首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
空间三维滑坡敏感性分区工具及其应用   总被引:1,自引:0,他引:1  
对于滑坡敏感性分区目前有三种方法:定性法、统计法和基于岩土定量模型的确定性方法。定性法基于对滑坡敏感性或灾害评估的人为判断;统计法用一个来源于结合了权重因子的预测函数或指标;而确定性法,或者说是物理定量模型法以质量、能量和动量守恒定律为基础。二维确定性模型广泛用于土木工程设计,而无限边坡模型(一维)也用于滑坡灾害分区的确定性模型。文中提出了一个新的基于GIS(地理信息系统)的滑坡敏感性分区系统,这个系统可用于从复杂地形中确认可能的危险三维(3-D)滑坡体。所有与滑坡相关的空间数据(矢量或栅格数据)都被集成到这个系统中。通过把研究区域划分为边坡单元并假定初始滑动面是椭球的下半部分,并使用Monte Carlo随机搜索法,三维滑坡稳定性分析中的三维最危险滑面是三维安全系数最小的地方。使用近似方法假定有效凝聚力、有效摩擦角和三维安全系数服从正态分布,可以计算出滑坡失稳概率。3DSlopeGIS是一个计算机程序,它内嵌了GIS Developer kit(ArcObjects of ESRI)来实现GIS空间分析功能和有效的数据管理。应用此工具可以解决所有的三维边坡空间数据解问题。通过使用空间分析、数据管理和GIS的可视化功能来处理复杂的边坡数据,三维边坡稳定性问题很容易用一个友好的可视化图形界面来解决。将3DSlopeGIS系统应用到3个滑坡敏感性分区的实例中:第一个是一个城市规划项目,第二个是预测以往滑坡灾害对临近区域可能的影响,第三个则是沿着国家主干道的滑坡分区。基于足够次数的Monte Carlo模拟法,可以确认可能的最危险滑坡体。这在以往的传统边坡稳定性分析中是不可能的。  相似文献   

2.
基于灰色关联度模型的区域滑坡敏感性评价   总被引:2,自引:0,他引:2       下载免费PDF全文
数理统计和机器学习模型如支持向量机(support vector machine,SVM)等,在区域滑坡敏感性评价中得到广泛的应用.但这些模型的建模过程往往较复杂,如在对机器学习进行训练和测试时难以选取合理的非滑坡栅格单元,而且有较多的模型参数需要确定.为提高滑坡敏感性评价建模的效率和精度,提出基于灰色关联度的敏感性评价模型.灰色关联度模型能有效计算各比较样本与参考样本之间的定量的关联度,具有建模过程简洁和评价精度高的优点,该模型目前在区域滑坡敏感性评价中的应用还没有引起研究人员的足够关注且有待进一步拓展.拟将灰色关联度模型用于浙江省飞云江流域南田—雅梅图幅(南田地区)的滑坡敏感性评价,并将得到的评价结果与SVM模型的敏感性评价结果作对比分析.结果显示,灰色关联度模型在高和极高敏感区的滑坡预测精度优于SVM模型,而在中等敏感区的滑坡预测精度略低于SVM模型;整体而言,灰色关联度模型对整个南田地区滑坡敏感性分布的预测精度略高于SVM模型.对两个模型建模过程的对比结果显示,灰色关联度模型建模较简单,具有比SVM模型更高的建模效率,为滑坡敏感性评价提供了一种新思路.  相似文献   

