首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thermal modeling of the Southern Alps,New Zealand   总被引:1,自引:0,他引:1  
Finite-element modeling of the thermal regime across the Southern Alps of New Zealand has been carried out along two profiles situated near the Franz Josef and Haast valleys. The modeling involves viscous deformation beneath the Southern Alps, including both uplift and erosion, and crustal/lithospheric thickening, as a result of crustal shortening extending to 20 mm/y of a 25-km thick crust. Published uplift rates and crustal thickness variations along the two profiles are used to constrain the modeled advection of crustal material, and results are compared with the recent heat flow determinations, 190±50 mW/m2 in the Franz Josef valley and 90±25 mW/m2 in the Haast valley. Comparisons of the model with published K–Ar and fission track ages, show that the observed heat flow in the Franz Josef valley is consistent with observed zircon fission track ages of around 1 Ma, if the present-day uplift rate is close to 10 mm/y. Major thermal differences between the Franz Josef and Haast profiles appear to be due to different uplift and erosion rates. There is weak evidence that frictional heating close to the Alpine fault zone is not significant. The modeling provides explanations for the distribution of seismicity beneath the Southern Alps, and predicts a low surface heat flow over the eastern foothills due to the dominant thermal effect of crustal thickening beneath this region. Predicted temperatures at mid-crustal depth beneath the zone of maximum uplift rate are 50–100°C cooler than those indicated in previously published models, which implies that thermal weakening of the crust may not be the main factor causing the aseismicity of the central Southern Alps. The results of the modeling demonstrate that the different types of reset age data in the region within 25 km of the Alpine fault are critical for constraining models of the deformation and the thermal regime beneath the Southern Alps.  相似文献   

2.
The estimation of debris‐?ow magnitude is an essential step in the assessment of debris‐?ow hazard. Although different methods have been developed for the assessment of debris‐?ow magnitude, this is still a dif?cult task because of the complexity of ?ow processes and the lack of data to test estimation procedures in many mountainous regions. Data on debris‐?ow magnitude from 127 basins in the Eastern Italian Alps have been collected from scienti?c and technical journals, technical reports, historical documents gathered from local archives, and ?eld surveys. These data were used to develop and test different predictive approaches, encompassing regression equations, geomorphological surveys and probabilistic analysis of time series. Regression techniques were used to correlate debris‐?ow magnitude to morphometric parameters and geological characteristics of the basins. Values of the channel debris yield rate (contribution per unit length of channel), proposed in the literature, were compared with data from the study area for identifying reference values for channel stretches of different morphological characteristics. Although limited to the few basins in which suf?cient data were available, the probabilistic analysis of time series of debris‐?ow magnitude provides indications about the relations between magnitude and frequency of debris ?ows. Some observations about the capability and drawbacks of considered methods are presented and the combined use of different approaches for the estimation of debris‐?ow magnitude is suggested. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Present erosion in mountainous areas of Western Europe causes land management problems, particularly for areas located downstream of erosion zones. Except for transalpine roads and ski resorts, economic activities no longer require as much space as they did in the past. Therefore, natural reforestation has provided signi?cant protection for alpine hillslopes during the 20th century. However, extreme ?oods continue to cause severe damage in intra‐alpine valleys, as well as in piedmont and surrounding plains, making the study of present water erosion phenomena very important. Many studies have investigated the processes and factors of water erosion on slopes at both the catchment and plot scales. They have focused on rock fragmentation and transportation in different ?elds, the spatial and temporal explanatory variables, the consequences downstream (?ooding, sedimentation, river bed