首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arbitrary amplitude dust acoustic waves (DAW’s) in two high energy-tail ion distributions are investigated. The electron number density has been assumed sufficiently depleted during the charging of the dust grains, on account of the attachment of the background plasma electrons on the surface of the dust grains. Our results reveal that under certain conditions, DA solitary waves with either negative or positive potential may be admitted. The high degree of suprathermalization of the relatively low temperature ion component favors the development of compressive localized structures. This behavior is preserved to a large extent in the small but finite amplitude regime. This means that the presence of additional relatively low temperature suprathermal ions does not only significantly modify the basic properties of DA structures, but also causes the existence of positive solitary potentials. This feature is completely new in a dusty plasma with two suprathermal ion components with widely disparate temperatures. Our results may be relevant to a number of space dusty plasma systems, particularly, the Saturn’s F-ring where electron depletion and suprathermality are thought to come into play.  相似文献   

2.
It is shown that the three-dimensional cylindrical Kadomtsev-Petviashvili (CKP) and the extended cylindrical Kadomtsev-Petviashvili (ECKP) equations can describe the propagation of nonplanar dust ion-acoustic excitations in a dusty plasma composed of positive ions, negative ions, stationary dust particles, as well as trapped electrons or a small percentage of trapped electrons. It is found that the solution of the CKP equation supports only solitary pulses, while the ECKP equation describes the propagation of both solitary and shock excitations. The effects of physical parameters, namely negative ions density, dust grains density, positive-to-negative mass ratio, direction cosine of the wave propagation on the pulses profile are examined. Furthermore, the existence regions of either localized or shock pulses are investigated. The relevance of nonlinear structures in the Earth’s ionosphere and plasma experiment is discussed.  相似文献   

3.
A theoretical investigation is developed to study the existence, formation and basic properties of arbitrary amplitude dust ion-acoustic solitary potentials in a dusty plasma consisting of warm ions, trapped electrons and immobile negative (positive) dust particles. It is found a definite interval for the Mach number for which solitary waves exist and depend sensitively on the ion temperature and negative (positive) dust concentration. In addition, the effects of ion temperature, two oppositely charged dust species and resonant electrons on the shape of the solitary waves are also investigated extensively. For both cases of negative and positive dust grains, the effect of ion temperature is found to be destructive for the formation of localized structures. Further, the amplitude of the solitary structures decreases (increases) with the increase in the negative (positive) dust concentration.  相似文献   

4.
A dusty plasma model is presented to study the small scale structures of plasma densities in mesopause region associated with polar mesosphere summer echoes (PMSE). The heavy dust grains (ice particles) are treated as a flowing background of negative charge. Numerical results show that the electron and ion densities drop rapidly while the electric field increases dramatically within a short distance of several meters. The scalelengths of the electron density are comparable to the typical wavelength of the PMSE radars, which may be responsible for strong radar backscatter. Furthermore, the increase of the ice particle concentration results in the reduction of the density gradient and electric field.  相似文献   

5.
The density of the Galactic meteoroid background formed by the loss of large dust grains escaped from circumstellar disks during the formation of a star is estimated. This density is shown to be substantially higher than the local density of meteoroids that escaped from dusty stellar disks as a result of two-star collisions. The flux of meteors of the Galactic background near the Earth is calculated for a given latitude of the observing site taking into account the velocity distribution of dust particles and the motion of particles in the solar gravity field. The expected rate of the Galactic background meteor events at the AMOR radar latitude is lower by at least a factor of 30 than the reported frequency of interstellar meteor events that are supposedly registered in the AMOR experiment.  相似文献   

6.
The Zakharov-Kuznetsov (ZK) equation is derived for electrostatic wave in a rotating magnetoplasma with anisotropic ion pressure and in the presence of stationary charged dust particles. The anisotropic ion pressure is defined using double adiabatic Chew-Golberger-Low (CGL) theory. The reductive perturbation method is employed to study the dynamics of obliquely propagating low frequency ion acoustic wave with adiabatic ions. It is found that the ion pressure anisotropy, polarity, density of the dust particles and rotational frequency have significant effects on the formation nonlinear structures in rotating magnetized dusty plasmas. The numerical results are also presented for illustration.  相似文献   

7.
The propagation and the head—on collision of nonlinear dust—acoustic solitary waves (DASWs) in dusty plasmas consisting of electrons, ions and negative as well as positive dust particles are investigated. Applying an extended Poincaré-Lighthill-Kuo (PLK) method, Kortwege-de Vries equations and analytical phase shifts after the head-on collision of two DASWs in dusty plasmas are obtained. Analytically and numerically, the relevance of the phase shifts and trajectories to the positive-to-negative dust number density ratio, the ratio of the ion number density to negative dust number density, negative-to-positive dust particle mass ratio, and the ion-to-electron temperature ratio effects is explicitly demonstrated. Moreover, the current findings are applied to different regions of space, viz. cometary tails, mesosphere, Jupiter’s magnetosphere.  相似文献   

