首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The age, structure, composition, and petrogenesis of the martian lithosphere have been constrained by spacecraft imagery and remote sensing. How well do martian meteorites conform to expectations derived from this geologic context? Both data sets indicate a thick, extensive igneous crust formed very early in the planet's history. The composition of the ancient crust is predominantly basaltic, possibly andesitic in part, with sediments derived from volcanic rocks. Later plume eruptions produced igneous centers like Tharsis, the composition of which cannot be determined because of spectral obscuration by dust. Martian meteorites (except Allan Hills 84001) are inferred to have come from volcanic flows in Tharsis or Elysium, and thus are not petrologically representative of most of the martian surface. Remote‐sensing measurements cannot verify the fractional crystallization and assimilation that have been documented in meteorites, but subsurface magmatic processes are consistent with orbital imagery indicating thick crust and large, complex magma chambers beneath Tharsis volcanoes. Meteorite ejection ages are difficult to reconcile with plausible impact histories for Mars, and oversampling of young terrains suggests either that only coherent igneous rocks can survive the ejection process or that older surfaces cannot transmit the required shock waves. The mean density and moment of inertia calculated from spacecraft data are roughly consistent with the proportions and compositions of mantle and core estimated from martian meteorites. Thermal models predicting the absence of crustal recycling, and the chronology of the planetary magnetic field agree with conclusions from radiogenic isotopes and paleomagnetism in martian meteorites. However, lack of vigorous mantle convection, as inferred from meteorite geochemistry, seems inconsistent with their derivation from the Tharsis or Elysium plumes. Geological and meteoritic data provide conflicting information on the planet's volatile inventory and degassing history, but are apparently being reconciled in favor of a periodically wet Mars. Spacecraft measurements suggesting that rocks have been chemically weathered and have interacted with recycled saline groundwater are confirmed by weathering products and stable isotope fractionations in martian meteorites.  相似文献   

2.
We have developed a numerical model for assessing the lifetime of ice deposits in martian caves that are open to the atmosphere. Our model results and sensitivity tests indicate that cave ice would be stable over significant portions of the surface of Mars. Ice caves on Earth commonly occur in lava tubes, and Mars has been significantly resurfaced by volcanic activity during its history, including the two main volcanic provinces, the Tharsis and Elysium rises. These areas, known or suspected of having subsurface caves and related voids are among the most favorable regions for the occurrence of ice stability. The martian ice cave model predicts regions which, if caves occur, would potentially be areas of astrobiological importance as well as possible water sources for future human missions to Mars.  相似文献   

3.
A number of martian outflow channels were carved by discharges from large dilational fault zones. These channels were sourced by groundwater, not surface water, and when observed on high-standing plateaus they provide indicators of elevated paleo-groundwater levels. We identify three outflow channels of Hesperian age that issued from a 750-km-long fault zone extending from Candor Chasma to Ganges Chasma. Two of these channels, Allegheny Vallis and Walla Walla Vallis, have sources >2500 m above the topographic datum, too high to be explained by discharge from a global aquifer that was recharged solely in the south polar region. The indicated groundwater levels likely required regional sources of recharge at low latitudes. The floodwaters that erupted from Ophir Cavus to form Allegheny Vallis encountered two ridges that restricted the flow, forming temporary lakes. The flow probably breached or overtopped these obstructions quickly, catastrophically draining the lakes and carving several scablands. After the last obstacle had been breached, a single main channel formed that captured all subsequent flow. We performed hydrologic analyses of this intermediate phase of the flooding, prior to incision of the channel to its present depth. Using floodwater depths of 30-60 m, we calculated flow velocities of 6-15 m s−1 and discharges in the range of . Locally higher flow velocities and discharges likely occurred when the transient lakes were drained. Variable erosion at the channel and scabland crossing of MOLA pass 10644 suggests that the upper 25-30 m may consist of poorly consolidated surface materials underlain by more cohesive bedrock. We infer that an ice-covered lake with a surface elevation >2500 m probably existed in eastern Candor Chasma because this canyon is intersected by the Ophir Catenae fault system from which Allegheny Vallis and Walla Walla Vallis originated. We introduce a new hydrology concept for Mars in which the groundwater system was augmented by recharge from canyon lakes that were formed when water was released by catastrophic melting of former ice sheets in Tharsis by effusions of flood basalts. This model could help to reconcile the expected presence of a thick cryosphere during the Hesperian with the abundant evidence for groundwater as a source for some of the circum-Chryse outflow channels.  相似文献   

