severe earthquake loads are presented in this paper. To reproduce the collapse process of the specimen and evaluate the ability of analytical tools to predict post‐peak behavior, numerical simulation was also conducted, modeling the seismic behavior of each member with different kinds of models, which differ primarily in their ability to simulate strength decay. Simulated results showed good agreement with the strength‐degrading features observed in post‐peak regions where shear failure of members and concentrated deformation occurred in the first story. The simulated results tended to underestimate observed values such as maximum base shear and maximum displacement. The effects of member model characteristics, torsional response, and earthquake load dimensions (i.e., three‐dimensional effects) on the collapse process of the specimen were also investigated through comprehensive dynamic analyses, which highlighted the following seismic characteristics of the full‐scale specimen: (i) a model that is incapable of simulating a specimen's strength deterioration is inadequate to simulate the post‐peak behavior of the specimen; (ii) the torsional response generated from uniaxial eccentricity in the longitudinal direction was more significant in the elastic range than in the inelastic range; and (iii) three‐dimensional earthquake loads (X–Y–Z axes) generated larger maximum displacement than any other loading cases such as two‐dimensional (X–Y or Y–Z axes) or one‐dimensional (Y axis only) excitation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents the main results of the evaluation of residual inter‐story drift demands in typical moment‐resisting steel buildings designed accordingly to the Mexican design practice when subjected to narrow‐band earthquake ground motions. Analytical 2D‐framed models representative of the study‐case buildings were subjected to a set of 30 narrow‐band earthquake ground motions recorded on stations placed in soft‐soil sites of Mexico City, where most significant structural damage was found in buildings as a consequence of the 1985 Michoacan earthquake, and scaled to reach several levels of intensity to perform incremental dynamic analyses. Thus, results were statistically processed to obtain hazard curves of peak (maximum) and residual drift demands for each frame model. It is shown that the study‐case frames might exhibit maximum residual inter‐story drift demands in excess of 0.5%, which is perceptible for building's occupants and could cause human discomfort, for a mean annual rate of exceedance associated to peak inter‐story drift demands of about 3%, which is the limiting drift to avoid collapse prescribed in the 2004 Mexico City Seismic Design Provisions. The influence of a member's post‐yield stiffness ratio and material overstrength in the evaluation of maximum residual inter‐story drift demands is also discussed. Finally, this study introduces response transformation factors, Tp, that allow establishing residual drift limits compatible with the same mean annual rate of exceedance of peak inter‐story drift limits for future seismic design/evaluation criteria that take into account both drift demands for assessing a building's seismic performance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
张丹丽  谢强 《地震工程学报》2018,40(6):1259-1265
基于3层普通抗震混凝土框架结构,采用能力谱法评估了矩形框架结构的抗震性能,从实验结果中获取能力曲线,并利用在地面特性条件下的各站记录的地震地面运动建立需求曲线。评估结果表明,3层混凝土框架可以抵抗地面条件为1和2的所有地震带A,B,C,D和E的地震荷载;对于地面条件3,混凝土框架在地震带A,B,C和D中的实验结果令人满意;对于地面条件4,混凝土框架只对地震带A和B有效。  相似文献   

5.
