首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We developed a series of balloon experiments parachuting a 1:1 scale mock-up of the Huygens probe from an altitude just over to simulate at planetary scale the final part of the descent of the probe through Titan's lower atmosphere. The terrestrial atmosphere represents a natural laboratory where most of the physical parameters meet quite well the bulk condition of Titan's environment, in terms of atmosphere composition, pressure and mean density ranges, though the temperature range will be far higher.The probe mock-up consists of spares of the HASI sensor packages, housekeeping sensors and other dedicated sensors, and also incorporates the Huygens Surface Science Package (SSP) Tilt sensor and a modified version of the Beagle 2 UV sensor, for a total of 77 acquired sensor channels, sampled during ascent, drift and descent phase.An integrated data acquisition and instrument control system, simulating the HASI data-processing unit (DPU), has been developed, based on PC architecture and soft-real-time application. Sensor channels were sampled at the nominal HASI data rates, with a maximum rate of . Software has been developed for data acquisition, onboard storage and telemetry transmission satisfying all requests for real-time monitoring, diagnostic and redundancy.The mock-up of the Huygens probe mission was successfully launched for the second time (first launch in summer 2001, see Gaborit et al., 2001) with a stratospheric balloon from the Italian Space Agency Base “Luigi Broglio” in Sicily on May 30, 2002, and recovered with all sensors still operational. The probe was lifted to an altitude of and released to perform a parachuted descent lasting , to simulate the Huygens mission at Titan. Preliminary aerodynamic study of the probe has focused upon the achievement of a descent velocity profile reproducing the expected profile of Huygens probe descent into Titan.We present here the results of this experiment discussing their relevance in the analysis of the data which will be obtained during the Huygens mission at Titan.  相似文献   

3.
《Planetary and Space Science》2007,55(13):1964-1977
During the descent of the Huygens probe through the atmosphere of Titan, on January 14th, 2005, the permittivity, waves and altimetry (PWA) subsystem, a component of the Huygens atmospheric structure instrument (HASI), detected an ionized layer at altitudes around 63 km with two different instruments, the relaxation probe (RP) and the mutual impedance probe (MIP). A very detailed analysis of both data sets is required, in order to correct for environmental effects and compare the two independent estimates of the electrical conductivity. The present work is dedicated to the MIP data analysis. New laboratory tests have been performed to validate or improve the available calibration results. Temperature effects have been included and numerical models of the MIP sensors and electric circuitry have been developed to take into account the proximity of the Huygens probe body. The effect of the vertical motion of the vessel in the ionized atmosphere is estimated in both analytical and numerical ways. The peculiar performance of the instrument in the altitude range 100–140 km is scrutinized. The existence of a prominent ionized layer, and of enhancements in the conductivity and electron density profiles at 63 km, are discussed in the light of previous theoretical predictions.  相似文献   

4.
The Huygens probe returned scientific measurements from the atmosphere and surface of Titan on 14 January 2005. Knowledge of the trajectory of Huygens is necessary for scientific analysis of those measurements. We use measurements from the Huygens Atmospheric Structure Instrument (HASI) to reconstruct the trajectory of Huygens during its mission. The HASI Accelerometer subsystem measured the axial acceleration of the probe with errors of 3E−6 m s−2, the most accurate measurements ever made by an atmospheric structure instrument on another planetary body. The atmosphere was detected at an altitude of 1498 km. Measurements of the normal acceleration of the probe, which are important for determining the probe's attitude during hypersonic entry, were significantly less accurate and limited by transverse sensitivity of the piezo sensors. Peak acceleration of 121.2 m s−2 occurred at 234.9 km altitude. The parachute deployment sequence started at 157.1 km and a speed of 342.1 m s−1. Direct measurements of pressure and temperature began shortly afterwards. The measured accelerations and equations of motion have been used to reconstruct the trajectory prior to parachute deployment. Measured pressures and temperatures, together with the equation of hydrostatic equilibrium and the equation of state, have been used to reconstruct the trajectory after parachute deployment. Uncertainties in the entry state of Huygens at the top of the atmosphere are significant, but can be reduced by requiring that the trajectory and atmospheric properties be continuous at parachute deployment.  相似文献   