evolution) and the impact of ?oods. In the French Alps, present erosion has been studied in a variety of outcrops, with several recent studies conducted in ?elds such as marls, clayey deposits, molasses and moraines. These kinds of outcrops are found throughout the alpine massif, including an area of special interest on the great Jurassic black marl outcrop where badlands are frequently observable. Geomorphologists and hydrologists have been particularly interested in the strong erosion processes in marls, seeking to determine the main patterns and the impact of spatial and temporal factors on soil loss quantities. The main climatic factors of rock disaggregation were found to be the freeze–thaw and wet–dry cycles, which destroy rock cohesion, and the splash effect of rain. The principal site variables are vegetation cover, exposure and dip–slope angle. Erosion rates are two or three orders of magnitude higher on bare soils than on pastures; northern aspect slopes suffer two to four times as much soil loss as southern aspect slopes. Finally, the angle formed by the slope and the dip also determines different behaviours: erosion rates are higher when slope and dip are perpendicular than when they are parallel. The transportation agents are mostly debris ?ows and runoff caused by intense precipitation. Annual erosion depth in the marls is generally assumed to be substantial, up to 10 mm. The high value can be explained by the severity of the climatic conditions and the brittleness of the lithology, which results in numerous fractures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
The Southern Alps are the topographic expression of late Cenozoic (<8 Ma ago) uplift of the crust of the leading edge of the Pacific plate in South Island, New Zealand. New fission track data on the basement exposed in the Southern Alps quantify the age, amount, and rate of rock uplift, and in combination with geomorphic parameters permit the construction of a new model of the geomorphic evolution of the Southern Alps. The model emphasizes the development over time and space of rock uplift, mean surface elevation, exhumation of crustal section, and relief. The earliest indications of mean surface uplift are between 4 and 5 Ma ago at the Alpine Fault. Mean surface uplift, which lagged the start of rock uplift, propagated southeastward from the Alpine Fault at a rate of 30 km/Ma. By about 4 Ma ago, exhumation had exposed greywacke basement adjacent to and east of the entire 300 km long central section of the Alpine Fault. At 3 Ma ago, greenschist was exposed in the southern parts of the Southern Alps near Lake Wanaka, and since then has become exhumed along a narrow strip east of the Alpine Fault. The model infers that amphibolite grade schist has been exhumed adjacent to the Alpine Fault only in the last 0·3 Ma. The age of the start of rock uplift and the amount and rate of rock uplift, all of which vary spatially, are considered to be the dominant influences on the development of the landscape in the Southern Alps. The Southern Alps have been studied in terms of domains of different rock uplift rate. At present the rate of rock uplift varies from up to 8–10 mm/a adjacent to the Alpine Fault to 0·8–1·0 mm/a along the southeastern margin of the Southern Alps. This spectrum can be divided into two domains, one northwest of the Main Divide where the present rock uplift rates are very high (up to 8–10 mm/a) and exceed the long-term value of 0·8–1·0 mm/a, and another to the southeast of the Main Divide where the long-term rate is 0·8–1·0 mm/a. A domain of no uplift lies immediately to the east of the Southern Alps, and is separated from them by a 1·0–1·5 km step in the basement topography. We argue that this spatial sequence of uplift rate domains represents a temporal one. The existing models of the geomorphic development of the Southern Alps—the dynamic cuesta model of J. Adams and the numerical model of P. Koons—are compared with the new data and evolutionary model. Particular constraints unrealized by these two earlier models include the following: the earlier timing of the start of rock uplift of the Southern Alps (8 Ma ago); the spatial variation in the timing of the start of rock uplift (8 Ma ago to 3 Ma ago); the lower long-term rock uplift rate (0·8–1·0 mm/a) of the Southern Alps for most of the late Cenozoic; the lag between the start of rock uplift and the start of mean surface uplift; and the patterns of the amounts of late Cenozoic rock uplift and erosion across the Southern Alps.  相似文献   

5.