This paper presents shake‐table tests conducted on a two‐fifths‐scale reinforced concrete frame representing a conventional construction design under current building code provisions in the Mediterranean area. The structure was subjected to a sequence of dynamic tests including free vibrations and four seismic simulations in which a historical ground motion record was scaled to levels of increasing intensity until collapse. Each seismic simulation was associated with a different level of seismic hazard, representing very frequent, frequent, rare and very rare earthquakes. The structure remained basically undamaged and within the inter‐story drift limits of the ‘immediate occupancy’ performance level for the very frequent and frequent earthquakes. For the rare earthquake, the specimen sustained significant damage with chord rotations of up to 28% of its ultimate capacity and approached the upper bound limit of inter‐story drift associated with ‘life safety’. The specimen collapsed at the beginning of the ‘very rare’ seismic simulation. Besides summarizing the experimental program, this paper evaluates the damage quantitatively at the global and local levels in terms of chord rotation and other damage indexes, together with the energy dissipation demands for each level of seismic hazard. Further, the ratios of column‐to‐beam moment capacity recommended by Eurocode 8 and ACI‐318 to guarantee the formation of a strong column‐weak beam mechanism are examined. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Soil effects on peak ground acceleration, velocity and elastic response spectra (5% damping) are expressed by simple approximate relations in terms of five key parameters: (a) the fundamental vibration period of the non‐linear soil, TS, (b) the period of a bedrock site of equal thickness, Tb, (c) the predominant excitation period, Te, (d) the peak seismic acceleration at outcropping bedrock, a, and (e) the number of significant excitation cycles, n. Furthermore, another relation is proposed for the estimation of TS in terms of the soil thickness H, the average shear wave velocity of the soil V?S,o and a. The aforementioned parameters were first identified through a simplified analytical simulation of the site excitation. The multivariable approximate relations were then formulated via a statistical analysis of relevant data from more than 700 one‐dimensional equivalent‐linear seismic ground response analyses, for actual seismic excitations and natural soil conditions. Use of these relations to back‐calculate the numerical results in the database gives an estimate of their error margin, which is found to be relatively small and unbiased. The proposed relations are also independently verified through a detailed comparison with strong motion recordings from seven well‐documented case studies: (a) two sites in the San Fernando valley during the Northridge earthquake, and (b) five different seismic events recorded at the SMART‐1 accelerometer array in Taiwan. It is deduced that the accuracy of the relations is comparable to that of the equivalent‐linear method. Hence, they can be readily used as a quick alternative for routine applications, as well as for spreadsheet computations (e.g. GIS‐aided seismic microzonation studies) where numerical methods are cumbersome to implement. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
The implementation of buckling‐restrained braces (BRBs) for new reinforced concrete frame (RCF) constructions is limited. This study investigates the seismic forces and stability in the BRBs and gussets of a 2‐story full‐scale RCF specimen by using Abaqus models and a newly proposed stability evaluation method. The hybrid and cyclic loading test results are accurately predicted by the Abaqus analyses. Existing methods for computing the gusset interface forces for steel buildings from both the brace and the frame actions are compared with the Abaqus results. The applicability of these methods for the BRB‐RCF design is critically evaluated. It is confirmed that the Parallel‐2 method is suitable for estimating the BRB force demand imposed on the corner gusset and the generalized uniform force method is good for the corner gusset at the base. In addition, existing stability evaluation methods for BRBs and gussets are applied to investigate the out‐of‐plane (OOP) buckling of the first‐story BRB observed at the end of tests. The proposed stability model incorporates the BRB restrainer's flexural effects and 4 rotational springs in assessing the BRB's buckling. This model confirms that the BRB and the gusset's OOP buckling limit states could be coupled and must be evaluated together. By incorporating the flexural effects of the steel casing and the infilled grout, the proposed model satisfactorily predicts the OOP buckling of the first‐story BRB and gussets. These research results can be used for the implementation of BRBs in new RC frame constructions.  相似文献   

8.