5.
During the first phase of Huygens arrival into Titan's atmosphere the probe is subjected to gravitational and aerodynamic forces in aerodynamic hypersonic regime. Atmospheric drag exerts a strong deceleration on the capsule measured by Huygens atmospheric structure instrument (HASI) servo accelerometer. A 6 DOF (Degree of Freedom) model of the Huygens probe entry dynamics has been developed and used for data analysis. The accelerometer data are analysed and the model allows the retrieval of dynamics information of Huygens probe from 1545 km altitude down to end of the entry phase. Probe's initial conditions (velocity and position) were refined to match the measured deceleration profile resulting in a different altitude at interface epoch with respect to those of the Cassini Navigation Team. Velocity and position of probe at interface epoch are compatible with those used by Descent Trajectory Working Group (DTWG).Measurements acquired before atmosphere detection are used to estimate probe's angular rate, bound attitude and characterise the angle of attack profile which results to be lower than 4° during the whole entry. Probe's spin calculated (6.98 RPM) is slightly different with respect to DTWG of 7.28 RPM but considering a 2% error in the Inertia matrix these results are inside the 1-σ error band.  相似文献   

6.
We report scale model laboratory experiments showing how an impact accelerometer on a planetary probe (based on the Huygens probe Phase A configuration) can provide significant information on the mechanical characteristics of the surface. In particular, solid and liquid surfaces can be discriminated. The density of liquids can in principle be determined from the peak deceleration, thereby providing a constraint on composition, although experimental uncertainties present challenges to the accuracy of this method.  相似文献   

7.
The servo accelerometer constituted a vital part of the Huygens Atmospheric Structure Instrument (HASI): flown aboard the Huygens probe, it operated successfully during the probe's entry, descent, and landing on Titan, on 14th January 2005. This paper reviews the Servo accelerometer, starting from its development/assembly in the mid-1990s, to monitoring its technical performance through its seven-year long in-flight (or cruise) journey, and finally its performance in measuring acceleration (or deceleration) upon encountering Titan's atmosphere.The aim of this article is to review the design, ground tests, in-flight tests and operational performance of the Huygens servo accelerometer. Techniques used for data analysis and lessons learned that may be useful for accelerometry payloads on future planetary missions are also addressed.The main finding of this review is that the conventional approach of having multiple channels to cover a very broad measurement range: from 10−6g to the order of 10g (where g=Earth's surface gravity, 9.8 m/s2), with on-board software deciding which of the channels to telemeter depending on the magnitude of the measured acceleration, works well. However, improvements in understanding the potential effects of the sensor drifts and ageing on the measurements can be achieved in future missions by monitoring the ‘scale factor’—a measure of such sensors’ sensitivity, along with the already implemented monitoring of the sensor's offset during the in-flight phase.  相似文献   

8.
《Planetary and Space Science》2007,55(14):2071-2076
We have developed a new method to analyse in situ observations of atmospheric variables of state: the reconstruction of the vertical temperature profile from pressure measurements accompanied by rough knowledge of the atmospheric composition and the aerodynamical response properties of the descent vehicle. We can use the method to construct the temperature profile when no direct measurements are available, as well as to analyse the consistency between data from different instruments. We applied the method to the Huygens measurements of Titan's atmosphere, determining the aerodynamical drag properties from radar altimeter data. We discovered that the temperature profile computed in this manner differs from the profile from the temperature sensor (TEM) of the probe by up to 5% in the altitude range of 0–60 km, and up to 10% at higher altitudes due to increased noise. The method gives a tropopause altitude of about 50 km and a surface temperature of about 98 K, in contrast to the TEM temperature measurements. Our error analysis shows that these differences are caused by the known discrepancy in the Huygens altimeter data, with the estimates made by the reconstruction algorithm contributing only 1–2% of error.  相似文献   