4.
The global martian volcanic evolutionary history   总被引:1,自引:0,他引:1  
Viking mission image data revealed the total spatial extent of preserved volcanic surface on Mars. One of the dominating surface expressions is Olympus Mons and the surrounding volcanic province Tharsis. Earlier studies of the global volcanic sequence of events based on stratigraphic relationships and crater count statistics were limited to the image resolution of the Viking orbiter camera. Here, a global investigation based on high-resolution image data gathered by the High-Resolution Stereo Camera (HRSC) during the first years of Mars Express orbiting around Mars is presented. Additionally, Mars Orbiter Camera (MOC) and Thermal Emission Imaging System (THEMIS) images were used for more detailed and complementary information. The results reveal global volcanism during the Noachian period (>3.7 Ga) followed by more focused vent volcanism in three (Tharsis, Elysium, and Circum-Hellas) and later two (Tharsis and Elysium) volcanic provinces. Finally, the volcanic activity became localized to the Tharsis region (about 1.6 Ga ago), where volcanism was active until very recently (200-100 Ma). These age results were expected from radiometric dating of martian meteorites but now verified for extended geological units, mainly found in the Tharsis Montes surroundings, showing prolonged volcanism for more than 3.5 billions years. The volcanic activity on Mars appears episodic, but decaying in intensity and localizing in space. The spatial and temporal extent of martian volcanism based on crater count statistics now provides a much better database for modelling the thermodynamic evolution of Mars.  相似文献   

5.
Most (~90%) of the estimated original volume of outgassed water on Mars cannot be satisfactorily accounted for by exospheric escape or storage in the atmosphere, as frost, or in the permanent north polar ice cap. The balance may be stored as ground ice in the Martian cryosphere, a zone of permanently frozen ground that is protected from the atmosphere by a debris cover. Ground ice can exist throughout the entire cryosphere, but it need not fill it. If the ground ice does fill the cryosphere, then excess water can exist in a confined aquifer. The theoretical distribution of ground ice can be tested by identification of forms on the Martian surface that may be related to the presence of subsurface ice. The observed features that are most likely to reflect ground ice are thermokarst-like pits and debris flows. Landforms with ambivalent origins include polygonally patterned ground, lobate ejecta blankets, craters with central pits, and curvilinear features. The most persuasive morphologic evidence for ground ice is thermokarst pits and debris flows; the thermokarst pits are primarily located in the volcanic regions of Tharsis and Elysium. The association of ice-related features with these volcanic areas suggests that these forms are not directly latitude dependent. Activation by orbital variations could produce periodic, multiple episodes of melting that are dependent upon latitude. The presence of ice-related features in both hemispheres and the equatorial region of Mars indicates that ground ice may be—or have been—present over the entire planet, as predicted by the cryosphere model.  相似文献   