This paper is Part II of a two‐part paper describing a full‐scale 3‐story 3‐bay concrete‐filled tube (CFT)/buckling‐restrained braced frame (BRBF) specimen tested using psuedo‐dynamic testing procedures. The first paper described the specimen design, experiment, and simulation, whereas this paper focuses on the experimental responses of BRBs and BRB‐to‐gusset connections. This paper first evaluates the design of the gusset connections and the effects of the added edge stiffeners in improving the seismic performance of gusset connections. Test results suggest that an effective length factor of 2.0 should be considered for the design of the gusset plate without edge stiffeners. Tests also confirm that the cumulative plastic deformation (CPD) capacity of the BRBs adopted in the CFT/BRBF was lower than that found in typical component tests. The tests performed suggest that the reduction in the BRB CPD capacities observed in this full‐scale frame specimen could be due to the significant rotational demands imposed on the BRB‐to‐gusset joints. A simple method of computing such rotational demands from the frame inter‐story drift response demand is proposed. This paper also discusses other key experimental responses of the BRBs, such as effective stiffness, energy dissipation, and ductility demands. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The corner gusset plates in a steel braced frame can be subjected to forces not only from the brace but also from the effects of the frame actions. In this study, several finite element models are constructed to analyze the gusset‐to‐beam and gusset‐to‐column interface forces. It is found that the frame actions affect the gusset interface force distributions significantly. A simplified strut model to represent the gusset plate is adopted to evaluate the frame action forces. In addition, the generalized uniform force method is adopted as it provides more freedom for designers to configure the gusset plate shapes than using the uniform force method. In this paper, a performance‐based design method is proposed. The gusset interface force demands take into account the combined effect of the brace maximum axial force capacity and the peak beam shear possibly developed in the frame. The specimen design and key results of a series of full‐scale three‐story buckling‐restrained braced frame (BRBF) hybrid tests are discussed. The gusset interface cracks observed at inter‐story drift greater than 0.03 radians can be well predicted by using the proposed design method. The BRBF tests and analyses confirm that the proposed design method is reasonable. The effectiveness of varying the width of gusset edge stiffeners in reducing the gusset tip stress concentrations is also investigated. This paper concludes with recommendations for the seismic design of BRBF corner gusset plates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A two‐story buckling‐restrained brace (BRB) frame was tested under bidirectional in‐plane and out‐of‐plane loading to evaluate the BRB stability and gusset plate design. The test comprised pseudo‐dynamic loadings using the 1999 Chi‐Chi earthquake scaled to the 50%, 10%, and 2% probability of exceedance in 50 years and a cyclic regime of increasing amplitudes of up to 3.0% story drift ratio (SDR). The specimen had a unique configuration where the beams were connected to the columns through shear tabs welded to the column flanges and bolted to the beam webs. Stable hysteretic behavior with only minor cracking at the gusset‐to‐column welds was observed under the pseudo‐dynamic tests, with maximum in‐plane and out‐of‐plane SDRs of 2.24% and 1.47% respectively. Stable behavior continued into the cyclic test where fracture of the gusset‐to‐column welds occurred in the first cycle to simultaneous bidirectional SDR of 3.0%. The observed BRB stability is consistent with a methodology developed for BRB frames under simultaneous in‐plane and out‐of‐plane drifts. The specimen behavior was studied using a finite element model. It was shown that gusset plates are subjected to a combination of BRB force and frame action demands, with the latter increasing the gusset‐to‐beam and gusset‐to‐column interface demands by an average of 69% and 83% respectively. Consistent with the test results, failure at the gusset‐to‐column interfaces is computed when frame action demands are included, thus confirming that not considering frame action demands may results in unconservative gusset plate designs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
An adaptive method based on the modified bang–bang control algorithm is proposed for the vibration control of structures subjected to unexpected severe seismic loads greater than the design loads. A hydraulic‐type active mass damper was made and experiments were carried out in the laboratory using a one‐story test structure and a five‐story test structure with the active mass damper. Through numerical simulations and experiments it was confirmed that the proposed method works well to suppress the vibration of structures subjected to unexpected severe seismic loads greater than the design loads without causing any unstable situations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Reinforced concrete waffle‐flat plate (WFP) structures present 2 important drawbacks for use as a main seismic resisting system: low lateral stiffness and limited ductility. Yet the former can serve a positive purpose when, in parallel, the flexible WFP structure is combined with a stiff system lending high‐energy dissipation capacity, to form a “flexible‐stiff mixed structure.” This paper experimentally investigates the seismic performance of WFP structures (flexible system) equipped with hysteretic dampers (stiff system) through shake‐table tests conducted on a 2/5‐scale test specimen. The WFP structure was designed only for gravitational loads. The lateral strength and stiffness provided by the dampers at each story were, respectively, about 3 and 7 times greater than those of the bare WFP structure. The mixed system was subjected to a sequence of seismic simulations representing frequent to very rare ground motions. Under the seismic simulations associated with earthquakes having return periods ranging from 93 to 1894 years, the WFP structure performed in the level of “immediate occupancy,” with maximum interstory drifts up to about 1%. The dampers dissipated most (75%) of the energy input by the earthquake.  相似文献   

13.