3.
Statistical models are one of the most preferred methods among many landslide susceptibility assessment methods. As landslide occurrences and influencing factors have spatial variations, global models like neural network or logistic regression (LR) ignore spatial dependence or autocorrelation characteristics of data between the observations in susceptibility assessment. However, to assess the probability of landslide within a specified period of time and within a given area, it is important to understand the spatial correlation between landslide occurrences and influencing factors. By including these relations, the predictive ability of the developed model increases. In this respect, spatial regression (SR) and geographically weighted regression (GWR) techniques, which consider spatial variability in the parameters, are proposed in this study for landslide hazard assessment to provide better realistic representations of landslide susceptibility. The proposed model was implemented to a case study area from More and Romsdal region of Norway. Topographic (morphometric) parameters (slope angle, slope aspect, curvature, plan, and profile curvatures), geological parameters (geological formations, tectonic uplift, and lineaments), land cover parameter (vegetation coverage), and triggering factor (precipitation) were considered as landslide influencing factors. These influencing factors together with past rock avalanche inventory in the study region were considered to obtain landslide susceptibility maps by using SR and LR models. The comparisons of susceptibility maps obtained from SR and LR show that SR models have higher predictive performance. In addition, the performances of SR and LR models at the local scale were investigated by finding the differences between GWR and SR and GWR and LR maps. These maps which can be named as comparison maps help to understand how the models estimate the coefficients at local scale. In this way, the regions where SR and LR models over or under estimate the landslide hazard potential were identified.  相似文献   

4.
Landslides lead to a great threat to human life and property safety. The delineation of landslide-prone areas achieved by landslide susceptibility assessment plays an important role in landslide management strategy. Selecting an appropriate mapping unit is vital for landslide susceptibility assessment. This paper compares the slope unit and grid cell as mapping unit for landslide susceptibility assessment. Grid cells can be easily obtained and their matrix format is convenient for calculation. A slope unit is considered as the watershed defined by ridge lines and valley lines based on hydrological theory and slope units are more associated with the actual geological environment. Using 70% landslide events as the training data and the remaining landslide events for verification, landslide susceptibility maps based on slope units and grid cells were obtained respectively using a modified information value model. ROC curve was utilized to evaluate the landslide susceptibility maps by calculating the training accuracy and predictive accuracy. The training accuracies of the grid cell-based susceptibility assessment result and slope unit-based susceptibility assessment result were 80.9 and 83.2%, and the prediction accuracies were 80.3 and 82.6%, respectively. Therefore, landslide susceptibility mapping based on slope units performed better than grid cell-based method.  相似文献   

5.
Oguz  Emir Ahmet  Depina  Ivan  Thakur  Vikas 《Landslides》2022,19(1):67-83

Uncertainties in parameters of landslide susceptibility models often hinder them from providing accurate spatial and temporal predictions of landslide occurrences. Substantial contribution to the uncertainties in landslide assessment originates from spatially variable geotechnical and hydrological parameters. These input parameters may often vary significantly through space, even within the same geological deposit, and there is a need to quantify the effects of the uncertainties in these parameters. This study addresses this issue with a new three-dimensional probabilistic landslide susceptibility model. The spatial variability of the model parameters is modeled with the random field approach and coupled with the Monte Carlo method to propagate uncertainties from the model parameters to landslide predictions (i.e., factor of safety). The resulting uncertainties in landslide predictions allow the effects of spatial variability in the input parameters to be quantified. The performance of the proposed model in capturing the effect of spatial variability and predicting landslide occurrence has been compared with a conventional physical-based landslide susceptibility model that does not account for three-dimensional effects on slope stability. The results indicate that the proposed model has better performance in landslide prediction with higher accuracy and precision than the conventional model. The novelty of this study is illustrating the effects of the soil heterogeneity on the susceptibility of shallow landslides, which was made possible by the development of a three-dimensional slope stability model that was coupled with random field model and the Monte Carlo method.

  相似文献   

6.
To prepare a landslide susceptibility map is essential to identify hazardous regions, construct appropriate mitigation facilities, and plan emergency measures for a region prone to landslides triggered by rainfall. The conventional mapping methods require much information about past landslides records and contributing terrace and rainfall. They also rely heavily on the quantity and quality of accessible information and subjectively of the map builder. This paper contributes to a systematic and quantitative assessment of mapping landslide hazards over a region. Geographical Information System is implemented to retrieve relevant parameters from data layers, including the spatial distribution of transient fluid pressures, which is estimated using the TRIGRS program. The factor of safety of each pixel in the study region is calculated analytically. Monte Carlo simulation of random variables is conducted to process the estimation of fluid pressure and factor of safety for multiple times. The failure probability of each pixel is thus estimated. These procedures of mapping landslide potential are demonstrated in a case history. The analysis results reveal a positive correlation between landslide probability and accumulated rainfall. This approach gives simulation results compared to field records. The location and size of actual landslide are well predicted. An explanation for some of the inconsistencies is also provided to emphasize the importance of site information on the accuracy of mapping results.  相似文献   

