首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Climate Data Records (CDRs) of Essential Climate Variables (ECVs) that are based on satellite observations need to be precisely described. In particular, when these products are delivered to end-users, the error characteristics information and how this information is obtained (e.g., through a validation process) need to be documented. Such validation information is intended to help end-users understanding to what extent the product is suitable for their specific applications. Based on how different European initiatives approached the validation of CDR and ECV products, we reviewed several aspects of the current validation practices. Based on the analysis of current practices, essentials of validation are discussed. A generic validation process is subsequently proposed, together with a quality indicator.  相似文献   

2.
ABSTRACT

The need and critical importance of global land cover and change information has been well recognized. Although rich collection of such information has been made available, the lack of necessary information services to support its easy access, analysis and validation makes it difficult to find, evaluate, select and reuse them through well-designed workflows. Aiming at promoting the development of the needed global land cover information services, this paper presents a conceptual framework for developing a Collaborative Global Land Cover Information Service (CoGland), followed by discussions on its implementation strategies. The framework supports connected and shared land cover and change web services around the world to address resource sharing, community service and cross-board collaboration needs. CoGland can benefit several recent international initiatives such as Future Earth, and many societal benefit areas. The paper further proposes that CoGland be developed within the framework of the Group on Earth Observations with the support of a number of key organizations such as the United Nations Expert Committee on Global Geospatial Information Management, the International Society for Photogrammetry and Remote Sensing, and International Society of Digital Earth. It is hoped that this paper can serve as a starting point for further discussions on CoGland developments.  相似文献   

3.
The discovery of and access to capacity building resources are often essential to conduct environmental projects based on Earth Observation (EO) resources, whether they are Earth Observation products, methodological tools, techniques, organizations that impart training in these techniques or even projects that have shown practical achievements. Recognizing this opportunity and need, the European Commission through two FP7 projects jointly with the Group on Earth Observations (GEO) teamed up with the Committee on Earth observation Satellites (CEOS). The Global Earth Observation CApacity Building (GEOCAB) portal aims at compiling all current capacity building efforts on the use of EO data for societal benefits into an easily updateable and user-friendly portal. GEOCAB offers a faceted search to improve user discovery experience with a fully interactive world map with all inventoried projects and activities. This paper focuses on the conceptual framework used to implement the underlying platform. An ISO19115 metadata model associated with a terminological repository are the core elements that provide a semantic search application and an interoperable discovery service. The organization and the contribution of different user communities to ensure the management and the update of the content of GEOCAB are addressed.  相似文献   

4.
刘一良  张景  王丝丝  苗晨  李晗  宋婉娟  张松梅 《遥感学报》2022,26(10):2106-2120
持续开展生态环境遥感监测对于认识和评估全球生态系统可持续性和人类生存环境状况具有重要的科学意义,是面向“推进生态文明建设”和“构建地球生命共同体”等目标和愿景,提升综合地球观测能力和应对全球生态环境挑战的务实行动。为此,中华人民共和国科学技术部国家遥感中心聚焦可持续发展、气候变化、防灾减灾和韧性城市等优先事项,通过政府部门、科研机构、国际组织和社会公众的协同,连续十年(2012年—2021年)发布和共享了“全球生态环境遥感监测年度报告”共29个专题报告和100余个遥感数据集。此项工作取得的成果包括:在遥感技术方法创新方面,基于国产高分辨率卫星和多源遥感影像,针对生态系统状况和人类活动痕迹的高精度遥感监测取得了一批具有自主知识产权的算法模型和数据产品;在人类生存环境认知方面,显著提升了公众对粮食安全、气候变化、城市扩展、土地退化和自然灾害风险等全球生态环境热点问题的科学认知;在生态环境重点区域方面,对“一带一路”、南极、非洲、东盟等典型区域开展精细化监测和评估。该项工作是中国作为地球观测组织GEO (Group on Earth Observations)联合主席国对国际社会的实质贡献,...  相似文献   

5.
In this paper, we present the service-oriented infrastructure within the Wide Area Grid project that was carried out within the Working Group on Information Systems and Services of the Committee on Earth Observation Satellites. The developed infrastructure integrates services and computational resources of several regional and national Grid systems: Ukrainian Academician Grid (with satellite data processing Grid segment, UASpaceGrid) and Grid system at the Center on Earth Observation and Digital Earth of Chinese Academy of Sciences. The study focuses on integrating geo-information services on flood mapping provided by Ukrainian and Chinese entities to benefit from information acquired from multiple sources. We also describe services for workflow automation and management in Grid environment and provide an example of workflow automation for generating flood maps from optical and synthetic-aperture radar satellite imagery. We also discuss issues of enabling trust for the infrastructure using certificates and reputation-based model. Applications of utilizing the developed infrastructure for operational flood mapping in Ukraine and China are given as well.  相似文献   