9.
The new one-dimensional radiative-convective/photochemical/microphysical model described in Part I is applied to the study of Titan's atmospheric processes that lead to haze formation. Our model generates the haze structure from the gaseous species photochemistry. Model results are presented for the species vertical concentration profiles, haze formation and its radiative properties, vertical temperature/density profiles and geometric albedo. These are validated against Cassini/Huygens observations and other ground-based and space-borne measurements. The model reproduces well most of the latest measurements from the Cassini/Huygens instruments for the chemical composition of Titan's atmosphere and the vertical profiles of the observed species. For the haze production we have included pathways that are based on pure hydrocarbons, pure nitriles and hydrocarbon/nitrile copolymers. From these, the nitrile and copolymer pathways provide the stronger contribution, in agreement with the results from the ACP instrument, which support the incorporation of nitrogen in the pyrolized haze structures. Our haze model reveals a new second major peak in the vertical profile of haze production rate between 500 and 900 km. This peak is produced by the copolymer family used and has important ramifications for the vertical atmospheric temperature profile and geometric albedo. In particular, the existence of this second peak determines the vertical profile of haze extinction. Our model results have been compared with the DISR retrieved haze extinction profiles and are found to be in very good agreement. We have also incorporated in our model heterogeneous chemistry on the haze particles that converts atomic hydrogen to molecular hydrogen. The resultant H2 profile is closer to the INMS measurements, while the vertical profile of the diacetylene formed is found to be closer to that of the CIRS profile when this heterogenous chemistry is included.  相似文献   

10.
Space probes entering planetary atmospheres are used for in situ study of their physical structures. During the entry phase aerodynamic forces exerted on the probe depend on atmospheric density. As a consequence accelerations measured by on-board sensors can be used to derive probe trajectory as well as atmospheric density, pressure and temperature profiles. In this work acceleration data acquired by the Huygens Atmospheric Structure Instrument (HASI) have been used to reconstruct the probe trajectory and the Titan's atmospheric structure from down to of altitude. An accurate six degree of freedom model of Huygens during the entry phase has been developed and a new reconstruction technique based on Kalman filtering is presented. This technique estimates simultaneously the probe trajectory, the attitude profile consistent with measured data and the atmospheric density, pressure and temperature.  相似文献   

11.
The Cassini–Huygens mission, comprising the NASA Saturn Orbiter and the ESA Huygens Probe, arrived at Saturn in late June 2004. The Huygens probe descended under parachute in Titan’s atmosphere on 14 January 2005, 3 weeks after separation from the Orbiter. We discuss here the breakthroughs that the Huygens probe, in conjunction with the Cassini spacecraft, brought to Titan science. We review the achievements ESA’s Huygens probe put forward and the context in which it operated. The findings include new localized information on several aspects of Titan science: the atmospheric structure and chemical composition; the aerosols distribution and content; the surface morphology and composition at the probe’s landing site; the winds, the electrical properties, and the implications on the origin and evolution of the satellite.  相似文献   

12.
On June 20, 1971, an instrumented probe designated PAET entered the atmosphere near Bermuda at a velocity of 6.6 km/sec carrying experiments designed for use at planets other than the Earth. Instruments to measure in situ the structure and composition of the atmosphere included accelerometers, pressure and temperature sensors, a mass spectrometer, and a radiometer (to sense characteristic emission from the probe shock layer at high speeds).The experiments were largely successful. The thermal structure of the atmosphere, including two major reversals in gradient, was shown to be well defined to an altitude of 80 km by comparison with more conventional meteorological soundings. The atmospheric mean molecular weight was defined within a percent by the structure experiment. The radiometers defined the bulk composition accurately and the trace quantity of CO2 to one significant figure. The mass spectrometer functioned properly, but failed to give the correct composition because of problems in its sampling system. Oxygen was depleted, apparently by chemical reactions before reaching the spectrometer, and the inlet leak conductance was reduced from its preflight value by an order of magnitude. There is reason to believe that contamination by large molecules from the heat shield was responsible. This experiment should stimulate intensive laboratory work on sampling systems, so that similar problems do not arise in measurements of atmospheric composition at the planets.Results of auxiliary experiments to measure atmospheric water vapor, vehicle dynamics and heating, and communications blackout are also given.  相似文献   