7.
Xie  Mowen  Esaki  Tetsuro  Zhou  Guoyun 《Natural Hazards》2004,33(2):265-282
Based on a new Geographic Information Systems (GIS) grid-basedthree-dimensional (3-D) deterministic model and taking the slopeunit as the mapping unit, this study maps landslide hazard usingthe 3-D safety factor index and failure probability. Assuming theinitial slip to be the lower part of an ellipsoid, the 3-D critical slipsurface in the 3-D slope stability analysis is located by minimizingthe 3-D safety factor using the Monte Carlo random simulation.The failure probability of the landslide is calculated using anapproximate method in which the distributions of c, andthe 3-D safety factor are assumed to be in normal distribution.The method has been applied to a case study on three-dimensionallyand probabilistically mapping landslide hazard.  相似文献   

8.
开展铁路沿线滑坡易发性评价对川藏交通廊道工程建设及运维过程中的风险管理具有重要意义.提出一种层数自适应、通道加权的卷积神经网络(layer adaptive weighted convolutional neural network,LAW-CNN),对川藏交通廊道沿线滑坡易发性进行评价.依据野外调查和影响因素分析筛选出影响滑坡发生的影响因子,绘制滑坡编目,构造用于易发性评价的实验数据集;针对卷积神经网络的权重初值、网络层数等超参数难以优化设置的问题,提出基于影响因子信息熵的通道加权方法和网络层数优选策略,通过多通道加权和层数自适应分类卷积的方式提出滑坡易发性制图的LAW-CNN架构;搜索最优LAW-CNN网络结构并训练网络参数,获取研究区滑坡发生概率并进行易发性分级评价.所提的LAW-CNN模型可以不同权重和不同深度挖掘影响因子的深层特征,实验结果表明,模型曲线下面积(area under curve,AUC)值为0.852 8,极高易发区滑坡点密度为1.251 9,均优于SVM(support vector machine)和CNN模型;川藏交通廊道沿线滑坡极高和高易发区主要集中在大江大河两侧以及横断山区.LAW-CNN模型可较好评价川藏交通廊道滑坡易发性,能够为川藏交通廊道的建设和灾害防治提供科学的依据.   相似文献   

9.
Generally, pixels are the basic unit for assessment of landslide susceptibility. However, even if the results facilitate the comparison, a pixel-based analysis does not clearly illustrate the distribution relationships. To eliminate this deficiency, the concept of the Landslide Response Unit (LRU) is proposed in this study, for which adjacent pixels that have similar properties are combined as a basic unit for susceptibility assessment. The Subao River basin, seriously impacted by the Wenchuan Earthquake, was selected as the study area, and three factors including slope gradient, slope aspect, and slope shape, which have a significant impact on landslides, were chosen to divide the basin into 25,984 LRUs. Then topographic, geologic, and distance factors were applied for the landslide susceptibility evaluation. The logistic regression method was used to establish the susceptibility assessing model by analyzing 2,000 susceptible LRUs and 2,000 un-susceptible LRUs. The model accuracy was defined in terms of the ROC curve value and the κ value, 0.531 and 0.84, respectively. The susceptibility of landslides was divided into low, moderate, high, and very high in Subao River basin, and 73% of historical landslides and all four new landslides are in the highly susceptible zone and very highly susceptible zones. Finally, the LRUs with houses, farmlands, and roads prone to sliding and burial hazard were assessed separately. On the basis of considering the potential movement directions of the LRUs, the result found that 1,001 and 835 LRUs probably would be destroyed by slope sliding and landslide burial, respectively.  相似文献   