6.
ABSTRACT

When defining indicators on the environment, the use of existing initiatives should be a priority rather than redefining indicators each time. From an Information, Communication and Technology perspective, data interoperability and standardization are critical to improve data access and exchange as promoted by the Group on Earth Observations. GEOEssential is following an end-user driven approach by defining Essential Variables (EVs), as an intermediate value between environmental policy indicators and their appropriate data sources. From international to local scales, environmental policies and indicators are increasingly percolating down from the global to the local agendas. The scientific business processes for the generation of EVs and related indicators can be formalized in workflows specifying the necessary logical steps. To this aim, GEOEssential is developing a Virtual Laboratory the main objective of which is to instantiate conceptual workflows, which are stored in a dedicated knowledge base, generating executable workflows. To interpret and present the relevant outputs/results carried out by the different thematic workflows considered in GEOEssential (i.e. biodiversity, ecosystems, extractives, night light, and food-water-energy nexus), a Dashboard is built as a visual front-end. This is a valuable instrument to track progresses towards environmental policies.  相似文献   

7.
ABSTRACT

In 2015, it was adopted the 2030 Agenda for Sustainable Development to end poverty, protect the planet and ensure that all people enjoy peace and prosperity. The year after, 17 Sustainable Development Goals (SDGs) officially came into force. In 2015, GEO (Group on Earth Observation) declared to support the implementation of SDGs. The GEO Global Earth Observation System of Systems (GEOSS) required a change of paradigm, moving from a data-centric approach to a more knowledge-driven one. To this end, the GEO System-of-Systems (SoS) framework may refer to the well-known Data-Information-Knowledge-Wisdom (DIKW) paradigm. In the context of an Earth Observation (EO) SoS, a set of main elements are recognized as connecting links for generating knowledge from EO and non-EO data – e.g. social and economic datasets. These elements are: Essential Variables (EVs), Indicators and Indexes, Goals and Targets. Their generation and use requires the development of a SoS KB whose management process has evolved the GEOSS Software Ecosystem into a GEOSS Social Ecosystem. This includes: collect, formalize, publish, access, use, and update knowledge. ConnectinGEO project analysed the knowledge necessary to recognize, formalize, access, and use EVs. The analysis recognized GEOSS gaps providing recommendations on supporting global decision-making within and across different domains.  相似文献   

8.
ABSTRACT

Measuring the achievement of a sustainable development requires the integration of various data sets and disciplines describing bio-physical and socio-economic conditions. These data allow characterizing any location on Earth, assessing the status of the environment at various scales (e.g. national, regional, global), understanding interactions between different systems (e.g. atmosphere, hydrosphere, biosphere, geosphere), and modeling future changes. The Group on Earth Observations (GEO) was established in 2005 in response to the need for coordinated, comprehensive, and sustained observations related to the state of the Earth. GEO’s global engagement priorities include supporting the UN 2030 Agenda for Sustainable Development, the Paris Agreement on Climate, and the Sendai Framework for Disaster Risk Reduction. A proposition is made for generalizing and integrating the concept of EVs across the Societal Benefit Areas of GEO and across the border between Socio-Economic and Earth systems EVs. The contributions of the European Union projects ConnectinGEO and GEOEssential in the evaluation of existing EV classes are introduced. Finally, the main aim of the 10 papers of the special issue is shortly presented and mapped according to the proposed typology of SBA-related EV classes.  相似文献   

9.
Abstract

A strategy for the development of the Australian spatial information industry called ‘Spatially Enabling Australia’ has recently been developed by the Cooperative Research Centre for Spatial Information. It comprises three fundamental research programs and an integrated applications program. Research Program 1, ‘Positioning,’ underpins a full framework of continuous operating reference stations to ultimately enable all of continental Australia to be capable of real-time precise positioning services based on global navigation satellite systems. Research Program 2, ‘Automated Spatial Information Generation,’ addresses complex processing of multiple remote sensing sources. Research Program 3, ‘Spatial Infrastructures,’ helps form the foundation for development of an Australian Spatial Marketplace that will make accessible vast amounts of government held data under a new licensing and access regime which supports combination with user-generated content from the mass market. The three core programs are integrated with Program 4, ‘Applications,’ to support users from the Health, Defense and Security, Energy and Utilities, Urban Development, and Agriculture–Natural Resources–Climate Change sectors. Program 4 drives outputs from the three core research programs in sector-specific deployments for high impact. This will see a rapid acceleration of the use and value adding of information products and services that utilize spatial information. There are considerable research and development challenges that must be met in order to achieve the strategic outcomes.  相似文献   