8.
We present RPWS Langmuir probe data from the third Enceladus flyby (E3) showing the presence of dusty plasma near Enceladus’ South Pole. There is a sharp rise in both the electron and ion number densities when the spacecraft traverses through Enceladus plume. The ion density near Enceladus is found to increase abruptly from about 102 cm−3 before the closest approach to 105 cm−3 just 30 s after the closest approach, an amount two orders of magnitude higher than the electron density. Assuming that the inconsistency between the electron and ion number densities is due to the presence of dust particles that are collecting the missing electron charges, we present dusty plasma characteristics down to sub-micron particle sizes. By assuming a differential dust number density for a range in dust sizes and by making use of Langmuir probe data, the dust densities for certain lower limits in dust size distribution were estimated. In order to achieve the dust densities of micrometer and larger sized grains comparable to the ones reported in the literature, we show that the power law size distribution must hold down to at least 0.03 μm such that the total differential number density is dominated by the smallest sub-micron sized grains. The total dust number density in Enceladus’ plume is of the order of 102 cm−3 reducing to 1 cm−3 in the E-ring. The dust density for micrometer and larger sized grains is estimated to be about 10−4 cm−3 in the plume while it is about 10−6-10−7 cm−3 in the E-ring. Dust charge for micron sized grains is estimated to be about eight thousand electron charges reducing to below one hundred electron charges for 0.03 μm sized grains. The effective dusty plasma Debye length is estimated and compared with inter-grain distance as well as the electron Debye length. The maximum dust charging time of 1.4 h is found for 0.03 μm sized grains just 1 min before the closest approach. The charging time decreases substantially in the plume where it is only a fraction of a second for 1 μm sized grains, 1 s for 0.1 μm sized grains and about 10 s for 0.03 μm sized grains.  相似文献   

9.
Progress in understanding the nonlinear features of dust-acoustic waves (DAWs) which accompany a collisional strongly and weakly coupled unmagnetized dusty plasma with Boltzmann distributed electrons, ions and negatively charged dust grains is presented. By using a hydrodynamic model, the Korteweg–de Vries-Burgers (KdV-Burgers) equation is derived. The existence regions of the solitary pulses are defined precisely. Furthermore, numerical calculations reveal that, due to collisions, the DAWs damp waves and the damping rate of the waves depends mainly on the collision frequency. The collisions are found to significantly change the basic properties of the DAWs. The effects of electron-to-ion concentration ratio, and ion-to-electron temperature ratio have important roles in the behavior of the DAWs. The results may have relevance in space and laboratory dusty plasmas.  相似文献   

10.
The Kelvin-Helmholtz instability in magnetized, dusty plasmas is examined, for both negatively and positively charged dust. The critical shear in the ion velocity along the magnetic field is computed as a function of the charge residing on dust grains.  相似文献   

11.
Ionized gases containing fine (μm to sub-μm sized) charged dust grains, referred to as dusty plasmas, occur in diverse cosmic and laboratory environments. Dust occurs in many space and astrophysical environments, including planetary rings, comets, the Earth's ionosphere, and interstellar molecular clouds. Dust also occurs in laboratory plasmas, including processing plasmas, and crystallized dusty plasmas. Charged dust can lead to various effects in a plasma. In this review, some physical processes in dusty plasmas are discussed, with an emphasis on applications to dusty plasmas in space. This includes theoretical work on several wave instabilities, the role of dust as an electron source, and Coulomb crystals of positively charged dust. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
A rigorous theoretical investigation has been made on the nonlinear structures, mainly, dust-acoustic (DA) solitary and shock waves propagating in a strongly coupled dusty plasma consisting of strongly coupled correlated positively and negatively charged inertial cold dust fluid, weakly correlated inertialess Maxwellian electron and ion fluids. The presence of arbitrary (negative and positive) charged dust grains in such a plasma system causes the presence opposite potentials (positive and negative) DA solitary and shock structures and significantly modify it’s basic features. The results obtained from this analysis can be employed in understanding the nature of plasma waves both in laboratory and space plasma system.  相似文献   

13.
Bifurcation behavior of nonlinear dust ion acoustic travelling waves in a magnetized quantum dusty plasma has been studied. Applying the reductive perturbation technique (RPT), we have derived a Kadomtsev-Petviashili (KP) equation for dust ion acoustic waves (DIAWs) in a magnetized quantum dusty plasma. By using the bifurcation theory of planar dynamical systems to the KP equation, we have proved that our model has solitary wave solutions and periodic travelling wave solutions. We have derived two exact explicit solutions of the above travelling waves depending on different parameters.  相似文献   

14.
Linear and nonlinear propagation of dust drift waves are investigated in the presence of Cairns and Kappa distributed ion population and Boltzmannian electrons. It is found the frequency of the dust drift wave is greatest for the Cairns, intermediate for Kappa and the least for the Maxwellian distributed ions. Using the drift approximation, a nonlinear equation is derived for the dust drift shock waves which reduces to a Korteweg-de Vries-Burgers (KdVB)-like equation in the comoving frame of reference. The solution of the KdVB-like equation is obtained using the tanh method. It is found that the non-Maxwellian ion population, dust neutral collision frequency as well as the inverse dust density scale length inhomogeneity alter the propagation characteristics of the nonlinear dust drift shock waves. Interestingly, it is found that the non-Maxwellian ion population modifies the scale lengths over which the nonlinear structures are formed. The work presented here may be useful to understand the low frequency electrostatic shock waves in inhomogeneous dusty plasmas such as those found in planetary environments.  相似文献   