6.
Abstract— Radiometric age dating of the shergottite meteorites and cratering studies of lava flows in Tharsis and Elysium both demonstrate that volcanic activity has occurred on Mars in the geologically recent past. This implies that adiabatic decompression melting and upwelling convective flow in the mantle remains important on Mars at present. I present a series of numerical simulations of mantle convection and magma generation on Mars. These models test the effects of the total radioactive heating budget and of the partitioning of radioactivity between crust and mantle on the production of magma. In these models, melting is restricted to the heads of hot mantle plumes that rise from the core‐mantle boundary, consistent with the spatially localized distribution of recent volcanism on Mars. For magma production to occur on present‐day Mars, the minimum average radioactive heating rate in the martian mantle is 1.6 times 10?12 W/kg, which corresponds to 39% of the Wanke and Dreibus (1994) radioactivity abundance. If the mantle heating rate is lower than this, the mean mantle temperature is low, and the mantle plumes experience large amounts of cooling as they rise from the base of the mantle to the surface and are, thus, unable to melt. Models with mantle radioactive heating rates of 1.8 to 2.1 times 10 ?12 W/kg can satisfy both the present‐day volcanic resurfacing rate on Mars and the typical melt fraction observed in the shergottites. This corresponds to 43–50% of the Wanke and Dreibus radioactivity remaining in the mantle, which is geochemically reasonable for a 50 km thick crust formed by about 10% partial melting. Plausible changes to either the assumed solidus temperature or to the assumed core‐mantle boundary temperature would require a larger amount of mantle radioactivity to permit present‐day magmatism. These heating rates are slightly higher than inferred for the nakhlite source region and significantly higher than inferred from depleted shergottites such as QUE 94201. The geophysical estimate of mantle radioactivity inferred here is a global average value, while values inferred from the martian meteorites are for particular points in the martian mantle. Evidently, the martian mantle has several isotopically distinct compositions, possibly including a radioactively enriched source that has not yet been sampled by the martian meteorites. The minimum mantle heating rate corresponds to a minimum thermal Rayleigh number of 2 times 106, implying that mantle convection remains moderately vigorous on present‐day Mars. The basic convective pattern on Mars appears to have been stable for most of martian history, which has prevented the mantle flow from destroying the isotopic heterogeneity.  相似文献   

7.
Throughout the recorded history of Mars, liquid water has distinctly shaped its landscape, including the prominent circum-Chryse and the northwestern slope valleys outflow channel systems, and the extremely flat northern plains topography at the distal reaches of these outflow channel systems. Paleotopographic reconstructions of the Tharsis magmatic complex reveal the existence of an Europe-sized Noachian drainage basin and subsequent aquifer system in eastern Tharsis. This basin is proposed to have sourced outburst floodwaters that sculpted the outflow channels, and ponded to form various hypothesized oceans, seas, and lakes episodically through time. These floodwaters decreased in volume with time due to inadequate groundwater recharge of the Tharsis aquifer system. Martian topography, as observed from the Mars Orbiter Laser Altimeter, corresponds well to these ancient flood inundations, including the approximated shorelines that have been proposed for the northern plains. Stratigraphy, geomorphology, and topography record at least one great Noachian-Early Hesperian northern plains ocean, a Late Hesperian sea inset within the margin of the high water marks of the previous ocean, and a number of widely distributed minor lakes that may represent a reduced Late Hesperian sea, or ponded waters in the deepest reaches of the northern plains related to minor Tharsis- and Elysium-induced Amazonian flooding.  相似文献   

8.
Despite recent efforts from space exploration to sound the martian subsurface with RADAR, the structure of the martian subsurface is still unknown. Major geologic contacts or discontinuities inside the martian crust have not been revealed. Another way to analyze the subsurface is to study rocks that have been exhumed from depth by impact processes. The last martian mission, MRO (Mars Reconnaissance Orbiter), put forth a great deal of effort in targeting the central peaks of impact craters with both of its high resolution instruments: CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) and HiRISE (High Resolution Science Experiment). We analyzed the composition with CRISM and the physical characteristics on HiRISE of the rocks exhumed from depth from 31 impact craters in the vicinity of Valles Marineris. Our analyses revealed the presence at depth of two kinds of material: massive light-toned rocks and intact layers. Exhumed light-toned massive rocks are enriched in low calcium pyroxenes and olivine. Hydrated phases such as smectites and putative serpentine are present and may provide evidence of hydrothermal processes. Some of the rocks may represent portions of the volatile-rich, pre-Noachian martian primitive crust. In the second class of central peaks, exhumed layers are deformed, folded, and fractured. Visible-near infrared (VNIR) spectra suggest that they are composed of a mixture of olivine and high calcium pyroxene associated with hydrated phases. These layers may represent a Noachian volcanic accumulation of up to 18 km due to Tharsis activity. The spatial distribution, as well as the in-depth distribution between the two groups of rocks exhumed, are not random and reveal a major geologic discontinuity below the Tharsis lava plateau. The contact may be vertical over several kilometers depth suggesting the pre-existence of a steep basin (early giant impact or subsidence basin) or sagduction processes.  相似文献   

