共查询到19条相似文献,搜索用时 0 毫秒
1.
We describe a numerical forecast system designed for prediction of physical and biological dynamics of a coastal inlet. It is based on a coastal ocean observatory that was located at Lunenburg Bay, Nova Scotia, Canada. Biological, chemical, optical, and physical measurements were collected from instrumented moorings, weekly sampling and detailed surveys from 2002 through 2007. Here we present a framework for calibration and evaluation of an ecosystem model using data from the summer of 2007. A three-dimensional hydrodynamic model was coupled to a simple biological (Nutrients-Phytoplankton-Detritus) model; a simple model was used so results could be compared directly to observed biological and chemical variables using skill scores as a first step toward data-assimilation modeling. As a complement to this analysis, variability of model output, e.g., the nutrient limitation term, was examined to understand the modeled biological response to the simulated physical environment. Skill scores based on variances in observed and simulated time-series of biological components were also investigated. Coastal upwelling/downwelling simulated through this model has been found to increase modeled biological activity in the bay. Also model skill in reproducing the observed patterns in nutrients and phytoplankton has been increased due to the restoring conditions for biology set up at the open ocean boundaries of the bay. 相似文献
2.
3.
A set of 61 normal modes with periods between 7.8 and 133.1 h has been calculated, using a 1° model of the global ocean, including
the Arctic Ocean. The model explicitly considers frictional forces and ocean self-attraction and loading effects. The latter
effects have generally been taken into account by parameterization, but for some modes the effects have also been considered
fully. Due to friction, the computed eigenfrequencies are complex, exhibiting also the varying dissipative properties of the
modes and their dependence on the distribution of potential and kinetic energies over the oceanic regions. In detail, gravity
modes having periods less then 80 h and dominating the semi-diurnal and the diurnal tides, topographically controlled vorticity
modes with periods longer than diurnal, and two planetary vorticity modes with periods of 96.8 and 119.4 h have been identified.
These planetary vorticity modes have their energies distributed over Pacific, Atlantic, and Indian Oceans, while the other
modes with periods longer than 80 h, as vorticity modes, have their energies concentrated on topographic structures of restricted
extension. The modes are discussed with respect to their wave properties, e.g., concerning quasi-standing-wave resonances
and to the appearance of Kelvin waves of different orders and trapped by different coastlines. In particular, the relevance
of specific modes for the development of the fields of the most important semi-diurnal and diurnal tidal constituents is investigated. 相似文献
4.
Global ocean circulation models usually lack an adequate consideration of high-latitude processes due to a limited model domain
or insufficient resolution. Without the processes in key areas of the global thermohaline circulation, the characteristics
and flow of deep and bottom waters cannot be modeled realistically. In this study, a high-resolution (~20 km) ocean model
focused on the Weddell Sea sector of the Southern Ocean is combined with a low-resolution (2° × 2°) global ocean model applying the state estimation technique. Temperature, salinity, and velocity data on two Weddell Sea
sections from the regional model are used as constraints for the large-scale model in addition to satellite altimetry and
sea-surface temperatures. The differences between the model with additional constraints and without document that the Weddell
Sea circulation exerts significant influence on the course of the Antarctic Circumpolar Current with consequences for Southern
Ocean water mass characteristics and the spreading of deep and bottom waters in the South Atlantic. Furthermore, a warming
trend in the period 1993–2001 was found in the Weddell Sea and adjacent basins in agreement with float measurements in the
upper Southern Ocean. Teleconnections to the North Atlantic are suggested but need further studies to demonstrate their statistical
significance. 相似文献
5.