15.
The properties of ion-acoustic waves in steady-state, unmagnetized, dusty plasmas are analyzed using fluid equations. Two damping mechanisms are investigated. The “Tromsø damping” has been discussed in detail by researchers in Tromsø (Havnes et al., Phys. Scr.45, 491, 1992; Melandsø et al., J. geophys. Res.98, 13315, 1993) for dust-acoustic waves, and is related to the fact that a finite phase shift generally exists between the oscillation of the wave potential and the oscillation of the dust grains charge in the presence of the wave. The “creation damping” is due to the continuous injection of fresh ions into the plasma, to replace those which are lost to the dust grains. These fresh ions, produced by ionization of a neutral gas, do not share initially in the wave motion of the pre-existing ions, and thus lower the average momentum of the ion population.  相似文献   

16.
A new approach is considered to the problem of ionization of the inner comas of comets connected with two phenomena: meteor-like process due to cometary molecules — interplanetary meteoroids impacts and explosion-type process due to high-velocity collisions between cometary dust grains and interplanetary meteoroids. It is found that the efficiency of explosive ionization exceeds the efficiency of meteor ionization approximately 100 times. The explosive ionization may be possible mechanism for anomaly ionization of the inner comae of dusty comets like Halley 1986 III with the dust to gas production rate ratio more than 0.1.  相似文献   

17.
The problem of nonlinear localized dust acoustic (DA) is addressed in a plasma comprising positive ions, negative ions, and mobile negatively charged dust grains. We first consider the case when the grain charge remains constant and discuss later the case when the charge variations are self-consistently included. It is found that a relative increase of the positive ion density favors the propagation of the DA solitary waves, in the sense that the domain of their admissible Mach numbers enlarges. Furthermore, electronegativity makes the dust acoustic solitary structure more spiky. When the dust grain charge Q d is allowed to fluctuate, the latter is expressed in terms of the Lambert function and we take advantage of this transcendental function to investigate the variable charge DA solitary wave. Q d adopts a localized profile and becomes more negative as the number of charges Z (−) of the negative ion increases. The dust grains are found to be highly localized. This localization (accumulation) caused by a balance of the electrostatic forces acting on the dust grains becomes more effective for lower values of Z (−). An increase of Z (−) may lead to a local depletion of the negative ions from the region of the soliton’s localization. The results are useful to understand the salient features of localization of large amplitude dust acoustic waves in cosmic plasmas such as the ionospheric D-region and the mesosphere.  相似文献   

18.
A dust cloud of Ganymede has been detected by in situ measurements with the dust detector onboard the Galileo spacecraft. The dust grains have been sensed at altitudes below five Ganymede radii (Ganymede radius=2635 km). Our analysis identifies the particles in the dust cloud surrounding Ganymede by their impact direction, impact velocity, and mass distribution and implies that they have been kicked up by hypervelocity impacts of micrometeoroids onto the satellite's surface. We calculate the radial density profile of the particles ejected from the satellite by interplanetary dust grains. We assume the yields, mass and velocity distributions of the ejecta obtained from laboratory impact experiments onto icy targets and consider the dynamics of the ejected grains in ballistic and escaping trajectories near Ganymede. The spatial dust density profile calculated with interplanetary particles as impactors is consistent with the profile derived from the Galileo measurements. The contribution of interstellar grains as projectiles is negligible. Dust measurements in the vicinities of satellites by spacecraft detectors are suggested as a beneficial tool to obtain more knowledge about the satellite surfaces, as well as dusty planetary rings maintained by satellites through the impact ejecta mechanism.  相似文献   

19.
Ion waves excited by charged dust beams streaming across or along the geomagnetic field in the ionosphere may be generated by plasma instabilities during aerosol release experiments. The injection speed of the dust and gas is comparable to or larger than the ion thermal speed in the background plasma. The dust grains can get charged by plasma collection from the ambient ionosphere, and can thus act as a charged beam that excites instabilities in the background plasma. The theory is applied to relatively early time scales of the order of in the dust-gas cloud expansion, with wave frequencies that are larger than the ion gyrofrequency, and collisions with neutrals are included.  相似文献   

20.
For an unmagnetized multicomponent dusty plasma, the effects of non-thermal electron distribution, ion temperature and two oppositely charged dust grains are incorporated in the study of arbitrary amplitude solitary waves. An energy-like integral equation involving Sagdeev potential is derived, and the existence, formation and basic properties of solitons are studied. It is also found a definite interval for the Mach number for which solitary waves exist and depends sensitively upon the population of fast or non-thermal electrons present. Our results should be useful to understand the properties of localized electrostatic disturbances that may occur in space dusty plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号