9.
The Mangala Valles system is an ∼ ∼900 km fluvially carved channel system located southwest of the Tharsis rise and is unique among the martian outflow channels in that it heads at a linear fracture within the crust as opposed to a collapsed region of chaos as is the case with the circum-Chryse channels. Mangala Valles is confined within a broad, north–south trending depression, and begins as a single valley measuring up to 350 km wide that extends northward from a Memnonia Fossae graben, across the southern highlands toward the northern lowlands. Approximately 600 km downstream, this single valley branches into multiple channels, which ultimately lose their expression at the dichotomy boundary. Previous investigations of Mangala Vallis suggested that many of the units mapped interior to the valley were depositional, related to flooding, and that a minimum of two distinct periods of flooding separated by tens to hundreds of millions of years were required to explain the observed geology. We use infrared and visible images from the THermal EMission Imaging System (THEMIS), and topographic data from the Mars Orbiting Laser Altimeter (MOLA), to investigate the nature of the units mapped within Mangala Vallis. We find that the geomorphology of the units, as well as their topographic and geographic distribution, are consistent with most of them originating from a single assemblage of volcanic flow deposits, once continuous with volcanic flows to the south of the Memnonia Fossae source graben. These flows resurfaced the broad, north–south trending depression into which Mangala Vallis formed prior to any fluvial activity. Later flooding scoured and eroded this volcanic assemblage north of the Mangala source graben, resulting in the present distribution of the units within Mangala Vallis. Additionally, our observations suggest that a single period of catastrophic flooding, rather than multiple periods separated by tens to hundreds of millions of years, is consistent with and can plausibly explain the interior geology of Mangala Vallis. Further, we present a new scenario for the source and delivery of water to the Mangala source graben that models flow of groundwater through a sub-cryosphere aquifer and up a fracture that cracks the cryosphere and taps this aquifer. The results of our model indicate that the source graben, locally enlarged to a trough near the head region of Mangala, would have required less than several days to fill up prior to any spill-over of water to the north. Through estimates of the volume of material missing from Mangala (13,000–20,000 km3), and calculation of mean discharge rates through the channel system (∼ ∼5 × 106 m3 s−1), we estimate that the total duration of fluvial activity through the Mangala Valles was 1–3 months.  相似文献   

10.
Valley networks observed on the martian surface are found mostly on Noachian-aged highlands units, but a few occur on younger volcanic edifices. Enigmatically, they do not occur on all younger volcanoes of similar age or location. Using new data, we reanalyze the radially arrayed valleys on the flanks of Hecates Tholus, a Hesperian-aged shield volcano, and test the hypothesis that these valleys might have formed via basal melting of summit snowpack. We find that magmatic intrusions with reasonable geometries provide sufficient heat flux to cause basal melting of snowpack, with the resulting meltwater interpreted to be responsible for incision of the observed valleys. Valley morphology is similar to valleys observed adjacent to seasonally melting Antarctic Dry Valley glaciers formed on comparable slopes, supporting the hypothesis of a snowmelt origin. These relatively young valley networks are thus plausibly interpreted to form under circumstances in which summit snow accumulation was melted during one or more episodes of high localized heat flux.  相似文献   