One of the main challenges of the Copernicus Marine Service is the implementation of coupled ocean/waves systems that accurately estimate the momentum and energy fluxes provided by the atmosphere to the ocean. This study aims to investigate the impact of forcing the Nucleus for European Modelling of the Ocean (NEMO) ocean model with forecasts from the wave model of Météo-France (MFWAM) to improve classical air-sea flux parametrizations, these latter being mostly driven by the 10-m wind. Three wave-related processes, namely, wave-state-dependent stress, Stokes drift-related effects (Stokes-Coriolis force, Stokes drift advection on tracers and on mass), and wave-state-dependent surface turbulence, are examined at a global scale with a horizontal resolution of 0.25°. Three years of sensitivity simulations (2014–2016) show positive feedback on sea surface temperature (SST) and currents when the wave model is used. A significant reduction in SST bias is observed in the tropical Atlantic Ocean. This is mainly due to the more realistic momentum flux provided by the wave model. In mid-latitudes, the most interesting impact occurs during the summer stratification, when the wind is low and the wave model produces a reduction in the turbulence linked with wave breaking. Magnitudes of the large-scale currents in the equatorial region are also improved by 10% compared to observations. In general, it is shown that using the wave model reduces on average the momentum and energy fluxes to the ocean in tropical regions, but increases them in mid-latitudes. These differences are in the order of 10 to 20% compared with the classical parametrizations found in stand-alone ocean models. 相似文献
6.
Insight regarding the mean and eddy motion in the Skagerrak/northern North Sea area is gained through an analysis of model-simulated currents, hydrography, kinetic energy and relative vorticity for the 2 years 2000 and 2001. In this a -coordinate ocean model is used. Since the tidal currents are generally strong in the area, care is exercised to distinguish the mesoscale (eddy) motion from higher-frequency motion such as tides, before computing the mean and eddy kinetic energy. The model-simulated response is first compared with available knowledge of the circulation in the area, and when available, also with sea-surface temperature obtained from satellite imagery. It is concluded that the model appears to faithfully reproduce most of what is known, in particularly the upper mixed layer circulation. An analysis of the mean and eddy kinetic energy reveals that many of the mesoscale structures found in the area are recurrent. This is particularly true for the structures off the southern tip of Norway. Also in general, areas of strong mean and eddy kinetic energy are co-located. The exception is the area off the southern tip of Norway, where the eddy kinetic energy is much larger than its mean counterpart. An analysis of the relative vorticity reveals that the variability found is due to the occurrence of recurrent anticyclonic eddies. It is hypothesized that these eddies are generated due to an offshore veering of the Norwegian coastal current (NCC) as it reaches the eastern end of the Norwegian Trench plateau. Here it becomes a free jet, which is then vulnerable to either barotropic instability caused by the horizontal shear in the jet-like structure of the NCC at this point, or a baroclinic (frontal) instability. The latter may come into play when the NCC veers offshore and its relatively fresh water meets the inflowing saline water of Atlantic origin, a frontogenesis that may become strong enough for cyclogenesis to take place. Due to the depth-independent nature of the model-generated eddies, the barotropic instability is the most likely candidate. It remains to resolve the reason for the offshore veering of the NCC. The most likely candidate mechanisms are vortex squeezing or simply that the coastline curvature is large enough for the NCC to separate from the coast in a hydraulic sense.Responsible Editor: Phil Dyke 相似文献
7.
Separating effects of climate change (ΔQc) and human activity (ΔQh) on stream discharge at the watershed scale is needed for developing adaptive measures to climate change. However, information is scarce in existing literature regarding whether such separating is feasible and whether reliable results can be produced. The objectives of this overview were to: (1) compare currently-used methods; (2) assess assumptions and issues of the methods; and (3) present a generic framework that overcomes possible issues. Based on the overview of fifteen recent representative studies, two methods can be used to estimate absolute magnitudes of ΔQc and ΔQh, while another method can be used to distinguish relative magnitudes of ΔQc versus ΔQh only. Because the methods’ fundamental assumptions about baseline versus altered period, water storage change and deep groundwater loss, precipitation-runoff relationship, hysteresis influence of human activity, and record of time series can seldom be satisfied for many watersheds, it is more realistic and practical to distinguish relative effects than to estimate absolute magnitudes of ΔQc and ΔQh. Moreover, a generic framework was presented for gauged watersheds with negligible groundwater loss, aiming to avoid misuse of the methods in practice. 相似文献
8.