10.
栗泽桐  王涛  周杨  刘甲美  辛鹏 《现代地质》2019,33(1):235-245
滑坡易发性定量评估是预测滑坡发生空间概率的重要手段,基于统计分析原理的评估方法目前在国内外应用最为广泛,且不同评估方法的对比研究逐渐成为热点。以青海沙塘川流域黄土梁峁区为例,剖析了信息量模型和逻辑回归模型在滑坡易发性评估中的优越性和局限性,并探索提出基于二者的耦合模型。考虑坡度、坡向、起伏度、岩性、与干流距离、与支流距离和植被指数等7个影响因素,对比分析了基于信息量、逻辑回归及二者耦合模型的滑坡易发性评估的技术流程及结果。3种模型的成功率分别为:耦合模型成功率(78. 9%)>信息量模型成功率(71. 8%)>逻辑回归模型成功率(70. 8%)。在沙塘川流域黄土滑坡的易发性评估中,信息量和逻辑回归模型的表现基本相当,但信息量-逻辑回归耦合模型的成功率明显提升。该研究结果可为黄土高原区滑坡易发性定量评估提供借鉴。  相似文献   

11.
We present the methodologies adopted and the outcomes obtained in the analysis of landslide risk in the basin of the Arno River (Central Italy) in the framework of a project sponsored by the Basin Authority of the Arno River, started in the year 2002 and completed at the beginning of 2005. In particular, a complete set of methods and applications for the assessment of landslide susceptibility and risk are described and discussed. A new landslide inventory of the whole area was realized, using conventional (aerial-photo interpretation and field surveys) and non-conventional methods (e.g. remote sensing techniques such as DInSAR and PS-InSAR). The great majority of the mapped mass movements are rotational slides (75%), solifluctions and other shallow slow movements (17%) and flows (5%), while soil slips, and other rapid landslides, seem less frequent everywhere within the basin. The relationships between landslide characteristics and environmental factors have been assessed through statistical analysis. As expected, the results show a strong control of land cover, lithology and morphology on landslide occurrence. The landslide frequency-size distribution shows a typical scaling behaviour already underlined in other landslide inventories worldwide. The assessment of landslide hazard in terms of probability of occurrence in a given time, based for mapped landslides on direct and indirect observations of the state of activity and recurrence time, has been extended to landslide-free areas through the application of statistical methods implemented in an artificial neural network (ANN). Unique conditions units (UCU) were defined by the map overlay of landslide preparatory factors (lithology, land cover, slope gradient, slope curvature and upslope contributing area) and afterwards used to construct a series of model vectors for the training and test of the ANN. Various different ANNs were selected throughout the basin, until each UCU was assigned a degree of membership to a susceptibility and a hazard class. Model validation confirms that prediction results are very good, with an average percentage of correctly recognized mass movements of about 85%. The analysis also revealed the existence of a large number of unmapped mass movements, thus contributing to the completeness of the final inventory. Temporal hazard was estimated via the translation of state of activity in recurrence time and hence probability of occurrence. The following intersection of hazard values with vulnerability and exposure figures, obtained by reclassification of digital vector mapping at 1:10,000 scale, lead to the definition of risk values for each terrain unit for different periods of time into the future. The final results of the research are now undergoing a process of integration and implementation within land planning and risk prevention policies and practices at local and national level.  相似文献   

12.
A landslide susceptibility assessment for İzmir city (Western Turkey), which is the third biggest city of Turkey, was performed by a logistic regression method. A database of landslide characteristics was prepared using detailed field surveys. The major landslides in the study area are generally observed in the field, dominated by weathered volcanics, and 39.63% of the total landslide area is in this unit. The parameters of lithology, slope gradient, slope aspect, distance to drainage, distance to roads and distance to fault lines were used as variables in the logistic regression analysis. The effect of each parameter on landslide occurrence was assessed from the corresponding coefficients that appear in the logistic regression function. On the basis of the obtained coefficients, lithology plays the most important role in determining landslide occurrence and distribution. Slope gradient has a more significant effect than the other geomorphological parameters, such as slope aspect and distance to drainage. Using a predicted map of probability, the study area was classified into five categories of landslide susceptibility: very low, low, moderate, high and very high. Whereas 49.65% of the total study area has very low susceptibility, very high susceptibility zones make up 11.69% of the area.  相似文献   