A sequence of Late Holocene moraines on the foreland of the Mueller Glacier, Southern Alps, New Zealand, forms part of a local moraine‐age database used to establish a regional glacier chronology and subsequently to investigate potential intra‐hemispheric and global climate forcing mechanisms. We present new sedimentological and geomorphological evidence that a set of these moraine ridges, previously considered to represent individual advances, constitutes a single moraine complex (the ‘Mueller Memorial Moraine’) formed by supraglacial transport of a large volume of landslide debris to the glacier terminus. Because a moraine formed in this way is not necessarily associated with an advance triggered by a climate event, we question the palaeoclimatic significance of the Mueller Memorial Moraine, as well as that of other moraines in comparable settings. Our findings suggest that the mode of formation and glacio‐dynamical context of moraines whose ages contribute to existing palaeoclimate reconstructions need to be re‐examined in order to assess the reliability of these reconstructions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Two hundred and one debris slides and debris ?ows were analyzed in a 286 km2 study area on the west coast of Vancouver Island, British Columbia, Canada. The study area remains essentially untouched by humans and therefore affords a natural setting in which to examine slope processes. Landslides were identi?ed and characterized on aerial photographs from 1:15 000 to 1:31 680, and were then mapped and transferred to a GIS for analysis. Based on detailed landslide surveys, we propose a new method to accurately determine volume of landslides of this type by measured total area. Results indicate average denudation rates of 56 m3 y?1 km?2, and higher natural rates of failure than analogous regions in coastal British Columbia. In contrast, the landslide rates are substantially less than those from forested watersheds. Landslide distribution is spatially clustered in air photograph epochs, and we propose intense storm cells within regional events as the causal mechanism. Further, failures occurred preferentially over the West Coast Crystalline Complex (by 1·4 times), a metamorphic assemblage of gabbros, schists and amphibolites, but 1·5 times less often over the Island Plutonic Suite, a granitic intrusive formation. The former result represents a new ?nding, while the latter corroborates ?ndings of previous authors. We examined magnitude–frequency relationships of the data set and present for the ?rst time a strong argument that the rollover effect is not merely an artefact, but is instead a consequence of the physical characteristics of the landslides themselves. We subsequently analyzed magnitude–frequency relationships from two other complete data sets from coastal British Columbia and produced a family of curves corroborating this result. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract Compositional variation of silicates (plagioclase, K-feldspar, epidote, titanite, garnet, white mica, biotite, chlorite), ilmenite, carbonates (calcite, ankerite) and apatite, in quartzofeldspathic lithologies of the Alpine Schist, New Zealand, is discussed in terms of increasing metamorphic grade and possible isograd-producing reactions. The mineral data, in conjunction with geological considerations, are used to determine polychronous P-T arrays of an early high P/T event (c. 16°C/kb; 5°C/km) overprinted by a lower P/T event (c. 50°C/kb; 15°C/km) that provides an estimation of Mesozoic and Cenozoic exhumation of schist of 11 to 13 km and 19 to 22 km respectively. The effects of possible shear heating and recrystallization to form K-feldspar zone schist near the Alpine Fault is consistent with movement along a mid to lower crustal detachment surface during Cenozoic shortening, and near isothermal exhumation of the schists to form the Southern Alps.  相似文献   

8.