11.
K.E. Williams  O.B. Toon  C. McKay 《Icarus》2008,196(2):565-577
Christensen [2003. Nature 422, 45-48] suggested that runoff from melting snowpacks on martian slopes might be responsible for carving gullies. He also suggested that snowpacks currently exist on Mars, for example on the walls of Dao Valles (approximately 33° S). Such snowpacks were presumably formed during the last obliquity cycle, which occurred about 70,000 years ago. In this paper we investigate a specific scenario under conditions we believe are favorable for snowpack melting. We model the rate at which a snowpack located at 33° S on a poleward-facing slope sublimates and melts on Mars, as well as the temperature profile within the snowpack. Our model includes the energy and mass balance of a snowpack experiencing diurnal variations in insolation. Our results indicate that a dirty snowpack would quickly sublimate and melt under current martian climate conditions. For example a 1 m thick dusty snowpack of moderate density (550 kg/m3) and albedo (0.39) would sublimate in less than two seasons, producing a small amount of meltwater runoff. Similarly, a cleaner snowpack (albedo 0.53) would disappear in less than 9 seasons. These results suggest that the putative snowpack almost certainly could not have survived for 70,000 years. For most of the parameter settings snowpack interior temperatures at this latitude and slope do reach the melting point. Under most conditions melting occurs when the snowpack is less than 10 cm thick. The modeled snowpack will not melt if it is covered by a 1 cm dust lag. In general, these findings raise interesting possibilities regarding gully formation, but perhaps mostly during a past climate regime when snowfall was expected to have occurred. If there currently are exposed snowpacks on martian mid-latitude slopes, then these ice sheets cannot last long. Hence they might be time variable features on Mars and should be searched for.  相似文献   

12.
N.L. Lanza  G.A. Meyer  H.E. Newsom 《Icarus》2010,205(1):103-112
The morphologies of some martian gullies appear similar to terrestrial features associated with debris flow initiation, erosion, and deposition. On Earth, debris flows are often triggered by shallow subsurface throughflow of liquid water in slope-mantling colluvium. This flow causes increased levels of pore pressure and thus decreased shear strength, which can lead to slide failure of slope materials and subsequent debris flow. The threshold for pore pressure-induced failure creates a distinct relationship between the contributing area supplying the subsurface flow and the slope gradient. To provide initial tests of a similar debris flow initiation hypothesis for martian gullies, measurements of the contributing areas and slope gradients were made at the channel heads of martian gullies seen in three HiRISE stereo pairs. These gullies exhibit morphologies suggestive of debris flows such as leveed channels and lobate debris fans, and have well-defined channel heads and limited evidence for multiple flows. Our results show an area-slope relationship for these martian gullies that is consistent with that observed for terrestrial gullies formed by debris flow, supporting the hypothesis that these gullies formed as the result of saturation of near-surface regolith by a liquid. This model favors a source of liquid that is broadly distributed within the source area and shallow; we suggest that such liquid could be generated by melting of broadly distributed icy materials such as snow or permafrost. This interpretation is strengthened by observations of polygonal and mantled terrain in the study areas, which are both suggestive of near-surface ice.  相似文献   

13.
The occurence within Elysium Planitia of meltwater deposits, possible pseudocraters, collapse features within troughs, and outflow channels indicates that a layer of subsurface volatiles existed at the time of volcanic activity within this area. The pseudocraters are interpreted to be indicators of near-surface volatiles, while meltwater deposits and the degree of preservation of trough walls and floors are thought to signify greater volatile depths. A latitudinal variation in the distribution of these features indicates either that the depth to the volatile layer increased from less than about 50 m at 35°N to greater than 600 m at 24°N, or that an ice wedge that existed at 35°N thinned to nonexistence at 24°N. Braided distributary channel systems within the chaotic terrain north of Elysium Planitia show that ephemeral lakes were repeatedly created and drained at this locality. The existence of volatiles contemporaneous with volcanic activity permits a search to be made for explosively generated landforms predicted to exist by previous theoretical models. Morphological evidence for strombolian, vulcanian and plinian eruptions is lacking within western Elysium Planitia; there are no identifiable cinder cones, pyroclastic flow deposits, or mantled areas indicative of large airfall deposits at an image resolution of 50–150 m/pixel. However, the pseudocraters indicate that small-scale phreatomagmatic activity may have taken place.  相似文献   