13.
Landslide susceptibility zonation mapping is a fundamental procedure for geo-disaster management in tropical and sub-tropical regions. Recently, various landslide susceptibility zonation models have been introduced in Nepal with diverse approaches of assessment. However, validation is still a problem. Additionally, the role of various predisposing causative parameters for landslide activity is still not well understood in the Nepal Himalaya. To address these issues of susceptibility zonation and landslide activity, about 4,000 km2 area of central Nepal was selected for regional-scale assessment of landslide activity and susceptibility zonation mapping. In total, 655 new landslides and 9,229 old landslides were identified with the study area with the help of satellite images, aerial photographs, field data and available reports. The old landslide inventory was “blind landslide database” and could not explain the particular rainfall event responsible for the particular landslide. But considering size of the landslide, blind landslide inventory was reclassified into two databases: short-duration high-intensity rainfall-induced landslide inventory and long-duration low-intensity rainfall-induced landslide inventory. These landslide inventory maps were considered as proxy maps of multiple rainfall event-based landslide inventories. Similarly, all 9,884 landslides were considered for the activity assessment of predisposing causative parameters. For the Nepal Himalaya, slope, slope aspect, geology and road construction activity (anthropogenic cause) were identified as most affective predisposing causative parameters for landslide activity. For susceptibility zonation, multivariate approach was considered and two proxy rainfall event-based landslide databases were used for the logistic regression modelling, while a relatively recent landslide database was used in validation. Two event-based susceptibility zonation maps were merged and rectified to prepare the final susceptibility zonation map and its prediction rate was found to be more than 82 %. From this work, it is concluded that rectification of susceptibility zonation map is very appropriate and reliable. The results of this research contribute to a significant improvement in landslide inventory preparation procedure, susceptibility zonation mapping approaches as well as role of various predisposing causative parameters for the landslide activity.  相似文献   

14.
The purpose of this study is the development, application, and assessment of probability and artificial neural network methods for assessing landslide susceptibility in a chosen study area. As the basic analysis tool, a Geographic Information System (GIS) was used for spatial data management and manipulation. Landslide locations and landslide-related factors such as slope, curvature, soil texture, soil drainage, effective thickness, wood type, and wood diameter were used for analyzing landslide susceptibility. A probability method was used for calculating the rating of the relative importance of each factor class to landslide occurrence. For calculating the weight of the relative importance of each factor to landslide occurrence, an artificial neural network method was developed. Using these methods, the landslide susceptibility index (LSI) was calculated using the rating and weight, and a landslide susceptibility map was produced using the index. The results of the landslide susceptibility analysis, with and without weights, were confirmed from comparison with the landslide location data. The comparison result with weighting was better than the results without weighting. The calculated weight and rating can be used to landslide susceptibility mapping.  相似文献   

15.
滑坡是沙溪流域主要地质灾害类型之一,开展滑坡灾害易发性评价可为区域地质灾害防治提供数据基础和决策依据。通过沙溪流域生态地质调查,分析了滑坡灾害分布规律和影响因素之间的关系,选取岩性建造、地貌、坡度、坡向、降雨量、距河流距离和距断层距离7项指标,利用层次分析法及地理信息系统空间分析技术,开展沙溪流域滑坡地质灾害易发性评价。结果显示: 沙溪流域滑坡易发性影响因子依次为岩性建造、多年年均降水量、地形地貌、坡度、距河流距离、距断层距离和坡向; 沙溪流域滑坡灾害易发性与坡度、岩性建造、年均降水量表现出明显正相关,即坡度越大、岩性建造性质越软弱、越易风化,年均降水量越多,越易引发滑坡灾害; 滑坡灾害易发性与断裂构造、河流距离与滑坡灾害易发性呈负相关,即距离越近越容易诱发地质灾害; 流域整体以低易发区和极低易发区为主,高易发区主要分布在沙溪流域中南部、东部及东北部地区。这为沙溪流域地质灾害防治提供了基础数据和决策依据。  相似文献   