10.
21世纪 ,人类面临着全球可持续发展 (SD)战略的信息社会 (SI)。航天 /外层空间 (Outer Space)科技的发展和计算机科技的发展 ,为可持续发展战略的信息社会提供了有力的监控工具。人们通过卫星可获取遥感 (RS)信息、属性 (DCS)信息、定位 (PSS)信息。通过通讯卫星系统 (SCS)传输信息 ,即遥信 (RI)。与航天 (外层空间 )相对应的地面 ,必需要有发射和接收信息的系统。无论在卫星上还是在地面上信息的输入、输出 ;信息的存取 ;信息的处理 ;信息的加工等等无一不是用计算机来进行的。地面上成熟的信息处理与加工技术可以搬到卫星上去。而所谓可持续发展的信息社会的监控系统无非是庞大的、超巨型的、非线性的、开放式的、多类别的、多层次的、多元的、高维的、动态的、复杂的信息网络系统。即天 (外层空间—航天 )地 (地球表面环境 )人 (人类社会及人类智能 )信息一体化的计算机网络系统。本文简要地反映了作者近几年来积累的科研成果。  相似文献   

11.
A digital earth platform for sustainability   总被引:1,自引:1,他引:0  
ABSTRACT

Based on the experience of the International Society for Digital Earth (ISDE), this paper describes some challenges foreseen in order to develop a Digital Earth platform that can support the implementation of the Sustainable Development Goals. The use of ready-to-use derived geospatial information is essential. Future Earth’s methodology of ‘co-design’ aims to bring together natural, social scientists and decision makers to plan and carry out research for sustainability. Sustainability implies transdisciplinary research, but in order for scientists of different disciplines to work together, they will need to be able to share, access and use common data. This is by far not simple! While the good will to share data might exist, the associated technological, ethical and privacy issues are difficult to solve. An adequate e-infrastructure will be required. ISDE could consider to use the SDGs is the basis to develop the desired Digital Earth platform. This paper, by no means, covers everything for a Digital Earth platform, it aims to trigger research discussions and to have a good view about a starting point.  相似文献   

12.
For ages, links between environment, climate and their impacts on human health have been observed and studied. Research to improve our understanding of environmental key determinants of infectious diseases can provide innovative information for adaptation strategies and lead to new tools optimizing surveillance, vector control measures, and disease prevention. As earth observation satellites can measure meteorological and environmental parameters, NASA and CNES have separately engaged in an innovative use of their earth observation infrastructure development programs: space tools addressing public health. As NASA and CNES have fruitful cooperation for satellite development missions for years, both health programs have proposed to explore a new area of collaboration: satellites addressing health issues. As members of international organizations, NASA and CNES could promote their common views towards the Group on Earth Observations (GEO) Community of Practice for Health & Environment and the Committee on Earth Observation Satellites (CEOS) Societal Benefit Area on Health.  相似文献   

13.
Abstract

Several innovative ‘participatory sensing’ initiatives are under way in East Africa. They can be seen as local manifestations of the global notion of Digital Earth. The initiatives aim to amplify the voice of ordinary citizens, improve citizens' capacity to directly influence public service delivery and hold local government accountable. The popularity of these innovations is, among other things, a local reaction to the partial failure of the millennium development goals (MDGs) to deliver accurate statistics on public services in Africa. Empowered citizens, with access to standard mobile phones, can ‘sense’ via text messages and report failures in the delivery of local government services. The public disclosure of these reports on the web and other mass media may pressure local authorities to take remedial action. In this paper, we outline the potential and research challenges of a ‘participatory sensing’ platform, which we call a ‘human sensor web.’ Digital Africa's first priority could be to harness continent-wide and national data as well as local information resources, collected by citizens, in order to monitor, measure and forecast MDGs.  相似文献   

14.
Abstract

This paper introduces a new concept, distributed geospatial information processing (DGIP), which refers to the process of geospatial information residing on computers geographically dispersed and connected through computer networks, and the contribution of DGIP to Digital Earth (DE). The DGIP plays a critical role in integrating the widely distributed geospatial resources to support the DE envisioned to utilise a wide variety of information. This paper addresses this role from three different aspects: 1) sharing Earth data, information, and services through geospatial interoperability supported by standardisation of contents and interfaces; 2) sharing computing and software resources through a GeoCyberinfrastructure supported by DGIP middleware; and 3) sharing knowledge within and across domains through ontology and semantic searches. Observing the long-term process for the research and development of an operational DE, we discuss and expect some practical contributions of the DGIP to the DE.  相似文献   