14.
Thirteen-centimeter-wavelength radar observations of Mars made in 1982 at Arecibo Observatory yield accurate measurements of the full backscatter spectrum in two orthogonal polarizations. The data, which were obtained for several widely separated subradar longitudes at 24°N latitude, provide the first global view of the distribution of small-scale surface roughness on Mars. The diffuse component of the echo exhibits strong spatial variations. Areas of maximum depolarization correlate well with volcanic regions (Tharsis and Elysium), while the heavily cratered upland terrain yields relatively low depolarization. Parts of Tharsis give near-complete depolarization (polaziation ratio μc ? 1 when viewed at oblique angles of incidence). Northern Martian plains regions (Tharsis, Elysium, and Amazonis) may comprise the most extensive area of severe decimeter-scale surface roughness in the inner Solar System. On the average, the northern Martian tropics yield higher diffuse radar cross sections (σD = 0.05–0.12) and a higher of degree disk-integrated depolarization (μc = 0.1–0.4) than is found for the Moon, Mercury, and Venus. Comparisons between the Moon and Mars using radar data, ground truth, and simple scattering models suggest that Mars possesses a relatively high average coverage by decimeter-scale rocks. Also discussed are several of the more interesting quasispecular scattering results, the most unsual of which were obtained over the Olympus Mons aureole region.  相似文献   

15.
Caleb I. Fassett 《Icarus》2007,189(1):118-135
Ceraunius Tholus, a Hesperian-aged volcano in the Tharsis region, is characterized by small radial valleys on its flanks, and several larger valleys originating near its summit caldera. All of these large valleys drain from near the lowest present portion of the caldera rim and down the flanks of the volcano. The largest valley debauches into Rahe Crater (an oblique impact crater), forming a depositional fan. Recent study of climate change on Mars suggests that many low-latitude regions (especially large volcanic edifices) were periodically the sites of snow accumulation, likely triggered by variations in spin orbital parameters. We apply a conductive heat flow model to Ceraunius Tholus that suggests that following magmatic intrusion, sufficient heating would be available to cause basal melting of any accumulated summit snowpack and produce sufficient meltwater to cause the radial valleys. The geometry of the volcano summit caldera suggests that meltwater would also accumulate in a volumetrically significant caldera lake. Analysis of the morphology and volumes of the largest valley, as well as depositional features at its base, suggest that fluvial erosion due to drainage of this summit caldera lake formed the large valleys, in a manner analogous to how valleys were formed catastrophically from a lake in Aniakchak caldera in Alaska. Moreover, the event which carved the largest valley on Ceraunius Tholus appears to have led to the formation of a temporary lake within Rahe Crater, at its base. The more abundant, small valleys on the flanks are interpreted to form by radial drainage of melted ice or snow from the outside of the caldera rim. Comparison of Ceraunius Tholus with the volcano-capping Icelandic ice sheet Myrdalsjokull provides insight into the detailed mechanisms of summit heating, ice-cap accumulation and melting, and meltwater drainage. These observations further underline the importance of a combination of circumstances (i.e., climate change to produce summit snowpack and an active period of magmatism to produce melting) to form the valley systems on some martian volcanoes and not on others.  相似文献   