13.
Attitude dynamics data from planetary missions are reviewed to obtain a zeroth-order expectation on the tilts and angular rates to be expected on atmospheric probes during descent: these rates are a strong driver on descent imager design. While recent Mars missions have been equipped with capable inertial measurements, attitude measurements for missions to other planetary bodies are rather limited but some angular motion estimates can be derived from accelerometer, Doppler or other data. It is found that robust camera designs should tolerate motions of the order of 20-40°/s, encountered by Mars Pathfinder, Pioneer Venus, Venera and the high speed part of the Huygens descent on Titan. Under good conditions, parachute-stabilized probes can experience rates of 1-5°/s, seen by the Mars Exploration Rovers and Viking, Galileo at Jupiter, and the slow speed parts of the Huygens descent. In the lowest 20 km of the descent on Titan, the Huygens probe was within 2° of vertical over 95% of the time. Some factors influencing these motions are discussed.  相似文献   

14.
《Planetary and Space Science》2007,55(13):1936-1948
The Huygens probe underwent vigorous short-period motions during its parachute descent through the atmosphere of Saturn's moon Titan in January 2005, at least some of which were excited by the Titan environment. Several sensors in the Huygens Surface Science Package (SSP) detect these motions, indicating the transition to the smaller stabilizer parachute, the changing probe spin rate, aerodynamic buffeting, and pendulum motions. Notably, in an altitude range of about 20–30 km where methane drops will freeze, the frequency content and statistical kurtosis of the tilt data indicate excitation by turbulent air motions like those observed in freezing clouds on Earth, supporting the suggestion of Tokano et al. [Tokano, T., McKay, C.P., Neubauer, F.M., Atreya, S.K., Ferri, F., Fulchignoni, M., Niemann, H.B. (2006a). Methane drizzle on Titan. Nature 442, 432–435] that the probe passed through such a cloud layer. Motions are weak below 20 km, suggesting a quiescent lower atmosphere with turbulent fluctuations of nominally <0.15 m/s (to within a factor of ∼2) but more violent motions in the upper troposphere may have been excited by turbulent winds with amplitudes of 1–2 m/s. Descent in part of the stratosphere (150–120 km) was smooth despite strong ambient wind (∼100 m/s), but known anomalies in the probe spin prevent investigation of turbulence in the known wind-shear layer from 60 to 100 km.  相似文献   

15.
Many atmospheric measurement systems, such as the sounding instruments on Voyager, gather atmospheric information in the form of temperature versus pressure level. In these terms, there is considerable consistency among the mean atmospheric profiles of the outer planets Jupiter through Neptune, including Titan. On a given planet or on Titan, the range of variability of temperature versus pressure level due to seasonal, latitudinal, and diurnal variations is also not large. However, many engineering needs for atmospheric models relate not to temperature versus pressure level but atmospheric density versus geometric altitude. This need is especially true for design and analysis of aerocapture systems. Drag force available for aerocapture is directly proportional to atmospheric density. Available aerocapture “corridor width” (allowable range of atmospheric entry angle) also depends on height rate of change of atmospheric density, as characterized by density scale height. Characteristics of hydrostatics and the gas law equation mean that relatively small systematic differences in temperature versus pressure profiles can integrate at high altitudes to very large differences in density versus altitude profiles. Thus, a given periapsis density required to accomplish successful aerocapture can occur at substantially different altitudes (∼150-300 km) on the various outer planets, and significantly different density scale heights (∼20-50 km) can occur at these periapsis altitudes. This paper will illustrate these effects and discuss implications for improvements in atmospheric measurements to yield significant impact on design of aerocapture systems for future missions to Titan and the outer planets. Relatively small-scale atmospheric perturbations, such as gravity waves, tides, and other atmospheric variations can also have significant effect on design details for aerocapture guidance and control systems. This paper will discuss benefits that would result from improved understanding of Titan and outer planetary atmospheric perturbation characteristics. Details of recent engineering-level atmospheric models for Titan and Neptune will be presented, and effects of present and future levels of atmospheric uncertainty and variability characteristics will be examined.  相似文献   