Gregoire Broquet Pierre Brasseur David Rozier Jean-Michel Brankart Jacques Verron 《Ocean Dynamics》2008,58(1):1-17
The characterization of model errors is an essential step for effective data assimilation into open-ocean and shelf-seas models.
In this paper, we propose an experimental protocol to properly estimate the error statistics generated by imperfect atmospheric
forcings in a regional model of the Bay of Biscay, nested in a basin-scale North Atlantic configuration. The model used is
the Hybrid Coordinate Ocean Model (HYCOM), and the experimental protocol involves Monte Carlo (or ensemble) simulations. The
spatial structure of the model error is analyzed using the representer technique, which allows us to anticipate the subsequent
impact in data assimilation systems. The results show that the error is essentially anisotropic and inhomogeneous, affecting
mainly the model layers close to the surface. Even when the forcings errors are centered around zero, a divergence is observed
between the central forecast and the mean forecast of the Monte Carlo simulations as a result of nonlinearities. The 3D structure
of the representers characterizes the capacity of different types of measurement (sea level, sea surface temperature, surface
velocities, subsurface temperature, and salinity) to control the circulation. Finally, data assimilation experiments demonstrate
the superiority of the proposed methodology for the implementation of reduced-order Kalman filters. 相似文献
9.
Meshing effects of the 3-D FEM numerical modeling in seismo-electromagnetics: An application in selectivity of seismic electric signal (SES) 下载免费PDF全文
We investigated how density and quality of mesh around interest domain affect electromagnetic (EM) responses of 3D Earth layered media using finite element method (FEM). Effect of different mesh shapes was also investigated using a method of mixing structured and unstructured mesh. As a case study, we estimated the effects of meshing on selectivity phenomenon of seismic electric signal (SES). Our results suggest that the relative errors resulting from mesh effects may not be negligible, which may lead to some unconvincing explanation of the SES selectivity based on the numerical modeling results. 相似文献
10.
Short‐circuiting flow, commonly experienced in many constructed wetlands, reduces hydraulic retention times in unit wetland cells and decreases the treatment efficiency. A two‐dimensional (2‐D), physically based, distributed modelling approach was used to systematically address the effects of bathymetry and vegetation on short‐circuiting flow, which previously have been neglected or lumped in one‐dimensional wetland flow models. In this study, a 2‐D transient hydrodynamics with advection‐dispersion model was developed using MIKE 21 and calibrated with bromide tracer data collected at the Orlando Easterly Wetland Cell 7. The estimated topographic difference between short‐circuiting flow zone and adjacent area ranged from 0·3 to 0·8 m. A range of the Manning roughness coefficient at the short‐circuiting flow zone was estimated (0·022–0·045 s m?1/3). Sensitivity analysis of topographical and vegetative heterogeneity deduced during model calibration shows that relic ditches or other ditch‐shaped landforms and the associated sparse vegetation along the main flow direction intensify the short‐circuiting pattern, considerably affecting 2‐D solute transport simulation. In terms of hydraulic efficiency, this study indicates that the bathymetry effect on short‐circuiting flow is more important than the vegetation effect. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
11.
Uplift mechanism for a shallow-buried structure in liquefiable sand subjected to seismic load: centrifuge model test and DEM modeling 总被引:1,自引:1,他引:1
Based on a centrifuge model test and distinct element method(DEM), this study provides new insights into the uplift response of a shallow-buried structure and the liquefaction mechanism for saturated sand around the structure under seismic action. In the centrifuge test, a high-speed microscopic camera was installed in the structure model, by which the movements of particles around the structure were monitored. Then, a two-dimensional digital image processing technology was used to analyze the microstructure of saturated sand during the shaking event. Herein, a numerical simulation of the centrifuge experiment was conducted using a two-phase(solid and fl uid) fully coupled distinct element code. This code incorporates a particle-fl uid coupling model by means of a "fi xed coarse-grid" fl uid scheme in PFC3D(Particle Flow Code in Three Dimensions), with the modeling parameters partially calibrated based on earlier studies. The physical and numerical models both indicate the uplifts of the shallow-buried structure and the sharp rise in excess pore pressure. The corresponding micro-scale responses and explanations are provided. Overall, the uplift response of an underground structure and the occurrence of liquefaction in saturated sand are predicted successfully by DEM modeling. However, the dynamic responses during the shaking cannot be modeled accurately due to the restricted computer power. 相似文献
12.