16.
Higher outflow channel dissection in the martian region of southern circum-Chryse appears to have extended from the Late Hesperian to the Middle Amazonian Epoch. These outflow channels were excavated within the upper 1 km of the cryolithosphere, where no liquid water is expected to have existed during these geologic epochs. In accordance with previous work, our examination of outflow channel floor morphologies suggests the upper crust excavated by the studied outflow channels consisted of a thin (a few tens of meters) layer of dry geologic materials overlying an indurated zone that extends to the bases of the investigated outflow channels (1 km in depth). We find that the floors of these outflow channels contain widespread secondary chaotic terrains (i.e., chaotic terrains produced by the destruction of channel-floor materials). These chaotic terrains occur within the full range of outflow channel dissection and tend to form clusters. Our examination of the geology of these chaotic terrains suggests that their formation did not result in the generation of floods. Nevertheless, despite their much smaller dimensions, these chaotic terrains are comprised of the same basic morphologic elements (e.g., mesas, knobs, and smooth deposits within scarp-bound depressions) as those located in the initiation zones of the outflow channels, which suggests that their formation must have involved the release of ground volatiles. We propose that these chaotic terrains developed not catastrophically but gradually and during multiple episodes of nested surface collapse. In order to explain the formation of secondary chaotic terrains within zones of outflow channel dissection, we propose that the regional Martian cryolithosphere contained widespread lenses of volatiles in liquid form. In this model, channel floor collapse and secondary chaotic terrain formation would have taken place as a consequence of instabilities arising during their exhumation by outflow channel dissection. Within relatively warm upper crustal materials in volcanic settings, or within highly saline crustal materials where cryopegs developed, lenses of volatiles in liquid form within the cryolithosphere could have formed, and/or remained stable.In addition, our numerical simulations suggest that low thermal conductivity, dry fine-grained porous geologic materials just a few tens of meters in thickness (e.g., dunes, sand sheets, some types of regolith materials), could have produced high thermal anomalies resulting in subsurface melting. The existence of a global layer of dry geologic materials overlying the cryolithosphere would suggest that widespread lenses of fluids existed (and may still exist) at shallow depths wherever these materials are fine-grained and porous. The surface ages of the investigated outflow channels and chaotic terrains span a full 500 to 700 Myr. Chaotic terrains similar in dimensions and morphology to secondary chaotic terrains are not observed conspicuously throughout the surface of Mars, suggesting that intra-cryolithospheric fluid lenses may form relatively stable systems. The existence of widespread groundwater lenses at shallow depths of burial has tremendous implications for exobiological studies and future human exploration. We find that the clear geomorphologic anomaly that the chaotic terrains and outflow channels of southern Chryse form within the Martian landscape could have been a consequence of large-scale resurfacing resulting from anomalously extensive subsurface melt in this region of the planet produced by high concentrations of salts within the regional upper crust. Crater count statistics reveal that secondary chaotic terrains and the outflow channels within which they occur have overlapping ages, suggesting that the instabilities leading to their formation rapidly dissipated, perhaps as the thickness of the cryolithosphere was reset following the disruption of the upper crustal thermal structure produced during outflow channel excavation.  相似文献   

17.
Review of morphologic, morphometric and compositional data from Mars suggests that volcanism in the early Hesperian Syrtis Major edifice was predominantly ultramafic, in contrast to the abundant basaltic volcanism of the Hesperian to Amazonian Tharsis and Elysium provinces. Comparisons of edifice characteristics between Syrtis Major and the large, circum-Hellas Noachian to Hesperian volcanoes suggest that these structures may also be formed by ultramafic volcanic activity. The data suggest that a global scale magma compositional change occurred on Mars during the late Hesperian. The occurrence of widespread ultramafic volcanism suggests that a high degree of partial melting in a relatively hot mantle characterized Mars?? early thermal history, conditions that may be analogous to those that prevailed in the Archean Earth.  相似文献   

18.
The plains of Aurorae and Ophir in the equatorial region of Mars display geomorphic evidence indicative of extensive but generally short-lived paleohydrological processes. Elaver Vallis in Aurorae Planum south of Ganges Chasma is an outflow channel system >180 km long, and here inferred to have formed by cataclysmic spillover flooding from a paleolake(s) contained in the Morella crater basin. Ganges Cavus is an enormous 5-km-deep depression of probable collapse origin located in the Morella basin. The fluid responsible for the infilling of the Morella basin likely emerged at least partially through Ganges Cavus or its incipient depression, and it may have been supplied also from small-scale springs in the basin. Similar paleohydrological processes are inferred also in Ophir Planum. It is reasonable to assume that water, sometimes sediment-laden and/or mixed with gases, was the responsible fluid for these phenomena although some of the observed features could be explained by non-aqueous processes such as volcanism. Water emergence may have occurred as consequences of ground ice melting or breaching of cryosphere to release water from the underlying hydrosphere. Dike intrusion is considered to be an important cause of formation for the cavi and smaller depressions in Aurorae and Ophir Plana, explaining also melting of ground ice or breaching of cryosphere. Alternatively, the depressions and crater basins may have been filled by regional groundwater table rising during the period(s) when cryosphere was absent or considerably thin. The large quantities of water necessary for explaining the paleohydrological processes in Aurorae and Ophir Plana could have been derived through crustal migration from the crust of higher plains in western Ophir Planum where water existed in confined aquifers or was produced by melting of ground ice due to magmatic heating or climatic shift, or from a paleolake in Candor Chasma further west.  相似文献   