The Southern Alps mountain chain, New Zealand, has formed as a consequence of late Cenozoic collision of the continental parts of the Pacific and Australia plates. Fission track analysis has yielded estimates of the amount, age of initiation, and rate of late Cenozoic rock uplift for 82 surface samples taken from transects across the Southern Alps. The mean surface, summit and valley elevations in the vicinity of each of the rock sample sites have also been measured. Regression of the geomorphic variables on the uplift variables has been used to establish quantitative relationships between uplift and geomorphology. There are strong and consistent linear associations between uplift and the elevations of the mean surface, summits and valleys. The preferred regression models have uniform slope but varying elevation response between transects. Substitution of space for time has allowed the evolution of landforms to be studied. To the east of the Main Divide, elevation and relief are proportional to, and closely related to, the age of initiation of rock uplift (‘uplift age’) and the amount of rock uplift (r2 > 0·8). Mean surface uplift was delayed for ~2 Ma after the start of rock uplift, a result of the stripping of a soft cover rock succession that, prior to rock uplift, overlaid the harder greywacke basement. Inter-transect variations in regression response and x-intercept are inferred, therefore, to reflect the variable preuplift thickness of cover rocks. However, the regular regression slope for the transects reflects the consistent nature of the interaction between uplift and the erodibility of greywacke basement. Uplift of the mean surface proceeded at 0·4 km/km and 0·4 km/Ma of rock uplift, while the rock uplift rate was 0·8 km/Ma. Summit elevations have increased at a rate of 0·6 km/Ma and valley elevations have increased at 0·2 km/Ma. Regression lines relating mean surface, summit and valley elevations to rock uplift and uplift age diverge from common intercepts; it is concluded, therefore, that the mountains east of the Main Divide have continued to increase in elevation and relief and change in form over time since the start of mean surface uplift. Mountain elevation has little relationship with late Cenozoic mean rock uplift rates of 0·8–1·0 km/Ma or inferred contemporary rock uplift rates (r2 ~ 0·3). In contrast, to the west of the Main Divide, elevation is shown to be closely related to rock uplift rate (r2 > 0·3). In contrast, to the west of the Main Divide, elevation is shown to be closely related to rock uplift rate (r2 > 0·8). Transects with higher rock uplift rates support higher topography. Landforms are therefore in a stable equilibrium with rock uplift rate, and the landscape contains no residual evidence of the total amount of rock uplift, or the age of uplift. Lithological variation appears to have no relationship with elevation.  相似文献   

9.
In 1996 a large debris flow occurred on the fan of the Chalance torrent system, a tributary of the Séveraisse river, French Alps. To investigate the magnitude and frequency of such debris flows on this fan, fieldwork was carried out in the summer of 1998. Detailed investigation revealed that several debris flows have occurred in the past 200 years. Lichenometry was used as a dating technique to obtain the frequency of these debris‐flow events. Also the volume of these flows was estimated. With these data a magnitude–frequency relationship was constructed. This relationship shows a maximum magnitude of at least 50 × 103 m3. Based on data for the past c. 150 years, a debris flow of such a volume appears to have a recurrence interval of approximately 34 years. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
The dynamics and the surface evolution of a post‐LGM debris‐flow‐dominated alluvial fan (Tartano alluvial fan), which lies on the floor of an alpine valley (Valtellina, Northern Italy), have been investigated by means of an integrated study comprising geomorphological field work, a sedimentological study, photointerpretation, quantitative geomorphology, analysis of ancient to modern cartography and consultation of historical documents and records. The fan catchment meteoclimatic, geological and geomorphological characteristics result in fast rates of geomorphic reorganization of the fan surface (2 km2). The dynamics of the fan are determined by the alternation of low‐return period catastrophic alluvial events dominated by non‐cohesive debris flows triggered by extreme rainstorms which caused aggradation and steepening of the fan and avulsion of its main channel, with periods of low to moderate streamflow discharge punctuated by low‐ to intermediate‐magnitude flood events, causing slower but steady topographic reworking. The most ancient parts of the fan surface date back at least to the first half of the 19th century, but most of the fan surface has been restructured after 1911, mainly during the debris‐flow‐dominated events of 1911 and 1987. Phases of rapid fan toe incision and fan degradation have been recognized; since the 1930s or 1940s, the Tartano fan has been subjected to a state of deep entrenchment and narrowing of the main trunk channel and distributary area. Post‐Little Ice Age climate change and present‐day surface uplift rates have been considered as possible explanations for the observed geomorphic evolution, but tectonic or climatic controls cannot account for the order of magnitude of the erosional pace. Anthropogenic controls plausibly override the natural ones: in particular, the building of a dam in the late 1920s, about 2 km upstream of the fan, seems to have triggered fan dissection, having altered the sediment discharge through sediment retention. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Alluvial fan development in Alpine areas is often affected by catastrophic sedimentary processes associated with extreme ?oods events, causing serious risks for people living on the fans. Hazard assessment in these areas depends on proper identi?cation of the dominant sedimentary processes on the fans. Data from a set of 209 alluvial fans from the central Alps of Italy are presented in this paper and analysed with the help of various statistical techniques (linear regression, principal components analysis, cluster analysis, discriminant analysis and logistic regression). First, we used modern sedimentary facies and historical records (?ood events since 15th century), to distinguish between the two dominant sedimentary processes on alluvial fans: debris ?ows and stream?ows. Then, in order to analyse the main controls on past and present fan processes, 36 morphological, geological and land‐use variables were analysed. As with observations for arid‐environment fans, catchment morphology is the most in?uential factor in the study area, whereas geology and land use are minor controls. The role of climatic change and landsliding within the catchments also seems to be very important and is discussed. Statistical techniques also help in differentiating groups of alluvial fans by sets of controlling factors, including stage and type of evolution. Finally, by using discriminant analysis and logistic regression, we classi?ed alluvial fans according to the dominant sedimentary process, with a success rate ranging between 75 and 92 per cent. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
A multi‐proxy approach was used to examine the geomorphic dynamics and environmental history of an upper deltaic ?oodplain tract in the Sacramento–San Joaquin Delta, California. Three long cores were collected from the McCormack–Williamson Tract (MWT) and these cores were analyzed for bulk density, loss‐on‐ignition, ?ne (clay and silt) content, Al concentration, magnetic susceptibility, pollen, and charcoal. Radiocarbon dates obtained for the cores were converted into calendar years and an age–depth model was constructed. Long‐term vertical accretion and sedimentation rates were estimated from the age–depth model. Cross‐core relations show that coarse sediment generally accumulates more rapidly and has greater magnetic susceptibility compared to ?ne sediment. Percentage ?ne and LOI data show a strong linear relationship that indicates ?ooding is the primary mechanism for the deposition of particular organic matter on the ?oodplain and that landscape wash load has contributed a highly consistent fraction of persistent organic matter averaging 5·5 per cent to the site. Down‐core grain size pro?les show two hydrological domains in the cores, namely millennial ?ne–coarse ?uctuations superimposed on general up‐core ?ning. Coarse sediment is viewed as channel or near‐channel overbank deposits, whereas ?ne deposits are considered to be distal overbank ?ood deposits. The coarse–?ne ?uctuations are indicative of changing depositional settings as channels migrated laterally across MWT, whereas the upward ?ning trend re?ects a combination of self‐limiting overbank deposition as ?oodplain elevation increased and decreasing competence as sea‐level rise reduced ?ood‐pulse energy slopes. MWT has been cross‐cut and incised numerous times in the past, only to have the channels abandoned and subsequently ?lled by ?ne sediment. The channels around MWT attained their modern con?guration about 4000 years ago. MWT likely came under tidal in?uence at about 2500 cal BP. Wetlands have recently developed on MWT, but they are inorganic sediment dominated. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Extremely high precipitation occurs in the Southern Alps of New Zealand, associated with both orographic enhancement and synoptic‐scale weather processes. In this study, we test the hypothesis that atmospheric rivers (ARs) are a key driver of floods in the Southern Alps of New Zealand. Vertically integrated water vapour and horizontal water vapour transport, and atmospheric circulation, are investigated concurrently with major floods on the Waitaki River (a major South Island river). Analysis of the largest eight winter maximum floods between 1979 and 2012 indicates that all are associated with ARs. Geopotential height fields reveal that these ARs are located in slow eastward moving extratropical cyclones, with high pressure to the northeast of New Zealand. The confirmation of ARs as a contributor to Waitaki flooding indicates the need for their further exploration to better understand South Island hydrometeorological extremes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Seasonal snowpacks in marginal snow environments are typically warm and nearly isothermal, exhibiting high inter‐ and intra‐annual variability. Measurements of snow depth and snow water equivalent were made across a small subalpine catchment in the Australian Alps over two snow seasons in order to investigate the extent and implications of snowpack spatial variability in this marginal setting. The distribution and dynamics of the snowpack were found to be influenced by upwind terrain, vegetation, solar radiation, and slope. The role of upwind vegetation was quantified using a novel parameter based on gridded vegetation height. The elevation range of the catchment was relatively modest (185 m), and elevation impacted distribution but not dynamics. Two characteristic features of marginal snowpack behaviour are presented. Firstly, the evolution of the snowpack is described in terms of a relatively unstable accumulation state and a highly stable ablation state, as revealed by temporal variations in the mean and standard deviation of snow water equivalent. Secondly, the validity of partitioning the snow season into distinct accumulation and ablation phases is shown to be compromised in such a setting. Snow at the most marginal locations may undergo complete melt several times during a season and, even where snow cover is more persistent, ablation processes begin to have an effect on the distribution of the snowpack early in the season. Our results are consistent with previous research showing that individual point measurements are unable to fully represent the variability in the snowpack across a catchment, and we show that recognising and addressing this variability are particularly important for studies in marginal snow environments.  相似文献   

16.