16.
17.
Sánchez  Y.  Martínez-Graña  A.  Santos-Francés  F.  Yenes  M. 《Natural Hazards》2018,90(3):1407-1426
The random forest method was used to generate susceptibility maps for debris flows, rock slides, and active layer detachment slides in the Donjek River area within the Yukon Alaska Highway Corridor, based on an inventory of landslides compiled by the Geological Survey of Canada in collaboration with the Yukon Geological Survey. The aim of this study is to develop data-driven landslide susceptibility models which can provide information on risk assessment to existing and planned infrastructure. The factors contributing to slope failure used in the models include slope angle, slope aspect, plan and profile curvatures, bedrock geology, surficial geology, proximity to faults, permafrost distribution, vegetation distribution, wetness index, and proximity to drainage system. A total of 83 debris flow deposits, 181 active layer detachment slides, and 104 rock slides were compiled in the landslide inventory. The samples representing the landslide free zones were randomly selected. The ratio of landslide/landslide free zones was set to 1:1 and 1:2 to examine the results of different sample ratios on the classification. Two-thirds of the samples for each landslide type were used in the classification, and the remaining 1/3 were used to evaluate the results. In addition to the classification maps, probability maps were also created, which served as the susceptibility maps for debris flows, rock slides, and active layer detachment slides. Success and prediction rate curves created to evaluate the performance of the resulting models indicate a high performance of the random forest in landslide susceptibility modelling.  相似文献   

18.
Landslide susceptibility assessment is a major research topic in geo-disaster management. In recent days, various landslide susceptibility and landslide hazard assessment methodologies have been introduced with diverse thoughts of assessment and validation method. Fundamentally, in landslide susceptibility zonation mapping, the susceptibility predictions are generally made in terms of likelihoods and probabilities. An overview of landslide susceptibility zoning practices in the last few years reveals that susceptibility maps have been prepared to have different accuracies and reliabilities. To address this issue, the work in this paper focuses on extreme event-based landslide susceptibility zonation mapping and its evaluation. An ideal terrain of northern Shikoku, Japan, was selected in this study for modeling and event-based landslide susceptibility mapping. Both bivariate and multivariate approaches were considered for the zonation mapping. Two event-based landslide databases were used for the susceptibility analysis, while a relatively new third event landslide database was used in validation. Different event-based susceptibility zonation maps were merged and rectified to prepare a final susceptibility zonation map, which was found to have an accuracy of more than 77 %. The multivariate approach was ascertained to yield a better prediction rate. From this study, it is understood that rectification of susceptibility zonation map is appropriate and reliable when multiple event-based landslide database is available for the same area. The analytical results lead to a significant understanding of improvement in bivariate and multivariate approaches as well as the success rate and prediction rate of the susceptibility maps.  相似文献   

19.
分析了滑坡灾害风险评估的基本方法,通过西五路工程实例介绍滑坡灾害风险评估的基本步骤:(1)全面勘察该地区地理地质环境,包括滑坡各项性质及该地区地面设施和人员分布。(2)进行危险性和易损性分析,包括计算滑坡稳定性和滑坡失稳概率。(3)在危险性和易损性分析基础上进行期望损失分析。  相似文献   

20.
Landslide susceptibility is the likelihood of a landslide occurrence in an area predicted on the basis of local terrain conditions. Since last few years, researchers have attempted to analyse the probability of landslide occurrences and introduced different methods of landslide susceptibility assessment. The objective of this paper is to assess the landslide susceptibility in parts of the Darjeeling Himalayas using a relatively simple bivariate statistical technique. Seven factor layers with 24 categories, responsible for landslide occurrences in this area, are prepared from Cartosat and Resourcesat — 1 LISS-IV MX data. Each category was given a weight using the Information Value Method. Weighted sum of these values were used to prepare a landslide susceptibility map. The result shows that 8% area was predicted for high, 32% for moderate and remaining 60% for low landslide susceptibility zones. The high value (0.89) of the area under the receiver operating characteristic curve showed the high accuracy of the prediction model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号