19.
We present results of our study of the rheologies and ages of lava flows in the Elysium Mons region of Mars. Previous studies have shown that the geometric dimensions of lava flows reflect rheological properties such as yield strength, effusion rate and viscosity. In this study the rheological properties of lava flows in the Elysium Mons region were determined and compared to the rheologies of the Ascraeus Mons lava flows. We also derived new crater size-frequency distribution measurements (CSFDs) for the Elysium lava flows to identify possible changes in the rheological properties with time. In addition, possible changes in the rheological properties with the distance from the caldera of Elysium Mons were analyzed.In total, 35 lava flows on and around Elysium Mons were mapped, and divided into three groups, lava flows on the flanks of Elysium Mons, in the plains between the three volcanoes Elysium Mons, Hecates and Albor Tholus and lava flows south of Albor Tholus. The rheological properties of 32 of these flows could be determined. Based on our morphometric measurements of each individual lava flow, estimates for the yield strengths, effusion rates, viscosities, and eruption duration of the studied lava flows were made. The yield strengths of the investigated lava flows range from ~3.8 × 102 Pa to ~1.5 × 104 Pa, with an average of ~3.0 × 103 Pa. These yield strengths are in good agreement with estimates for terrestrial basaltic lava flows. The effusion rates are on average ~747 m3 s?1, ranging from ~99 to 4450 m3 s?1. The viscosities are on average ~4.1 × 106 Pa s, with a range of 1.2 × 105 Pa s to 3.1 × 107 Pa s. The eruption durations of the flows were calculated to be between 6 and 183 days, with an average of ~51 days. The determined rheological properties are generally very similar to those of other volcanic regions on Mars, such as on Ascraeus Mons in the Tharsis region. Calculated yield strengths and viscosities point to a basaltic/andesitic composition of the lava flows, similar to basaltic or andesitic a’a lava flows on Earth.Absolute model ages of all 35 lava flows on Elysium Mons were derived from crater size-frequency distribution measurements (CSFD). The derived model ages show a wide variation from about 632 Ma to 3460 Ma. Crater size-frequency distribution measurements of the Elysium Mons caldera show an age of ~1640 Ma, which is consistent with the resurfacing age of Werner (2009). Significant changes of the rheologies with time could not be observed. Similarly, we did not observe systematic changes in ages with increasing distances of lava flows from the Elysium Mons caldera.  相似文献   

20.
Geological mapping of Elysium Planitia has led to the recognition of five major surface units, in addition to the three volcanic constructs Elysium Mons, Hecates Tholus, and Albor Tholus. These units are interpreted to be both volcanic and sedimentary or erosional in origin. The volcano Elysium Mons is seen to have dominated constructional activity within the whole region, erupting lava flows which extend up to 600km from the summit. A major vent system, covering an area in excess of 75 000 km2, is identified within the Elysium Fossae area. Forty-one sinuous channels are visible within Elysium Planitia; these channels are thought to be analogous to lunar sinuous rilles and their formation in this region of Mars is attributed to unusually high regional topographic slopes (up to ~ 1.7). Numerous circumferential graben are centered upon Elysium Mons. These graben, located at radial distances of 175, 205–225, and 330km from the summit, evidently post-dated the emplacement of the Elysium Mons lava flows but pre-dated the eruption of extensive flood lavas to the west of the volcano. A great diversity of channel types is observed within Elysium Fossae. The occurrences of streamlined islands and multiple floor-levels within some channels suggests a fluvial origin. Conversely, the sinuosity and enlarged source craters of other channels suggests a volcanic origin. Impact crater morphology, the occurrence of chaotic terrain, probable pyroclastic deposits upon Hecates Tholus and fluvial channels all suggest extensive volcano-ground ice interactions within this area.NASA Summer Intern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号