The thermal evolution of continental crust during active collision is modeled through numerical solutions of the two-dimensional heat conduction equation for a rapidly moving medium. The boundary conditions used in the modeling are derived from geological and geophysical observations from the active collision zone in the South Island of New Zealand. The problem domain over which the solutions are obtained consists of a 40 km horizontal by 25 km vertical spatial plane with a vertical discontinuity at 10 km from the western boundary. To the east of this discontinuity, vertical uplift rates of up to 10 mm/a occur over a timespan of up to 4 Ma. Temperature distributions are calculated at 10 ka intervals over the 4 Ma duration. A two-dimensional high-temperature region is established upon initiation of uplift of the eastern block due to the advective component carrying heat upwards more rapidly than it can be dissipated laterally from the problem domain. Temperatures within the upper 5 km are greater than 400°C after 2.25 Ma with geothermal gradients of up to 200°C/km attained within the upper 3 km. At times greater than 2.5 Ma, the vertical temperature distribution changes little while the anomalously high temperatures spread laterally into the stationary crust.Using rheological equations to describe the brittle behaviour of a water-saturated upper crust and the ductile behaviour of a quartz-dominated lower crust, together with the thermal distribution of the conduction models, the mechanical evolution of a collision zone is investigated. In addition to high crustal temperatures and associated high heat flow, rapid uplift produces a weakening of the crust by raising of the depth of transition from brittle to ductile behaviour. Within the zone of most rapid uplift, the brittle-ductile transition rises from 13 km to less than 5 km after 1.5 Ma of uplift. Further uplift reduces the brittle layer to 3 km thickness and causes lateral spreading of the low-strength zone. The reductions in crustal strength caused by the thermal weakening produce a high-strain zone within the region of maximum uplift which is incapable of sustaining large differential stresses. This causes horizontal and vertical stress transfer and results in shallow seismicity increases in the adjacent crust as well as in intermediate depth seismicity within the high-strength upper mantle.Because the thermal and mechanical anomalies discussed are a function of rapid uplift, all regions of active continental collision may be expected to exhibit similar behaviour. Some mechanical and thermal characteristics of the Himalayan collision zone are briefly examined in light of the numerical modeling.  相似文献   

17.