This paper presents a rehabilitation technique developed under a design and construction scheme, termed minimal‐disturbance seismic rehabilitation. This scheme pursues enhancing the seismic performance of buildings with the intention of improving the continuity of business while minimizing obstruction of the visual and physical space of building users and the use of heavy construction equipment and hot work (welding/cutting). The developed rehabilitation technique consists of light‐weight steel elements and aims to decrease demands to beam‐ends of steel moment‐resisting frames. The behavior of the baseline model was verified through numerical analysis and proof‐of‐concept testing. Furthermore, the effectiveness of rehabilitation is studied through retrofitting a four‐story steel moment‐resisting frame originally designed with Japanese design guidelines. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Post‐tensioned technologies for concrete seismic resistant buildings were first developed in the 1990s during the PREcast Seismic Structural Systems program. Among different solutions, the hybrid system proved to be the most resilient solution providing a combination of re‐centering and energy dissipative contributions respectively by using post‐tensioned tendons and mild steel reinforcement. The system, while providing significant strength and energy dissipation, reduces structural element damage and limits post‐earthquake residual displacements. More recently, the technology was extended to laminated veneer lumber (LVL) structural members, and extensive experimental and numerical work was carried out and allowed the development of reliable analytical and numerical models as well as design guidelines. On the basis of the experimental and numerical outcomes, this paper presents the evaluation of the seismic performance factors for post‐tensioned rocking LVL walls using the FEMA P‐695 procedure. Several archetype buildings were designed considering different parameters such as the building and story height, the type of seismic resistant system, the magnitude of gravity loads and the seismic design category. Lumped plasticity models were developed for each index archetype to simulate the behavioral aspects and collapse mechanisms. Non‐linear quasi‐static analyses were carried out to evaluate the system over‐strength factor; moreover, non‐linear time history analyses were performed using the incremental dynamic analysis concept to assess the collapse of each building. From the results of quasi‐static and dynamic analyses the response modification factor, R, system over‐strength factor, Ω0, and deflection amplification factor, Cd, values of, respectively, 7, 3.5 and 7.5 are recommended. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
A structure that has a permanent offset from a true vertical line is commonly referred to as being ‘out‐of‐plumb’. Out‐of‐plumb may result from construction tolerances or post‐earthquake permanent deformations in steel buildings. This paper quantifies the displacements of buildings with out‐of‐plumb in subsequent seismic events by means of inelastic dynamic time history analysis. Structures considered have different structural heights, force design reduction factors (R), and target inter‐story drifts. It is shown that buildings with greater out of plumb and force design reduction factor have larger normalized peak inter‐story drift ratio and ratio of residual‐to‐peak drift. Also, the ratio of residual‐to‐peak drift was not strongly dependent on structural height or design drift. A design procedure and example provided, based on the results obtained, show how peak and residual inter‐story drift ratio can be estimated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A gusset plate is subjected to forces induced from a buckling‐restrained brace (BRB) and frame action. In this study, a performance‐based design method of the gusset connections incorporating a BRB and frame actions is investigated. The force demands resulting from the BRB axial force are computed from the generalized uniform force method. The force demands induced from the frame action effects primarily result from beam shear. A conservative method, which considers the beam axial force effect and the thereafter reduced beam flexural capacity possibly developed at the gusset tips, is adopted in estimating the maximum beam shear. An improved equivalent strut model is used to represent the gusset plate subjected to the frame action effect. The total force demands of the gusset connection are combined from the BRB force and the frame actions. For design purposes, the stress distributions on the gusset interfaces are linearized. The maximum von Mises stress combining the normal and shear stresses is considered as the demand for the gusset plate design. In order to verify the effectiveness of the proposed design method, experiments on a two‐story full‐scale buckling‐restrained braced frame (BRBF) were performed. The chevron and single diagonal brace configurations were arranged in the second and the first stories, respectively. Two different corner gusset connection configurations including one single corner gusset and one coupled corner gusset connection, where two braces in adjacent stories joined at the same beam‐to‐column joint, were tested. The BRBF specimen was subjected to cyclically increasing lateral displacements with a maximum frame drift of 0.04 rad. The maximum story drifts reached 0.035 and 0.061 rad. in the first and the second stories, respectively. At the end of the tests, no fractures were observed on any of the gusset interfaces. Along the gusset interfaces, the normal and shear stress distributions computed from the proposed design procedures and the FEM analysis correlated well with the experimental results. This paper concludes with the procedure and recommendations for the performance‐based design of gusset connections. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A series of hybrid and cyclic loading tests were conducted on a three‐story single‐bay full‐scale buckling‐restrained braced frame (BRBF) at the Taiwan National Center for Research on Earthquake Engineering in 2010. Six buckling‐restrained braces (BRBs) including two thin BRBs and four end‐slotted BRBs, all using welded end connection details, were installed in the frame specimen. The BRBF was designed to sustain a design basis earthquake in Los Angeles. In the first hybrid test, the maximum inter‐story drift reached nearly 0.030 rad in the second story and one of the thin BRBs in the first story locally bulged and fractured subsequently before the test ended. After replacing the BRBs in the first story with a new pair, a second hybrid test with the same but reversed direction ground motion was applied. The maximum inter‐story drifts reached more than 0.030 rad and some cracks were found on the gusset welds in the second story. The frame responses were satisfactorily predicted by both OpenSees and PISA3D analytical models. The cyclic loading test with triangular lateral force distribution was conducted right after the second hybrid test. The maximum inter‐story drift reached 0.032, 0.031, and 0.008 rad for the first to the third story, respectively. This paper then presents the findings on the local bulging failure of the steel casing by using cyclic test results of two thin BRB specimens. It is found that the steel casing bulging resistance can be computed from an equivalent beam model constructed from the steel core plate width and restraining concrete thickness. This paper concludes with the recommendations on the seismic design of thin BRB steel casings against local bulging failure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Seismic pounding of base‐isolated buildings has been mostly studied in the past assuming unidirectional excitation. Therefore, in this study, the effects of seismic pounding on the response of base‐isolated reinforced concrete buildings under bidirectional excitation are investigated. For this purpose, a three‐dimensional finite element model of a code‐compliant four‐story building is considered, where a newly developed contact element that accounts for friction and is capable of simulating pounding with retaining walls at the base, is used. Nonlinear behavior of the superstructure as well as the isolation system is considered. The performance of the building is evaluated separately for far‐fault non‐pulse‐like ground motions and near‐fault pulse‐like ground motions, which are weighted scaled to represent two levels of shaking viz. the design earthquake (DE) level and the risk‐targeted maximum considered earthquake (MCER) level. Nonlinear time‐history analyses are carried out considering lower bound as well as upper bound properties of isolators. The influence of separation distance between the building and the retaining walls at the base is also investigated. It is found that if pounding is avoided, the performance of the building is satisfactory in terms of limiting structural and nonstructural damage, under DE‐level motions and MCER‐level far‐fault motions, whereas unacceptably large demands are imposed by MCER‐level near‐fault motions. In the case of seismic pounding, MCER‐level near‐fault motions are found to be detrimental, where the effect of pounding is mostly concentrated at the first story. In addition, it is determined that considering unidirectional excitation instead of bidirectional excitation for MCER‐level near‐fault motions provides highly unconservative estimates of superstructure demands. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
This study presents results from shake table experiments of a wood‐frame building conducted at the University of California, Berkeley. A 13.5‐ft × 19.5‐ft two‐story wood‐frame building representing San Francisco 1940s design of a residential building with a garage space on the first story (house‐over‐garage) was tested. The test building was subjected to scaled ground motion based on Los Gatos record from Loma Prieta 1989 earthquake. The strong motion time history was scaled to match design spectra of a site in Richmond district of San Francisco. The test results demonstrated the seismic vulnerability of the test building due to soft story mechanism and significant twisting when shaken in two horizontal directions. In addition to conventional instrumentation for measuring acceleration and position of selected points of the test building, high‐definition laser scanning technology was employed to assess global and local anomalies of the building after the shake table tests. The analysis conducted in this study showed very good correlation between conventional data recorded from position transducers and the laser scans. These laser scans expanded limits of conventional data at discrete points and allowed analyzing the whole building after shaking. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Braced frames are one of the most economical and efficient seismic resisting systems yet few full‐scale tests exist. A recent research project, funded by the National Science Foundation (NSF), seeks to fill this gap by developing high‐resolution data of improved seismic resisting braced frame systems. As part of this study, three full‐scale, two‐story concentrically braced frames in the multi‐story X‐braced configuration were tested. The experiments examined all levels of system performance, up to and including fracture of multiple braces in the frame. Although the past research suggests very limited ductility of SCBFs with HSS rectangular tubes for braces recent one‐story tests with improved gusset plate designs suggest otherwise. The frame designs used AISC SCBF standards and two of these frames designs also employed new concepts developed for gusset plate connection design. Two specimens employed HSS rectangular tubes for bracing, and the third specimen had wide flange braces. Two specimens had rectangular gusset plates and the third had tapered gusset plates. The HSS tubes achieved multiple cycles at maximum story drift ratios greater than 2% before brace fracture with the improved connection design methods. Frames with wide flange braces achieved multiple cycles at maximum story drift greater than 2.5% before brace fracture. Inelastic deformation was distributed between the two stories with the multi‐story X‐brace configuration and top story loading. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号