16.
In the framework of future space missions to Ganymede, a pre-study of this satellite is a necessary step to constrain instrument performances according to the mission objectives. This work aims at characterizing the impact of the solar UV flux on Ganymede’s atmosphere and especially at deriving some key physical parameters that are measurable by an orbiter. Another objective is to test several models for reconstructing the solar flux in the Extreme-UV (EUV) in order to give recommendations for future space missions.Using a Beer–Lambert approach, we compute the primary production of excited and ionized states due to photoabsorption, neglecting the secondary production that is due to photoelectron impacts as well as to precipitated suprathermal electrons. Ions sputtered from the surface are also neglected. Computations are performed at the equator and close to the pole, in the same conditions as during the Galileo flyby. From the excitations, we compute the radiative relaxation leading to the atmospheric emissions. We also propose a simple chemical model to retrieve the stationary electron density. There are two main results: (i) the modelled electron density and the one measured by Galileo are in good agreement. The main atmospheric visible emission is the atomic oxygen red line at 630 nm, both in equatorial and in polar conditions, in spite of the different atmospheric compositions. This emission is measurable from space, especially for limb viewing conditions. The OH emission (continuum between 260 and 410 nm) is also probably measurable from space. (ii) The input EUV solar flux may be directly measured or reconstructed from only two passbands solar observing diodes with no degradation of the modelled response of the Ganymede’s atmosphere. With respect to these results, there are two main conclusions: (i) future missions to Ganymede should include the measurement of the red line as well as the measurement of OH emissions in order to constrain the atmospheric model. (ii) None of the common solar proxies satisfactorily describes the level of variability of the solar EUV irradiance. For future atmospheric planetary space missions, it would be more appropriate to derive the EUV flux from a small radiometer rather than from a full-fledged spectrometer.  相似文献   

17.
Titan is one of the primary scientific objectives of the NASA–ESA–ASI Cassini–Huygens mission. Scattering by haze particles in Titan's atmosphere and numerous methane absorptions dramatically veil Titan's surface in the visible range, though it can be studied more easily in some narrow infrared windows. The Visual and Infrared Mapping Spectrometer (VIMS) instrument onboard the Cassini spacecraft successfully imaged its surface in the atmospheric windows, taking hyperspectral images in the range 0.4–5.2 μm. On 26 October (TA flyby) and 13 December 2004 (TB flyby), the Cassini–Huygens mission flew over Titan at an altitude lower than 1200 km at closest approach. We report here on the analysis of VIMS images of the Huygens landing site acquired at TA and TB, with a spatial resolution ranging from 16 to14.4 km/pixel. The pure atmospheric backscattering component is corrected by using both an empirical method and a first-order theoretical model. Both approaches provide consistent results. After the removal of scattering, ratio images reveal subtle surface heterogeneities. A particularly contrasted structure appears in ratio images involving the 1.59 and 2.03 μm images north of the Huygens landing site. Although pure water ice cannot be the only component exposed at Titan's surface, this area is consistent with a local enrichment in exposed water ice and seems to be consistent with DISR/Huygens images and spectra interpretations. The images show also a morphological structure that can be interpreted as a 150 km diameter impact crater with a central peak.  相似文献   

18.
In the framework of the activities going on in preparation for the mission of the Huygens probe in Titan's atmosphere (January 2005), the Huygens Atmospheric Structure Instrument (HASI) team scheduled and performed several balloon campaigns to test the HASI sensors’ performance in flight conditions in the Earth's atmosphere. In particular, pressure conditions reached during each test are similar to those expected in Titan's lower atmosphere. A 1:1 scaled mock-up of the Huygens probe was launched with a stratospheric balloon in 2001 (Br. Assoc. Adv. Sci. 33 (2001) 1109) and in 2002 (Br. Assoc. Adv. Sci. 34 (2002) 911; Adv. Space. Sci. (2003)) from the G. Broglio base of the Italian Space Agency, located in Trapani Milo (Sicily). In both cases the mock-up was dropped from an altitude higher than 27 and , respectively, and recovered on the ground after a parachuted descent. In this paper, we describe the results obtained in reconstructing (i) the probe descent trajectory and (ii) the profiles of the physical quantities characterizing the Earth's atmosphere, on the basis of a complete analysis of the data obtained during the HASI 2002 balloon flight experiment. Using temperature and pressure measurements, we are able to reach an accuracy of the order of 0.5% on the altitude reconstruction during the descent. We validate both the models used for trajectory reconstruction and to check the sensors’ performance. We describe the problems faced in determining the Huygens probe descent trajectory in Titan's atmosphere focusing our discussion on the critical aspects of the descent reconstruction (such as the uncertainties due to measurement errors, limited knowledge of the atmospheric composition, etc.) and the validity of the adopted assumptions.  相似文献   