Interactions between surface and groundwater are a key component of the hydrologic budget on the watershed scale. Models that honor these interactions are commonly based on the conductance concept that presumes a distinct interface at the land surface, separating the surface from the subsurface domain. These types of models link the subsurface and surface domains via an exchange flux that depends upon the magnitude and direction of the hydraulic gradient across the interface and a proportionality constant (a measure of the hydraulic connectivity). Because experimental evidence of such a distinct interface is often lacking in field systems, there is a need for a more general coupled modeling approach. 相似文献
13.
Bias correction methods remove systematic differences in the distributional properties of climate model outputs with respect to observations, often as a means of pre-processing model outputs for use in hydrological impact studies. Traditionally, bias correction is applied at each weather station individually, neglecting the dependence that exists between different sites, which could negatively affect simulations from a distributed hydrological model. In this study, three multi-variate bias correction (MBC) methods—initially proposed to correct the inter-variable correlation or multi-variate dependence of climate model outputs—are used to correct biases in distributional properties and spatial dependence at multiple weather stations. To reveal the benefits of correcting spatial dependence, two distribution-based single-site bias correction methods are used for comparison. The effects of multi-site correction on hydro-meteorological extremes are assessed by driving a distributed hydrological model and then evaluating the model performance in terms of several meteorological and hydrological extreme indices. The results show that the multi-site bias correction methods perform well in reducing biases in spatial correlation measures of raw global climate model outputs. In addition, the multi-site methods consistently reproduce watershed-averaged meteorological variables better than single-site methods, especially for extreme values. In terms of representing hydrological extremes, the multi-site methods generally perform better than the single-site methods, although the benefits vary according to the hydrological index. However, when applying the multi-site methods, the original temporal sequence of precipitation occurrence may be altered to some extent. Overall, all multi-site bias correction methods are able to reproduce the spatial correlation of observed meteorological variables over multiple stations, which leads to better hydrological simulations, especially for extremes. This study emphasizes the necessity of considering spatial dependence when applying bias correction to ccc outputs and hydrological impact studies. 相似文献
14.
Lydell Wiebe Constantin Christopoulos Robert Tremblay Martin Leclerc 《地震工程与结构动力学》2013,42(7):1069-1086
This paper presents the results of 56 large‐amplitude shake table tests of a 30% scale eight‐storey controlled rocking steel frame. No significant damage or residual deformations were observed after any of the tests. The frame had four possible configurations on the basis of combinations of two higher mode mitigation mechanisms. The first mitigation mechanism was formed by allowing the upper section of the frame to rock, so as to better control the mid‐height overturning moment. The second mitigation mechanism was formed by replacing the conventional first‐storey brace with a self‐centering energy dissipative (SCED) brace, so as to better control the base shear. The mechanisms had little effect during records where higher mode effects were not apparent, but they substantially reduced the shear and overturning moment envelopes, as well as the peak floor accelerations, during more demanding records. The reduction in storey shears led to similarly reduced brace force demands. Although the peak force demands in the columns were not reduced by as much as the frame overturning moments, using an upper rocking joint allowed the column demands to be estimated without the need to assume a lateral force distribution. The tests demonstrated that multiple force‐limiting mechanisms can be used to provide better control of peak seismic forces without excessive increases in drift demands, thus enabling more reliable capacity design. These results are expected to be widely applicable to structures where the peak seismic forces are significantly influenced by higher mode effects. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
15.