Net accumulation measurements from two glaciers located on opposite sides of the New Zealand Southern Alps were used to explore processes controlling spatial variability. The degree of variability, as measured by the spatial variogram, differed in each of the three successive years, but the lowest variance occurred on both glaciers in March 2008, after a hot and dry summer. Strong relationships between net accumulation and elevation within the accumulation area were only found on Franz Josef Glacier (FJG), despite this being the primary control used in glacier mass balance modelling. Interaction between wind and topography was found to be important to the distribution of net accumulation on both glaciers. The crevasse stratigraphy method is an ideal way to gain good spatial coverage of net accumulation, and particularly suited to glaciers with high annual precipitation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Bed shear stress is a fundamental variable in river studies to link ?ow conditions to sediment transport. It is, however, dif?cult to estimate this variable accurately, particularly in complex ?ow ?elds. This study compares shear stress estimated from the log pro?le, drag, Reynolds and turbulent kinetic energy (TKE) approaches in a laboratory ?ume in a simple boundary layer, over plexiglas and over sand, and in a complex ?ow ?eld around de?ectors. Results show that in a simple boundary layer, the log pro?le estimate is always the highest. Over plexiglas, the TKE estimate was the second largest with a value 30 per cent less than the log estimate. However, over sand, the TKE estimate did not show the expected increase in shear stress. In a simple boundary layer, the Reynolds shear stress seems the most appropriate method, particularly the extrapolated value at the bed obtained from a turbulent pro?le. In a complex ?ow ?eld around de?ectors, the TKE method provided the best estimate of shear stress as it is not affected by local streamline variations and it takes into account the increased streamwise turbulent ?uctuations close to the de?ectors. It is suggested that when single‐point measurements are used to estimate shear stress, the instrument should be positioned close to 0·1 of the ?ow depth, which corresponds to the peak value height in pro?les of Reynolds and TKE shear stress. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Soil surface microtopography produces non‐uniform surface run‐off, in which narrow threads of relatively deep and fast ?ow move within broader, shallower, slower‐moving regions. This kind of ?ow is probably widespread, given that microtopography is itself common. Methods used to record the properties of surface run‐off include grid‐ or transect‐based depth observations, with a single mean ?ow speed derived by calculation from V = Q/WD, and the use of dye timing to estimate velocity, with an effective mean depth calculated from D = Q/WV. Because these methods allow only single, ?ow‐?eld mean values to be derived for V or D, neither is well suited to non‐uniform ?ows. The use of depth data to derive a ?ow‐?eld mean V furthermore implicitly applies area weighting to the depth data; likewise, the use of dye speeds for V inherently overestimates mean V because dye dominantly follows the faster ?ow threads. The associated errors in derived parameters such as friction coef?cients are not readily quanti?ed and appear not to have been addressed previously. New ?eld experiments made on untilled soil surfaces in arid western NSW, Australia, explore these circumstances and the implications for deriving meaningful measures of ?ow properties, including friction coef?cients. On surfaces deliberately chosen for their very subtle microtopography, average thread velocities are shown to be commonly 2·5 times greater than the ?ow‐?eld mean, and locally 6–7 times greater. On the other hand, non‐thread ?ow speeds lie below the ?ow‐?eld mean, on average reaching only 84 per cent of this value, and often considerably less. Flow‐?eld means conceal the existence of regions of the ?ow ?eld whose properties are statistically distinct. Results con?rm that a reliance on ?ow‐?eld average depths yields estimates of friction coef?cients that are biased toward the shallower, high‐roughness parts of the ?ow, while if dye speeds are relied upon the results are biased toward the deeper, smoother threads of ?ow. A new approach to the evaluation of friction coef?cients in non‐uniform ?ows is advanced, involving the determination of separate coef?cients for threads and non‐thread zones of the ?ow ?eld. In contrast, ?ow‐?eld friction coef?cients as they are customarily derived in run‐off plot experiments subsume these distinct coef?cients in proportions that are generally unknown. The value of such coef?cients is therefore questionable. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
In order to clarify the erosion processes on a marly bare slope in the Southern Alps, the erosion processes in a steep and erodible slope composed of the Black Marls Formation were observed by a time‐lapse video camera. The observations revealed that miniature debris flows (MDFs) occurred at the time of the rainfall‐runoff event in which the most severe erosion took place in the whole observation period of 3 months. Analysis of the camera images showed some characteristics of the MDFs, and these are discussed in the context of real rainfall‐runoff phenomena observed at the outlet of a small experimental basin including the visually observed slope. The following results were obtained. (1) A rough estimation of the total amount of sediment discharge by the MDFs showed that it was not negligible quantitatively. (2) The MDFs occurred only during the rising limb of the hydrograph during 6 minutes. (3) Based on this observation and a review of the literature, in a very steep and highly erodible slope, MDFs or similar phenomena might play an important role in the erosion and transport processes. Copyright © 2008 John Wiley and Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号