15.
Abstract

Digital Earth is an important field of information technology and a research frontier of geosciences in the 21st century. So far, the Grid computing technique is one of the best solutions for Digital Earth infrastructure. Digital Earth can only be realised through the interaction of people, heterogeneous computing resources, information systems, and instruments, all of which are geographically and organisationally dispersed. Earth observation (EO) includes information acquisition, processing and applications. Information acquisition provides a vast amount of spatial data for building the fabric resource infrastructure. Information processing means that spatial information processing middleware is used with large amounts of secure Grid computing resources for real-time processing of all kinds of spatial data. We are currently working on the development of core-middleware for EO data processing and applications for the Digital Earth Prototype System, which is available in the Institute of Remote Sensing Applications (IRSA), Chinese Academy of Sciences (CAS) The further results will be available soon.  相似文献   

16.
ABSTRACT

Global, fast and accessible monitoring of biodiversity is one of the main pillars of the efforts undertaken in order to revert it loss. The Group on Earth Observations Biodiversity Observation Network (GEO-BON) provided an expert-based definition of the biological properties that should be monitored, the Essential Biodiversity Variables (EBVs). Initiatives to provide indicators for EBVs rely on global, freely available remote sensing (RS) products in combination with empirical models and field data, and are invaluable for decision making. In this study, we provide alternatives for the expansion and improvement of the EBV indicators, by suggesting current and future data from the European Space Agencýs COPERNICUS and explore the potential of RS-integrated Dynamic Global Vegetation Models (DGVMs) for the estimation of EBVs. Our review found that mainly due to the inclusion of the Sentinel constellation, Copernicus products have similar or superior potential for EBV indicator estimation in relation to their NASA counterparts. DGVMs simulate the ecosystem level EBVs (ecosystem function and structure), and when integrated with remote sensing data have great potential to not only offer improved estimation of current states but to provide projection of ecosystem impacts. We suggest that focus on producing EBV relevant outputs should be a priority within the research community, to support biodiversity preservation efforts.  相似文献   

17.
This paper summarizes our work on building a data model and a geovisualization tool that provides access to global climate data: the Global Climate Monitor Web Viewer. Linked to this viewer, a complete set of climate-environmental indicators capable of displaying climate patterns on a global scale that is accessible to any potential user (scientists and laypeople) will be built and published using the same online application. The data currently available correspond to the CRU TS3.21 version of the Climate Research Unit (University of East Anglia) database – a product that provides data at a spatial resolution of half of a degree in latitude and longitude, spanning January 1901 to December 2012, on a monthly basis. Since January 2013, the datasets feeding the system have been the GHCN-CAMS temperature dataset and the Global Precipitation Climatology Centre (GPCC) First Guess precipitation dataset. Climatologists, hydrologists, planners and non-experts users such as media workers, policymakers, non-profit organizations, teachers or students, can access useful climatological information through the Global Climate Monitor system.  相似文献   

18.

Background  

Developing countries that are willing to participate in the recently adopted (16th Session of the Conference of Parties (COP) in Cancun) mitigation mechanism of Reducing emissions from Deforestation and Forest Degradation - and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks (REDD+) - will have to establish a national forest monitoring system in order to assess anthropogenic forest-related greenhouse gas emissions by sources and removals by sinks. Such a system should support the Measurement, Reporting and Verification (MRV) requirement of the United Nations Framework Convention on Climate Change (UNFCCC) as the REDD+ mechanism is results-based. A national forest inventory (NFI) is one potential key component of such an MRV system. Following the Decision adopted during the 15th Session of the COP in Copenhagen, the most recent Intergovernmental Panel on Climate Change (IPCC) Guidance and Guidelines should be used as a basis for estimating anthropogenic forest-related greenhouse gas emissions by sources and removals by sinks and changes in forest carbon stocks and area.  相似文献   

19.
A new generation of Earth gravity field models called GGM02 are derived using approximately 14 months of data spanning from April 2002 to December 2003 from the Gravity Recovery And Climate Experiment (GRACE). Relative to the preceding generation, GGM01, there have been improvements to the data products, the gravity estimation methods and the background models. Based on the calibrated covariances, GGM02 (both the GRACE-only model GGM02S and the combination model GGM02C) represents an improvement greater than a factor of two over the previous GGM01 models. Error estimates indicate a cumulative error less than 1 cm geoid height to spherical harmonic degree 70, which can be said to have met the GRACE minimum mission goals. Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

20.
在数字地球GlobeSIGht系统中,统计分析不同采集时间尺度的4个系统日志,得出了影像数据瓦片请求均符合幂律分布中的Zipf-like分布的结论。该结论有助于数字地球系统在诸如影像数据存储分布和缓存等方面的性能优化设计和分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号