Patterns of zooplankton–phytoplankton interactions in subtropical lakes of the Southern Hemisphere may deviate from those established for north-temperate lakes. We tested the responses of phytoplankton growth to different community structures of zooplankton and nutrient enrichment in a subtropical Australian reservoir for the prediction of potential outcomes of lake biomanipulation. Two zooplankton communities were created in lake enclosures over 4 weeks: a rotifer-dominated community developed in the presence of planktivorous fish (Hypseleotris spp.) and a Ceriodaphnia-dominated community developed in the absence of fish. Biomass gradients of both communities were established in 20 L containers and several separate containers received no additions (controls) or were enriched with nitrogen and/or phosphorus. The growth rate of total phytoplankton significantly increased in response to nutrient enrichment, indicating nutrient limitation. Most phytoplankton taxa were not markedly affected by grazing of either zooplankton community. However, both communities had significant stimulatory effects on the growth of inedible chlorophytes. The ability of zooplankton grazing to negatively affect phytoplankton growth during the summer was counteracted regardless of zooplankton community structure, possibly by nutrients regenerated by zooplankton. We hypothesise that in the subtropical system studied, changes in food web nutrient recycling may be more important for the outcome of biomanipulation than grazing impacts. 相似文献
16.
Evaluating a process‐based model for use in streambank stabilization: insights on the Bank Stability and Toe Erosion Model (BSTEM) 下载免费PDF全文
Kate Klavon Garey Fox Lucie Guertault Eddy Langendoen Holly Enlow Ron Miller Anish Khanal 《地球表面变化过程与地形》2017,42(1):191-213
Streambank retreat is a complex cyclical process involving subaerial processes, fluvial erosion, seepage erosion, and geotechnical failures and is driven by several soil properties that themselves are temporally and spatially variable. Therefore, it can be extremely challenging to predict and model the erosion and consequent retreat of streambanks. However, modeling streambank retreat has many important applications, including the design and assessment of mitigation strategies for stream revitalization and stabilization. In order to highlight the current complexities of modeling streambank retreat and to suggest future research areas, this paper reviewed one of the most comprehensive streambank retreat models available, the Bank Stability and Toe Erosion Model (BSTEM), which has recently been integrated with several popular hydrodynamic and sediment transport models including the Hydrologic Engineering Center's River Analysis System (HEC‐RAS). The objectives of this paper were to: (i) comprehensively review studies that have utilized BSTEM and report their findings, (ii) address the limitations of the model so that it can be applied appropriately in its current form, and (iii) suggest directions of research that will help make the model a more useful tool in future applications. The paper includes an extensive overview of peer reviewed studies to guide future users of BSTEM. The review demonstrated that the model needs further testing and evaluation outside of the central United States. Also, further development is needed in terms of accounting for spatial and temporal variability in geotechnical and fluvial erodibility parameters, incorporating subaerial processes, and accounting for the influence of riparian vegetation on streambank pore‐water pressure dynamics, applied shear stress, and erodibility parameters. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
17.