19.
This study presents an approximate model for the atypical Schumann resonance in Titan’s atmosphere that accounts for the observations of electromagnetic waves and the measurements of atmospheric conductivity performed with the Huygens Atmospheric Structure and Permittivity, Wave and Altimetry (HASI–PWA) instrumentation during the descent of the Huygens Probe through Titan’s atmosphere in January 2005. After many years of thorough analyses of the collected data, several arguments enable us to claim that the Extremely Low Frequency (ELF) wave observed at around 36 Hz displays all the characteristics of the second harmonic of a Schumann resonance. On Earth, this phenomenon is well known to be triggered by lightning activity. Given the lack of evidence of any thunderstorm activity on Titan, we proposed in early works a model based on an alternative powering mechanism involving the electric current sheets induced in Titan’s ionosphere by the Saturn’s magnetospheric plasma flow. The present study is a further step in improving the initial model and corroborating our preliminary assessments. We first develop an analytic theory of the guided modes that appear to be the most suitable for sustaining Schumann resonances in Titan’s atmosphere. We then introduce the characteristics of the Huygens electric field measurements in the equations, in order to constrain the physical parameters of the resonating cavity. The latter is assumed to be made of different structures distributed between an upper boundary, presumably made of a succession of thin ionized layers of stratospheric aerosols spread up to 150 km and a lower quasi-perfect conductive surface hidden beneath the non-conductive ground. The inner reflecting boundary is proposed to be a buried water–ammonia ocean lying at a likely depth of 55–80 km below a dielectric icy crust. Such estimate is found to comply with models suggesting that the internal heat could be transferred upwards by thermal conduction of the crust, while convective processes cannot be ruled out.  相似文献   

20.
Cassini/Huygens is a joint National Aeronautics and Space Administration (NASA)/European Space Agency (ESA)/Agenzia Spaziale Italiana (ASI) mission on its way to explore the Saturnian system. The ESA Huygens Probe is scheduled to be released from the Orbiter on 25 December 2004 and enter the atmosphere of Titan on 14 January 2005. Probe delivery to Titan, arbitrarily defined to occur at a reference altitude of 1270 km above the surface of Titan, is the responsibility of the NASA Jet Propulsion Laboratory (JPL). ESA is then responsible for safely delivering the probe from the reference altitude to the surface. The task of reconstructing the probe trajectory and attitude from the entry point to the surface has been assigned to the Huygens Descent Trajectory Working Group (DTWG), a subgroup of the Huygens Science Working Team. The DTWG will use data provided by the Huygens Probe engineering subsystems and selected data sets acquired by the scientific payload. To correctly interpret and correlate results from the probe science experiments and to provide a reference set of data for possible “ground-truthing” Orbiter remote sensing measurements, it is essential that the trajectory reconstruction be performed as early as possible in the post-flight data analysis phase. The reconstruction of the Huygens entry and descent trajectory will be based primarily on the probe entry state vector provided by the Cassini Navigation Team, and measurements of acceleration, pressure, and temperature made by the Huygens Atmospheric Structure Instrument (HASI). Other data sets contributing to the entry and descent trajectory reconstruction include the mean molecular weight of the atmosphere measured by the probe Gas Chromatograph/Mass Spectrometer (GCMS) in the upper atmosphere and the Surface Science Package (SSP) speed of sound measurement in the lower atmosphere, accelerations measured by the Central and Radial Accelerometer Sensor Units (CASU/RASU), and the probe altitude by the two probe radar altimeters during the latter stages of the descent. In the last several hundred meters, the altitude determination will be constrained by measurements from the SSP acoustic sounder. Other instruments contributing data to the entry and descent trajectory and attitude determination include measurements of the zonal wind drift by the Doppler Wind Experiment (DWE), and probe zonal and meridional drift and probe attitude by the Descent Imager and Spectral Radiometer (DISR). In this paper, the need for and the methods by which the Huygens Probe entry and descent trajectory will be reconstructed are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号