Using a landform evolution model to study ephemeral gullying in agricultural fields: the effects of rainfall patterns on ephemeral gully dynamics 下载免费PDF全文
Water driven soil erosion is a major cause of land degradation worldwide. Ephemeral gullies (EGs) are considered key contributors to agricultural catchment soil loss. Despite their importance, the parameters and drivers controlling EG dynamics have not been adequately quantified. Here we investigate the effects of rainfall characteristics on EGs, using the physically based landform evolution model (LEM) CAESAR‐Lisflood. An initial goal of this study was to test the feasibility of using a LEM to estimate EG dynamics based on an easily obtainable and moderate spatial resolution (2 × 2 m) Digital Elevation Model (DEM). EG evolution was simulated for two rainfall seasons in a 0.37 km2 agricultural plot situated in a semiarid catchment in central Israel. The 2014 rainfall season was used to calibrate the model and the 2015 season was used for validation. The model overall well predicted the EG network structure and average depth but tended to underestimate the EG length. The effects of rainfall characteristics on EG dynamics were investigated by comparing simulations employing seven rainfall scenarios. Four of these scenarios differ in their overall rainfall volume relative to observed precipitation (+20%, +10%, ?10%, ?20%). The remaining three scenarios vary in the temporal distribution of rainfall during each storm, allowing us to isolate the effect of rainfall intensity on EG evolution. The results show that: (1) EG dynamics strongly correlated with changes in rainfall volume; (2) small‐scale morphological behavior varies between rainfall scenarios, resulting in different meandering and connectivity variability; (3) EG evolution is divided into two main stages, an initial rapid development occurring after the first two weeks of the rainy season, followed by a stable development period; (4) a 12 mm h?1 intensity threshold was observed to initiate and, later, modify EGs; and (5) inner storm rainfall variability can have a considerable effect on EG evolution. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
18.
Simulation of groundwater flow in a crystalline rock aquifer system in Southern Ghana – An evaluation of the effects of increased groundwater abstraction on the aquifers using a transient groundwater flow model 下载免费PDF全文
Monitored groundwater level data, well logs, and aquifer data as well as the relevant surface hydrological data were used to conceptualise the hydrogeological system of the Densu Basin in Southern Ghana. The objective was to numerically derive the hydraulic conductivity field for better characterization of the aquifer system and for simulating the effects of increasing groundwater abstraction on the aquifer system in the basin. The hydraulic conductivity field has been generated in this study through model calibration. This study finds that hydraulic conductivity ranges between a low of 2 m/d in the middle sections of the basin and about 40 m/d in the south. Clear differences in the underlying geology have been indicated in the distribution of aquifer hydraulic conductivities. This is in consonance with the general assertion that the hydrogeological properties of the aquifers in the crystalline basement terrains are controlled by the degree of fracturing and/or weathering of the country rock. The transient model suggest aquifer specific storage values to range between 6.0 × 10?5 m?1 and 2.1 × 10?4 m?1 which are within acceptable range of values normally quoted for similar lithologies in the literature. There is an apparent subtle decrease in groundwater recharge from about 13% of the annual precipitation in 2005 to about 10.3% of the precipitation in 2008. The transient model was used to simulate responses of the system to annual increment of groundwater abstraction by 20% at the 2008 recharge rates for the period 2009 – 2024. The results suggest that the system will not be able to sustain this level of abstraction as it would lead to a basin wide drawdown in the hydraulic head by 4 m by the end of the prediction period. It further suggests a safe annual increment in groundwater abstraction by 5% under business as usual recharge conditions. Identification and protection of groundwater recharge areas in the basin are recommended in order to safeguard the integrity of the resource under the scenario of increased abstraction for commercial activities in the basin. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
19.
Lydell Wiebe Constantin Christopoulos Robert Tremblay Martin Leclerc 《地震工程与结构动力学》2013,42(7):1053-1068
Controlled rocking steel frames have been proposed as an efficient way to avoid the structural damage and residual deformations that are expected in conventional seismic force resisting systems. Although the base rocking response is intended to limit the force demands, higher mode effects can amplify member design forces, reducing the viability of the system. This paper suggests that seismic forces may be limited more effectively by providing multiple force‐limiting mechanisms. Two techniques are proposed: detailing one or more rocking joints above the base rocking joint and providing a self‐centring energy dissipative (SCED) brace at one or more levels. These concepts are applied to the design of an eight‐storey prototype structure and a shake table model at 30% scale. A simple numerical model that was used as a design tool is in good agreement with frequency characterization and low‐amplitude seismic tests of the shake table model, particularly when multiple force‐limiting mechanisms are active. These results suggest that the proposed mechanisms can enable better capacity design by reducing the variability of peak seismic force demands without causing excessive displacements. Similar results are expected for other systems that rely on a single location of concentrated nonlinearity to limit peak seismic loads. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献